Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.424
Filter
1.
Cell ; 187(10): 2465-2484.e22, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38701782

ABSTRACT

Remyelination failure in diseases like multiple sclerosis (MS) was thought to involve suppressed maturation of oligodendrocyte precursors; however, oligodendrocytes are present in MS lesions yet lack myelin production. We found that oligodendrocytes in the lesions are epigenetically silenced. Developing a transgenic reporter labeling differentiated oligodendrocytes for phenotypic screening, we identified a small-molecule epigenetic-silencing-inhibitor (ESI1) that enhances myelin production and ensheathment. ESI1 promotes remyelination in animal models of demyelination and enables de novo myelinogenesis on regenerated CNS axons. ESI1 treatment lengthened myelin sheaths in human iPSC-derived organoids and augmented (re)myelination in aged mice while reversing age-related cognitive decline. Multi-omics revealed that ESI1 induces an active chromatin landscape that activates myelinogenic pathways and reprograms metabolism. Notably, ESI1 triggered nuclear condensate formation of master lipid-metabolic regulators SREBP1/2, concentrating transcriptional co-activators to drive lipid/cholesterol biosynthesis. Our study highlights the potential of targeting epigenetic silencing to enable CNS myelin regeneration in demyelinating diseases and aging.


Subject(s)
Epigenesis, Genetic , Myelin Sheath , Oligodendroglia , Remyelination , Animals , Myelin Sheath/metabolism , Humans , Mice , Remyelination/drug effects , Oligodendroglia/metabolism , Central Nervous System/metabolism , Mice, Inbred C57BL , Rejuvenation , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , Organoids/metabolism , Organoids/drug effects , Demyelinating Diseases/metabolism , Demyelinating Diseases/genetics , Cell Differentiation/drug effects , Small Molecule Libraries/pharmacology , Male , Regeneration/drug effects , Multiple Sclerosis/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology
2.
Cell ; 186(10): 2176-2192.e22, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37137307

ABSTRACT

The ClpC1:ClpP1P2 protease is a core component of the proteostasis system in mycobacteria. To improve the efficacy of antitubercular agents targeting the Clp protease, we characterized the mechanism of the antibiotics cyclomarin A and ecumicin. Quantitative proteomics revealed that the antibiotics cause massive proteome imbalances, including upregulation of two unannotated yet conserved stress response factors, ClpC2 and ClpC3. These proteins likely protect the Clp protease from excessive amounts of misfolded proteins or from cyclomarin A, which we show to mimic damaged proteins. To overcome the Clp security system, we developed a BacPROTAC that induces degradation of ClpC1 together with its ClpC2 caretaker. The dual Clp degrader, built from linked cyclomarin A heads, was highly efficient in killing pathogenic Mycobacterium tuberculosis, with >100-fold increased potency over the parent antibiotic. Together, our data reveal Clp scavenger proteins as important proteostasis safeguards and highlight the potential of BacPROTACs as future antibiotics.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Endopeptidase Clp/metabolism , Heat-Shock Proteins/metabolism , Mycobacterium tuberculosis/drug effects , Proteostasis
3.
Cell ; 181(3): 688-701.e16, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32315618

ABSTRACT

Impairment of protein phosphatases, including the family of serine/threonine phosphatases designated PP2A, is essential for the pathogenesis of many diseases, including cancer. The ability of PP2A to dephosphorylate hundreds of proteins is regulated by over 40 specificity-determining regulatory "B" subunits that compete for assembly and activation of heterogeneous PP2A heterotrimers. Here, we reveal how a small molecule, DT-061, specifically stabilizes the B56α-PP2A holoenzyme in a fully assembled, active state to dephosphorylate selective substrates, such as its well-known oncogenic target, c-Myc. Our 3.6 Å structure identifies molecular interactions between DT-061 and all three PP2A subunits that prevent dissociation of the active enzyme and highlight inherent mechanisms of PP2A complex assembly. Thus, our findings provide fundamental insights into PP2A complex assembly and regulation, identify a unique interfacial stabilizing mode of action for therapeutic targeting, and aid in the development of phosphatase-based therapeutics tailored against disease specific phospho-protein targets.


