Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.127
Filter
Add more filters

Publication year range
1.
Cell ; 187(4): 999-1010.e15, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38325366

ABSTRACT

Protein structures are essential to understanding cellular processes in molecular detail. While advances in artificial intelligence revealed the tertiary structure of proteins at scale, their quaternary structure remains mostly unknown. We devise a scalable strategy based on AlphaFold2 to predict homo-oligomeric assemblies across four proteomes spanning the tree of life. Our results suggest that approximately 45% of an archaeal proteome and a bacterial proteome and 20% of two eukaryotic proteomes form homomers. Our predictions accurately capture protein homo-oligomerization, recapitulate megadalton complexes, and unveil hundreds of homo-oligomer types, including three confirmed experimentally by structure determination. Integrating these datasets with omics information suggests that a majority of known protein complexes are symmetric. Finally, these datasets provide a structural context for interpreting disease mutations and reveal coiled-coil regions as major enablers of quaternary structure evolution in human. Our strategy is applicable to any organism and provides a comprehensive view of homo-oligomerization in proteomes.


Subject(s)
Artificial Intelligence , Proteins , Proteome , Humans , Proteins/chemistry , Proteins/genetics , Archaea/chemistry , Archaea/genetics , Eukaryota/chemistry , Eukaryota/genetics , Bacteria/chemistry , Bacteria/genetics
2.
Proc Natl Acad Sci U S A ; 121(18): e2320590121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38621118

ABSTRACT

Increasing environmental threats and more extreme environmental perturbations place species at risk of population declines, with associated loss of genetic diversity and evolutionary potential. While theory shows that rapid population declines can cause loss of genetic diversity, populations in some environments, like Australia's arid zone, are repeatedly subject to major population fluctuations yet persist and appear able to maintain genetic diversity. Here, we use repeated population sampling over 13 y and genotype-by-sequencing of 1903 individuals to investigate the genetic consequences of repeated population fluctuations in two small mammals in the Australian arid zone. The sandy inland mouse (Pseudomys hermannsburgensis) experiences marked boom-bust population dynamics in response to the highly variable desert environment. We show that heterozygosity levels declined, and population differentiation (FST) increased, during bust periods when populations became small and isolated, but that heterozygosity was rapidly restored during episodic population booms. In contrast, the lesser hairy-footed dunnart (Sminthopsis youngsoni), a desert marsupial that maintains relatively stable population sizes, showed no linear declines in heterozygosity. These results reveal two contrasting ways in which genetic diversity is maintained in highly variable environments. In one species, diversity is conserved through the maintenance of stable population sizes across time. In the other species, diversity is conserved through rapid genetic mixing during population booms that restores heterozygosity lost during population busts.


Subject(s)
Mammals , Marsupialia , Animals , Mice , Australia , Population Dynamics , Genotype , Heterozygote , Genetic Variation , Genetics, Population
3.
Hum Mol Genet ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011643

ABSTRACT

Unlike other cancers with widespread screening (breast, colorectal, cervical, prostate, and skin), lung nodule biopsies for positive screenings have higher morbidity with clinical complications. Development of non-invasive diagnostic biomarkers could thereby significantly enhance lung cancer management for at-risk patients. Here, we leverage Mendelian Randomization (MR) to investigate the plasma proteome and metabolome for potential biomarkers relevant to lung cancer. Utilizing bidirectional MR and co-localization analyses, we identify novel associations, highlighting inverse relationships between plasma proteins SFTPB and KDELC2 in lung adenocarcinoma (LUAD) and positive associations of TCL1A with lung squamous cell carcinoma (LUSC) and CNTN1 with small cell lung cancer (SCLC). Additionally, our work reveals significant negative correlations between metabolites such as theobromine and paraxanthine, along with paraxanthine-related ratios, in both LUAD and LUSC. Conversely, positive correlations are found in caffeine/paraxanthine and arachidonate (20:4n6)/paraxanthine ratios with these cancer types. Through single-cell sequencing data of normal lung tissue, we further explore the role of lung tissue-specific protein SFTPB in carcinogenesis. These findings offer new insights into lung cancer etiology, potentially guiding the development of diagnostic biomarkers and therapeutic approaches.

4.
Hum Mol Genet ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39251229

ABSTRACT

α9-nAChR, a subtype of nicotinic acetylcholine receptor, is significantly overexpressed in female breast cancer tumor tissues compared to normal tissues. Previous studies have proposed that specific single nucleotide polymorphisms (SNPs) in the CHRNA9 (α9-nAChR) gene are associated with an increased risk of breast cancer in interaction with smoking. The study conducted a breast cancer risk assessment of the α9-nAChR SNP rs10009228 (NM_017581.4:c.1325A > G) in the Taiwanese female population, including 308 breast cancer patients and 198 healthy controls revealed that individuals with the heterozygous A/G or A/A wild genotype have an increased susceptibility to developing breast cancer in the presence of smoking compared to carriers of the G/G variant genotype. Our investigation confirmed the presence of this missense variation, resulting in an alteration of the amino acid sequence from asparagine (N442) to serine (S442) to facilitate phosphorylation within the α9-nAchR protein. Additionally, overexpression of N442 (A/A) in breast cancer cells significantly enhanced cell survival, migration, and cancer stemness compared to S442 (G/G). Four-line triple-negative breast cancer patient-derived xenograft (TNBC-PDX) models with distinct α9-nAChR rs10009228 SNP genotypes (A/A, A/G, G/G) further demonstrated that chronic nicotine exposure accelerated tumor growth through sustained activation of the α9-nAChR downstream oncogenic AKT/ERK/STAT3 pathway, particularly in individuals with the A/G or A/A genotype. Collectively, our study established the links between genetic variations in α9-nAChR and smoking exposure in promoting breast tumor development. This emphasizes the need to consider gene-environment interactions carefully while developing effective breast cancer prevention and treatment strategies.

5.
J Biol Chem ; 300(6): 107302, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642892

ABSTRACT

Cellular zinc ions (Zn2+) are crucial for signal transduction in various cell types. The transient receptor potential (TRP) ankyrin 1 (TRPA1) channel, known for its sensitivity to intracellular Zn2+ ([Zn2+]i), has been a subject of limited understanding regarding its molecular mechanism. Here, we used metal ion-affinity prediction, three-dimensional structural modeling, and mutagenesis, utilizing data from the Protein Data Bank and AlphaFold database, to elucidate the [Zn2+]i binding domain (IZD) structure composed by specific AAs residues in human (hTRPA1) and chicken TRPA1 (gTRPA1). External Zn2+ induced activation in hTRPA1, while not in gTRPA1. Moreover, external Zn2+ elevated [Zn2+]i specifically in hTRPA1. Notably, both hTRPA1 and gTRPA1 exhibited inherent sensitivity to [Zn2+]i, as evidenced by their activation upon internal Zn2+ application. The critical AAs within IZDs, specifically histidine at 983/984, lysine at 711/717, tyrosine at 714/720, and glutamate at 987/988 in IZD1, and H983/H984, tryptophan at 710/716, E854/E855, and glutamine at 979/980 in IZD2, were identified in hTRPA1/gTRPA1. Furthermore, mutations, such as the substitution of arginine at 919 (R919) to H919, abrogated the response to external Zn2+ in hTRPA1. Among single-nucleotide polymorphisms (SNPs) at Y714 and a triple SNP at R919 in hTRPA1, we revealed that the Zn2+ responses were attenuated in mutants carrying the Y714 and R919 substitution to asparagine and proline, respectively. Overall, this study unveils the intrinsic sensitivity of hTRPA1 and gTRPA1 to [Zn2+]i mediated through IZDs. Furthermore, our findings suggest that specific SNP mutations can alter the responsiveness of hTRPA1 to extracellular and intracellular Zn2+.


Subject(s)
Chickens , TRPA1 Cation Channel , Zinc , Zinc/metabolism , Zinc/chemistry , Humans , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/genetics , TRPA1 Cation Channel/chemistry , Animals , HEK293 Cells , Protein Domains , Species Specificity
6.
Syst Biol ; 73(2): 263-278, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-38141222

ABSTRACT

Diversification and demographic responses are key processes shaping species evolutionary history. Yet we still lack a full understanding of ecological mechanisms that shape genetic diversity at different spatial scales upon rapid environmental changes. In this study, we examined genetic differentiation in an extremophilic grass Puccinellia pamirica and factors affecting its population dynamics among the occupied hypersaline alpine wetlands on the arid Pamir Plateau in Central Asia. Using genomic data, we found evidence of fine-scale population structure and gene flow among the localities established across the high-elevation plateau as well as fingerprints of historical demographic expansion. We showed that an increase in the effective population size could coincide with the Last Glacial Period, which was followed by the species demographic decline during the Holocene. Geographic distance plays a vital role in shaping the spatial genetic structure of P. pamirica alongside with isolation-by-environment and habitat fragmentation. Our results highlight a complex history of divergence and gene flow in this species-poor alpine region during the Late Quaternary. We demonstrate that regional climate specificity and a shortage of nonclimate data largely impede predictions of future range changes of the alpine extremophile using ecological niche modeling. This study emphasizes the importance of fine-scale environmental heterogeneity for population dynamics and species distribution shifts.