Subject(s)
Protein Phosphatase 2/metabolism , Amino Acid Sequence , Animals , Cell Line, Tumor , Enzyme Activators/metabolism , HEK293 Cells , Heterografts , Humans , Male , Mice , Mice, Nude , Models, Molecular , Multiprotein Complexes/metabolism , Protein Phosphatase 2/chemistry , Protein Subunits
4.
Cell ; 176(4): 687-701.e5, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30735632

ABSTRACT

Female Aedes aegypti mosquitoes bite humans to obtain blood to develop their eggs. Remarkably, their strong attraction to humans is suppressed for days after the blood meal by an unknown mechanism. We investigated a role for neuropeptide Y (NPY)-related signaling in long-term behavioral suppression and discovered that drugs targeting human NPY receptors modulate mosquito host-seeking. In a screen of all 49 predicted Ae. aegypti peptide receptors, we identified NPY-like receptor 7 (NPYLR7) as the sole target of these drugs. To obtain small-molecule agonists selective for NPYLR7, we performed a high-throughput cell-based assay of 265,211 compounds and isolated six highly selective NPYLR7 agonists that inhibit mosquito attraction to humans. NPYLR7 CRISPR-Cas9 null mutants are defective in behavioral suppression and resistant to these drugs. Finally, we show that these drugs can inhibit biting and blood-feeding on a live host, suggesting a novel approach to control infectious disease transmission by controlling mosquito behavior. VIDEO ABSTRACT.


Subject(s)
Host-Seeking Behavior/drug effects , Mosquito Vectors/drug effects , Receptors, Neuropeptide Y/agonists , Aedes/metabolism , Animals , Feeding Behavior/drug effects , Female , HEK293 Cells , Humans , Insect Bites and Stings , Receptors, Neuropeptide Y/metabolism , Small Molecule Libraries/analysis
5.
Cell ; 177(4): 1067-1079.e19, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31051099

ABSTRACT

The precise control of CRISPR-Cas9 activity is required for a number of genome engineering technologies. Here, we report a generalizable platform that provided the first synthetic small-molecule inhibitors of Streptococcus pyogenes Cas9 (SpCas9) that weigh <500 Da and are cell permeable, reversible, and stable under physiological conditions. We developed a suite of high-throughput assays for SpCas9 functions, including a primary screening assay for SpCas9 binding to the protospacer adjacent motif, and used these assays to screen a structurally diverse collection of natural-product-like small molecules to ultimately identify compounds that disrupt the SpCas9-DNA interaction. Using these synthetic anti-CRISPR small molecules, we demonstrated dose and temporal control of SpCas9 and catalytically impaired SpCas9 technologies, including transcription activation, and identified a pharmacophore for SpCas9 inhibition using structure-activity relationships. These studies establish a platform for rapidly identifying synthetic, miniature, cell-permeable, and reversible inhibitors against both SpCas9 and next-generation CRISPR-associated nucleases.


Subject(s)
CRISPR-Associated Protein 9/antagonists & inhibitors , CRISPR-Cas Systems/physiology , High-Throughput Screening Assays/methods , CRISPR-Associated Protein 9/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/physiology , DNA/metabolism , Endonucleases/metabolism , Gene Editing/methods , Genome , Small Molecule Libraries , Streptococcus pyogenes/genetics , Substrate Specificity
6.
Cell ; 168(5): 878-889.e29, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28235199

ABSTRACT

Design of small molecules that disrupt protein-protein interactions, including the interaction of RAS proteins and their effectors, may provide chemical probes and therapeutic agents. We describe here the synthesis and testing of potential small-molecule pan-RAS ligands, which were designed to interact with adjacent sites on the surface of oncogenic KRAS. One compound, termed 3144, was found to bind to RAS proteins using microscale thermophoresis, nuclear magnetic resonance spectroscopy, and isothermal titration calorimetry and to exhibit lethality in cells partially dependent on expression of RAS proteins. This compound was metabolically stable in liver microsomes and displayed anti-tumor activity in xenograft mouse cancer models. These findings suggest that pan-RAS inhibition may be an effective therapeutic strategy for some cancers and that structure-based design of small molecules targeting multiple adjacent sites to create multivalent inhibitors may be effective for some proteins.