Subject(s)
Biodiversity , Poaceae , Poaceae/genetics , Poaceae/classification , Gene Flow , Biological Evolution , Genetic Variation , Wetlands
7.
Cell Mol Life Sci ; 81(1): 274, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902506

ABSTRACT

Discoveries in the field of genomics have revealed that non-coding genomic regions are not merely "junk DNA", but rather comprise critical elements involved in gene expression. These gene regulatory elements (GREs) include enhancers, insulators, silencers, and gene promoters. Notably, new evidence shows how mutations within these regions substantially influence gene expression programs, especially in the context of cancer. Advances in high-throughput sequencing technologies have accelerated the identification of somatic and germline single nucleotide mutations in non-coding genomic regions. This review provides an overview of somatic and germline non-coding single nucleotide alterations affecting transcription factor binding sites in GREs, specifically involved in cancer biology. It also summarizes the technologies available for exploring GREs and the challenges associated with studying and characterizing non-coding single nucleotide mutations. Understanding the role of GRE alterations in cancer is essential for improving diagnostic and prognostic capabilities in the precision medicine era, leading to enhanced patient-centered clinical outcomes.


Subject(s)
Mutation , Neoplasms , Humans , Neoplasms/genetics , Regulatory Sequences, Nucleic Acid/genetics , Genome, Human , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic
8.
BMC Biol ; 22(1): 13, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273258

ABSTRACT

BACKGROUND: Single-nucleotide polymorphisms (SNPs) are the most widely used form of molecular genetic variation studies. As reference genomes and resequencing data sets expand exponentially, tools must be in place to call SNPs at a similar pace. The genome analysis toolkit (GATK) is one of the most widely used SNP calling software tools publicly available, but unfortunately, high-performance computing versions of this tool have yet to become widely available and affordable. RESULTS: Here we report an open-source high-performance computing genome variant calling workflow (HPC-GVCW) for GATK that can run on multiple computing platforms from supercomputers to desktop machines. We benchmarked HPC-GVCW on multiple crop species for performance and accuracy with comparable results with previously published reports (using GATK alone). Finally, we used HPC-GVCW in production mode to call SNPs on a "subpopulation aware" 16-genome rice reference panel with ~ 3000 resequenced rice accessions. The entire process took ~ 16 weeks and resulted in the identification of an average of 27.3 M SNPs/genome and the discovery of ~ 2.3 million novel SNPs that were not present in the flagship reference genome for rice (i.e., IRGSP RefSeq). CONCLUSIONS: This study developed an open-source pipeline (HPC-GVCW) to run GATK on HPC platforms, which significantly improved the speed at which SNPs can be called. The workflow is widely applicable as demonstrated successfully for four major crop species with genomes ranging in size from 400 Mb to 2.4 Gb. Using HPC-GVCW in production mode to call SNPs on a 25 multi-crop-reference genome data set produced over 1.1 billion SNPs that were publicly released for functional and breeding studies. For rice, many novel SNPs were identified and were found to reside within genes and open chromatin regions that are predicted to have functional consequences. Combined, our results demonstrate the usefulness of combining a high-performance SNP calling architecture solution with a subpopulation-aware reference genome panel for rapid SNP discovery and public deployment.


Subject(s)
Genome, Plant , Polymorphism, Single Nucleotide , Workflow , Plant Breeding , Software , High-Throughput Nucleotide Sequencing/methods
9.
Genet Epidemiol ; 47(2): 152-166, 2023 03.
Article in English | MEDLINE | ID: mdl-36571162

ABSTRACT

Two-step tests for gene-environment ( G × E $G\times E$ ) interactions exploit marginal single-nucleotide polymorphism (SNP) effects to improve the power of a genome-wide interaction scan. They combine a screening step based on marginal effects used to "bin" SNPs for weighted hypothesis testing in the second step to deliver greater power over single-step tests while preserving the genome-wide Type I error. However, the presence of many SNPs with detectable marginal effects on the trait of interest can reduce power by "displacing" true interactions with weaker marginal effects and by adding to the number of tests that need to be corrected for multiple testing. We introduce a new significance-based allocation into bins for Step-2 G × E $G\times E$ testing that overcomes the displacement issue and propose a computationally efficient approach to account for multiple testing within bins. Simulation results demonstrate that these simple improvements can provide substantially greater power than current methods under several scenarios. An application to a multistudy collaboration for understanding colorectal cancer reveals a G × Sex interaction located near the SMAD7 gene.


Subject(s)
Gene-Environment Interaction , Genome-Wide Association Study , Humans , Models, Genetic , Phenotype , Computer Simulation , Polymorphism, Single Nucleotide
10.
BMC Genomics ; 25(1): 142, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317084

ABSTRACT

Whole-exome sequencing (WES) is widely used to diagnose complex genetic diseases and rare conditions. The implementation of a robust and effective quality control system for sample identification and tracking throughout the WES process is essential. We established a multiplex panel that included 22 coding single-nucleotide polymorphism (cSNP) loci. The personal identification and paternity identification abilities of the panel were evaluated, and a preliminary validation of the practical feasibility of the panel was conducted in a clinical WES case. These results indicate that the cSNP panel could be a useful tool for sample tracking in WES.


Subject(s)
Exome , Polymorphism, Single Nucleotide , Humans , Exome Sequencing , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods
11.
BMC Genomics ; 25(1): 256, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454350

ABSTRACT

BACKGROUND: Congenital heart defects (CHD) are structural defects of the heart affecting approximately 1% of newborns. They exhibit low penetrance and non-Mendelian patterns of inheritance as varied and complex traits. While genetic factors are known to play an important role in the development of CHD, the specific genetics remain unknown for the majority of patients. To elucidate the underlying genetic risk, we performed a genome wide association study (GWAS) of CHDs in general and specific CHD subgroups using the FinnGen Release 10 (R10) (N > 393,000), followed by functional fine-mapping through eQTL and co-localization analyses using the GTEx database. RESULTS: We discovered three genome-wide significant loci associated with general CHD. Two of them were located in chromosome 17: 17q21.32 (rs2316327, intronic: LRRC37A2, Odds ratio (OR) [95% Confidence Interval (CI)] = 1.17[1.12-1.23], p = 1.5 × 10-9) and 17q25.3 (rs1293973611, nearest: BAHCC1, OR[95%CI] = 4.48[2.80-7.17], p = 7.0 × 10-10), respectively, and in addition to general CHD, the rs1293973611 locus was associated with the septal defect subtype. The third locus was in band 1p21.2 (rs35046143, nearest: PALMD, OR[95%CI] = 1.15[1.09-1.21], p = 7.1 × 10-9), and it was associated with general CHD and left-sided lesions. In the subgroup analysis, two additional loci were associated with septal defects (rs75230966 and rs6824295), and one with left-sided lesions (rs1305393195). In the eQTL analysis the variants rs2316327 (general CHD), and rs75230966 (septal defects) both located in 17q21.32 (with a LD r2 of 0.41) were both predicted to significantly associate with the expression of WNT9B in the atrial appendage tissue category. This effect was further confirmed by co-localization analysis, which also implicated WNT3 expression in the atrial appendage. A meta-analysis of general CHD together with the UK Biobank (combined N = 881,678) provided a different genome-wide significant locus in LRRC37A2; rs16941382 (OR[95%CI] = 1.15[1.11-1.20], p = 1.5 × 10-9) which is in significant LD with rs2316327. CONCLUSIONS: Our results of general CHD and different CHD subcategories identified a complex risk locus on chromosome 17 near BAHCC1 and LRRC37A2, interacting with the genes WNT9B, WNT3 and MYL4, may constitute potential novel CHD risk associated loci, warranting future experimental tests to determine their role.


Subject(s)
Genome-Wide Association Study , Heart Defects, Congenital , Humans , Infant, Newborn , Genetic Predisposition to Disease , Heart Defects, Congenital/genetics , Risk Factors , Databases, Genetic
12.
BMC Genomics ; 25(1): 576, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858654

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is a complex disorder that has become a high prevalence global health problem, with diabetes being its predominant pathophysiologic driver. Autosomal genetic variation only explains some of the predisposition to kidney disease. Variations in the mitochondrial genome (mtDNA) and nuclear-encoded mitochondrial genes (NEMG) are implicated in susceptibility to kidney disease and CKD progression, but they have not been thoroughly explored. Our aim was to investigate the association of variation in both mtDNA and NEMG with CKD (and related traits), with a particular focus on diabetes. METHODS: We used the UK Biobank (UKB) and UK-ROI, an independent collection of individuals with type 1 diabetes mellitus (T1DM) patients. RESULTS: Fourteen mitochondrial variants were associated with estimated glomerular filtration rate (eGFR) in UKB. Mitochondrial variants and haplogroups U, H and J were associated with eGFR and serum variables. Mitochondrial haplogroup H was associated with all the serum variables regardless of the presence of diabetes. Mitochondrial haplogroup X was associated with end-stage kidney disease (ESKD) in UKB. We confirmed the influence of several known NEMG on kidney disease and function and found novel associations for SLC39A13, CFL1, ACP2 or ATP5G1 with serum variables and kidney damage, and for SLC4A1, NUP210 and MYH14 with ESKD. The G allele of TBC1D32-rs113987180 was associated with higher risk of ESKD in patients with diabetes (OR:9.879; CI95%:4.440-21.980; P = 2.0E-08). In UK-ROI, AGXT2-rs71615838 and SURF1-rs183853102 were associated with diabetic nephropathies, and TFB1M-rs869120 with eGFR. CONCLUSIONS: We identified novel variants both in mtDNA and NEMG which may explain some of the missing heritability for CKD and kidney phenotypes. We confirmed the role of MT-ND5 and mitochondrial haplogroup H on renal disease (serum variables), and identified the MT-ND5-rs41535848G variant, along with mitochondrial haplogroup X, associated with higher risk of ESKD. Despite most of the associations were independent of diabetes, we also showed potential roles for NEMG in T1DM.


Subject(s)
Mitochondria , Humans , Male , Mitochondria/genetics , Female , Middle Aged , Genetic Predisposition to Disease , Glomerular Filtration Rate , Genetic Variation , Haplotypes , Renal Insufficiency, Chronic/genetics , DNA, Mitochondrial/genetics , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/complications , Polymorphism, Single Nucleotide , Adult , Aged
13.
BMC Genomics ; 25(1): 742, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080521

ABSTRACT

The anthrax-causing bacterium Bacillus anthracis comprises the genetic clades A, B, and C. In the northernmost part (Pafuri) of Kruger National Park (KNP), South Africa, both the common A and rare B strains clades occur. The B clade strains were reported to be dominant in Pafuri before 1991, while A clade strains occurred towards the central parts of KNP. The prevalence of B clade strains is currently much lower as only A clade strains have been isolated from 1992 onwards in KNP. In this study 319 B. anthracis strains were characterized with 31-loci multiple-locus variable-number tandem repeat analysis (MLVA-31). B clade strains from soil (n = 9) and a Tragelaphus strepsiceros carcass (n = 1) were further characterised by whole genome sequencing and compared to publicly available genomes. The KNP strains clustered in the B clade before 1991 into two dominant genotypes. South African strains cluster into a dominant genotype A.Br.005/006 consisting of KNP as well as the other anthrax endemic region, Northern Cape Province (NCP), South Africa. A few A.Br.001/002 strains from both endemic areas were also identified. Subclade A.Br.101 belonging to the A.Br.Aust94 lineage was reported in the NCP. The B-clade strains seems to be vanishing, while outbreaks in South Africa are caused mainly by the A.Br.005/006 genotypes as well as a few minor clades such as A.Br.001/002 and A.Br.101 present in NCP. This work confirmed the existence of the rare and vanishing B-clade strains that group in B.Br.001 branch with KrugerB and A0991 KNP strains.


Subject(s)
Anthrax , Bacillus anthracis , Phylogeny , Bacillus anthracis/genetics , Bacillus anthracis/classification , Bacillus anthracis/isolation & purification , South Africa , Anthrax/microbiology , Anthrax/epidemiology , Anthrax/veterinary , Genotype , Genome, Bacterial , Soil Microbiology , Whole Genome Sequencing
14.
Cancer ; 130(6): 973-984, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38018448

ABSTRACT

BACKGROUND: Acute lymphoblastic leukemia (ALL) is the most common cancer in children. IKZF3 (IKAROS family zinc finger 3) is a hematopoietic-specific transcription factor, and it has been validated that it is involved in leukemia. However, the role of IKZF3 single-nucleotide polymorphisms (SNPs) remains unclear. In this case-control study, the authors investigated the association of IKZF3 SNPs with ALL in children. METHODS: Six IKZF3 reference SNPs (rs9635726, rs2060941, rs907092, rs12946510, rs1453559, and rs62066988) were genotyped in 692 patients who had ALL (cases) and in 926 controls. The associations between IKZF3 polymorphisms and ALL risk were determined using odds ratios (ORs) and 95% confidence intervals (CIs). The associations of rs9635726 and rs2060941 with the risk of ALL were further estimated by using false-positive report probability (FPRP) analysis. Functional analysis in silico was performed to evaluate the probability that rs9635726 and rs2060941 might influence the regulation of IKZF3. RESULTS: The authors observed that rs9635726C>T (adjusted OR, 1.49; 95% CI, 1.06-2.11; p = .023) and rs2060941G>T (adjusted OR, 1.51; 95% CI, 1.24-1.84; p = .001) were related to and increased risk of ALL in the recessive and dominant models, respectively. Furthermore, the associations of both rs9635726 (FPRP = .177) and rs2060941 (FPRP < .001) with ALL were noteworthy in the FPRP analysis. Functional analysis indicated that rs9635726 and rs2060941 might repress the transcription of IKZF3 by disrupting its binding to MLLT1, TAF1, POLR2A, and/or RAD21. CONCLUSIONS: This study revealed that IKZF3 polymorphisms were associated with increased ALL susceptibility in children and might influence the expression of IKZF3 by disrupting its binding to MLLT1, TAF1, POLR2A, and/or RAD21. IKZF3 polymorphisms were suggested as a biomarker for childhood ALL.


Subject(s)
Polymorphism, Single Nucleotide , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Case-Control Studies , Genotype , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Ikaros Transcription Factor/genetics , Genetic Predisposition to Disease
15.
Br J Haematol ; 205(2): 686-698, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38977031

ABSTRACT

Iron-refractory iron deficiency anaemia (IRIDA) is a rare autosomal recessive disorder, distinguished by hypochromic microcytic anaemia, low transferrin levels and inappropriately elevated hepcidin (HEPC) levels. It is caused by mutations in TMPRSS6 gene. Systematic screening of 500 pregnant women with iron deficiency anaemia having moderate to severe microcytosis with no other causes of anaemia were enrolled to rule out oral iron refractoriness. It identified a final cohort of 10 (2.15% prevalence) individuals with IRIDA phenotype. Haematological and biochemical analysis revealed significant differences between iron responders and iron non-responders, with iron non-responders showing lower haemoglobin, red blood cell count, serum iron and serum ferritin levels, along with elevated HEPC (9.47 ± 2.75 ng/mL, p = 0.0009) and erythropoietin (4.58 ± 4.07 µ/mL, p = 0.0196) levels. Genetic sequencing of the TMPRSS6 gene in this final cohort identified 10 novel variants, including seven missense and three frame-shift mutations, with four missense variants showing high functional impact defining the IRIDA phenotype. Structural analysis revealed significant damage caused by two variants (p.L83R and p.S235R). This study provides valuable insights into IRIDA among pregnant women in the Indian subcontinent, unveiling its underlying causes of unresponsiveness, genetic mechanisms and prevalence. Furthermore, research collaboration is essential to validate these findings and develop effective treatments.


Subject(s)
Anemia, Iron-Deficiency , Membrane Proteins , Serine Endopeptidases , Humans , Female , Pregnancy , Anemia, Iron-Deficiency/genetics , Membrane Proteins/genetics , Adult , Serine Endopeptidases/genetics , Pregnancy Complications, Hematologic/genetics , India/epidemiology , Phenotype , Mutation, Missense , Iron/metabolism , Genotype , Mutation , Young Adult
16.
Immunogenetics ; 76(2): 123-135, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38427105

ABSTRACT

To examine whether circulating interleukin-6 (IL-6) levels (CirIL6) have a causal effect on blood pressure using Mendelian randomization (MR) methods. We used data from genome-wide association studies (GWAS) of European ancestry to obtain genetic instruments for circulating IL-6 levels and blood pressure measurements. We applied several robust MR methods to estimate the causal effects and to test for heterogeneity and pleiotropy. We found that circulating IL-6 had a significant positive causal effect on systolic blood pressure (SBP) and pulmonary arterial hypertension (PAH), but not on diastolic blood pressure (DBP) or hypertension. We found that as CirIL6 genetically increased, SBP increased using Inverse Variance Weighted (IVW) method (for ukb-b-20175, ß = 0.082 with SE = 0.032, P = 0.011; for ukb-a-360, ß = 0.075 with SE = 0.031, P = 0.014) and weighted median (WM) method (for ukb-b-20175, ß = 0.061 with SE = 0.022, P = 0.006; for ukb-a-360, ß = 0.065 with SE = 0.027, P = 0.014). Moreover, CirIL6 may be associated with an increased risk of PAH using WM method (odds ratio (OR) = 15.503, 95% CI, 1.025-234.525, P = 0.048), but not with IVW method. Our study provides novel evidence that circulating IL-6 has a causal role in the development of SBP and PAH, but not DBP or hypertension. These findings suggest that IL-6 may be a potential therapeutic target for preventing or treating cardiovascular diseases and metabolic disorders. However, more studies are needed to confirm the causal effects of IL-6 on blood pressure and to elucidate the underlying mechanisms and pathways.


Subject(s)
Hypertension , Interleukin-6 , Humans , Blood Pressure/genetics , Interleukin-6/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Hypertension/genetics
17.
BMC Plant Biol ; 24(1): 416, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760676

ABSTRACT

BACKGROUND: Phytophthora root rot, a major constraint in chile pepper production worldwide, is caused by the soil-borne oomycete, Phytophthora capsici. This study aimed to detect significant regions in the Capsicum genome linked to Phytophthora root rot resistance using a panel consisting of 157 Capsicum spp. genotypes. Multi-locus genome wide association study (GWAS) was conducted using single nucleotide polymorphism (SNP) markers derived from genotyping-by-sequencing (GBS). Individual plants were separately inoculated with P. capsici isolates, 'PWB-185', 'PWB-186', and '6347', at the 4-8 leaf stage and were scored for disease symptoms up to 14-days post-inoculation. Disease scores were used to calculate disease parameters including disease severity index percentage, percent of resistant plants, area under disease progress curve, and estimated marginal means for each genotype. RESULTS: Most of the genotypes displayed root rot symptoms, whereas five accessions were completely resistant to all the isolates and displayed no symptoms of infection. A total of 55,117 SNP markers derived from GBS were used to perform multi-locus GWAS which identified 330 significant SNP markers associated with disease resistance. Of these, 56 SNP markers distributed across all the 12 chromosomes were common across the isolates, indicating association with more durable resistance. Candidate genes including nucleotide-binding site leucine-rich repeat (NBS-LRR), systemic acquired resistance (SAR8.2), and receptor-like kinase (RLKs), were identified within 0.5 Mb of the associated markers. CONCLUSIONS: Results will be used to improve resistance to Phytophthora root rot in chile pepper by the development of Kompetitive allele-specific markers (KASP®) for marker validation, genomewide selection, and marker-assisted breeding.


Subject(s)
Capsicum , Disease Resistance , Genome-Wide Association Study , Phytophthora , Plant Diseases , Plant Roots , Polymorphism, Single Nucleotide , Phytophthora/physiology , Phytophthora/pathogenicity , Capsicum/genetics , Capsicum/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Plant Roots/microbiology , Plant Roots/genetics , Genotype
18.
Mol Carcinog ; 63(9): 1712-1721, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38860607

ABSTRACT

BACKGROUND: Pyroptosis has been implicated in the advancement of various cancers. Triggering pyroptosis within tumors amplifies the immune response, thereby fostering an antitumor immune environment. Nonetheless, few published studies have evaluated associations between functional variants in the pyroptosis-related genes and clinical outcomes of patients with non-oropharyngeal head and neck squamous cell carcinoma (NON-ORO HNSCC). METHODS: We conducted an association study of 985 NON-ORO HNSCC patients who were randomly divided into two groups: the discovery group of 492 patients and the replication group of 493 patients. We used Cox proportional hazards regression analysis to examine associations between genetic variants of the pyroptosis-related genes and survival of patients with NON-ORO HNSCC. Bayesian false discovery probability (BFDP) was used for multiple testing correction. Functional annotation was applied to the identified survival-associated genetic variants. RESULTS: There are 8254 single-nucleotide polymorphisms (SNPs) located in 82 pyroptosis-related genes, of which 202 SNPs passed multiple testing correction with BFDP < 0.8 in the discovery and six SNPs retained statistically significant in the replication. In subsequent stepwise multivariable Cox regression analysis, two independent SNPs (CHMP4A rs1997996 G > A and PANX1 rs56175344 C > G) remained significant with an adjusted hazard ratios (HR) of 1.31 (95% confidence interval [CI] = 1.09-1.57, p = 0.004) and 0.65 (95% CI = 0.51-0.83, p = 0.0005) for overall survival (OS), respectively. Further analysis of the combined genotypes revealed progressively worse OS associated with the number of unfavorable genotypes (ptrend < 0.0001 and 0.021 for OS and disease-specific survival, respectively). Moreover, both PANX1 rs56175344G and CHMP4A rs1997996A alleles were correlated with reduced mRNA expression levels. CONCLUSIONS: Genetic variants in the pyroptosis pathway genes may predict the survival of NON-ORO HNSCC patients, likely by reducing the gene expression, but our findings need to be replicated by larger studies.


Subject(s)
Biomarkers, Tumor , Connexins , Endosomal Sorting Complexes Required for Transport , Head and Neck Neoplasms , Nerve Tissue Proteins , Pyroptosis , Squamous Cell Carcinoma of Head and Neck , Aged , Female , Humans , Male , Middle Aged , Biomarkers, Tumor/genetics , Connexins/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/pathology , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Prognosis , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/pathology , Endosomal Sorting Complexes Required for Transport/metabolism
19.
J Transl Med ; 22(1): 577, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890669

ABSTRACT

BACKGROUND: Inherited variations in DNA double-strand break (DSB) repair pathway are known to influence ovarian cancer occurrence, progression and treatment response. Despite its significance, survival-associated genetic variants within the DSB pathway remain underexplored. METHODS: In the present study, we performed a two-phase analysis of 19,290 single-nucleotide polymorphisms (SNPs) in 199 genes in the DSB repair pathway from a genome-wide association study (GWAS) dataset and explored their associations with overall survival (OS) in 1039 Han Chinese epithelial ovarian carcinoma (EOC) patients. After utilizing multivariate Cox regression analysis with bayesian false-discovery probability for multiple test correction, significant genetic variations were identified and subsequently underwent functional prediction and validation. RESULTS: We discovered a significant association between poor overall survival and the functional variant GEN1 rs56070363 C > T (CT + TT vs. TT, adjusted hazard ratio (HR) = 2.50, P < 0.001). And the impact of GEN1 rs56070363 C > T on survival was attributed to its reduced binding affinity to hsa-miR-1287-5p and the resultant upregulation of GEN1 mRNA expression. Overexpression of GEN1 aggregated EOC cell proliferation, invasion and migration presumably by influencing the expression of immune inhibitory factors, thereby elevating the proportion of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and then constructing an immunosuppressive tumor microenvironment. CONCLUSIONS: In conclusion, GEN1 rs56070363 variant could serve as a potential predictive biomarker and chemotherapeutic target for improving the survival of EOC patients.


Subject(s)
Carcinoma, Ovarian Epithelial , Holliday Junction Resolvases , Ovarian Neoplasms , Polymorphism, Single Nucleotide , Female , Humans , Middle Aged , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/mortality , Cell Line, Tumor , Cell Movement , Cell Proliferation , China , East Asian People/genetics , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Kaplan-Meier Estimate , MicroRNAs/genetics , Neoplasm Invasiveness , Ovarian Neoplasms/genetics , Ovarian Neoplasms/mortality , Prognosis , Survival Analysis , Holliday Junction Resolvases/genetics
20.
Mol Ecol ; 33(1): e17188, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37921120

ABSTRACT

The commercially important Atlantic bluefin tuna (Thunnus thynnus), a large migratory fish, has experienced notable recovery aided by accurate resource assessment and effective fisheries management efforts. Traditionally, this species has been perceived as consisting of eastern and western populations, spawning respectively in the Mediterranean Sea and the Gulf of Mexico, with mixing occurring throughout the Atlantic. However, recent studies have challenged this assumption by revealing weak genetic differentiation and identifying a previously unknown spawning ground in the Slope Sea used by Atlantic bluefin tuna of uncertain origin. To further understand the current and past population structure and connectivity of Atlantic bluefin tuna, we have assembled a unique dataset including thousands of genome-wide single-nucleotide polymorphisms (SNPs) from 500 larvae, young of the year and spawning adult samples covering the three spawning grounds and including individuals of other Thunnus species. Our analyses support two weakly differentiated but demographically connected ancestral populations that interbreed in the Slope Sea. Moreover, we also identified signatures of introgression from albacore (Thunnus alalunga) into the Atlantic bluefin tuna genome, exhibiting varied frequencies across spawning areas, indicating strong gene flow from the Mediterranean Sea towards the Slope Sea. We hypothesize that the observed genetic differentiation may be attributed to increased gene flow caused by a recent intensification of westward migration by the eastern population, which could have implications for the genetic diversity and conservation of western populations. Future conservation efforts should consider these findings to address potential genetic homogenization in the species.


Subject(s)
Gene Flow , Tuna , Animals , Tuna/genetics , Mediterranean Sea , Gulf of Mexico , Atlantic Ocean
SELECTION OF CITATIONS
SEARCH DETAIL