Subject(s)
Antineoplastic Agents/pharmacology , Molecular Targeted Therapy , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/chemistry , Animals , Antineoplastic Agents/chemistry , Calorimetry , Cell Line , Fibroblasts/metabolism , Heterografts , Humans , Mice , Neoplasm Transplantation , Neoplasms/drug therapy , Pancreatic Neoplasms/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Signal Transduction , Small Molecule Libraries
7.
Cell ; 171(4): 824-835.e18, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29056338

ABSTRACT

Insulin resistance is a hallmark of diabetes and an unmet clinical need. Insulin inhibits hepatic glucose production and promotes lipogenesis by suppressing FOXO1-dependent activation of G6pase and inhibition of glucokinase, respectively. The tight coupling of these events poses a dual conundrum: mechanistically, as the FOXO1 corepressor of glucokinase is unknown, and clinically, as inhibition of glucose production is predicted to increase lipogenesis. Here, we report that SIN3A is the insulin-sensitive FOXO1 corepressor of glucokinase. Genetic ablation of SIN3A abolishes nutrient regulation of glucokinase without affecting other FOXO1 target genes and lowers glycemia without concurrent steatosis. To extend this work, we executed a small-molecule screen and discovered selective inhibitors of FOXO-dependent glucose production devoid of lipogenic activity in hepatocytes. In addition to identifying a novel mode of insulin action, these data raise the possibility of developing selective modulators of unliganded transcription factors to dial out adverse effects of insulin sensitizers.


Subject(s)
Forkhead Box Protein O1/antagonists & inhibitors , Glucose/metabolism , Hepatocytes/metabolism , Insulin Resistance , Acetylation , Animals , Cells, Cultured , Forkhead Box Protein O1/chemistry , Glucokinase/genetics , Glucokinase/metabolism , Glucose-6-Phosphatase/genetics , Glucose-6-Phosphatase/metabolism , HEK293 Cells , Hepatocytes/enzymology , Histone Deacetylases/metabolism , Humans , Lipogenesis/drug effects , Mice , Mice, Knockout , Phosphorylation , Promoter Regions, Genetic , Repressor Proteins/genetics , Repressor Proteins/metabolism , Sin3 Histone Deacetylase and Corepressor Complex
8.
Annu Rev Biochem ; 85: 375-404, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27145840

ABSTRACT

Inactivation of the transcription factor p53, through either direct mutation or aberrations in one of its many regulatory pathways, is a hallmark of virtually every tumor. In recent years, screening for p53 activators and a better understanding of the molecular mechanisms of oncogenic perturbations of p53 function have opened up a host of novel avenues for therapeutic intervention in cancer: from the structure-guided design of chemical chaperones to restore the function of conformationally unstable p53 cancer mutants, to the development of potent antagonists of the negative regulators MDM2 and MDMX and other modulators of the p53 pathway for the treatment of cancers with wild-type p53. Some of these compounds have now moved from proof-of-concept studies into clinical trials, with prospects for further, personalized anticancer medicines. We trace the structural evolution of the p53 pathway, from germ-line surveillance in simple multicellular organisms to its pluripotential role in humans.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Gene Expression Regulation, Neoplastic , Molecular Targeted Therapy , Neoplasms/drug therapy , Tumor Suppressor Protein p53/agonists , Animals , Antineoplastic Agents, Alkylating/chemical synthesis , Cell Cycle Proteins , Clinical Trials as Topic , Drug Design , Humans , Molecular Docking Simulation , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Multimerization , Protein Structure, Secondary , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/chemistry , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Signal Transduction , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
9.
Mol Cell ; 83(8): 1216-1236.e12, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36944333

ABSTRACT

Highly coordinated changes in gene expression underlie T cell activation and exhaustion. However, the mechanisms by which such programs are regulated and how these may be targeted for therapeutic benefit remain poorly understood. Here, we comprehensively profile the genomic occupancy of mSWI/SNF chromatin remodeling complexes throughout acute and chronic T cell stimulation, finding that stepwise changes in localization over transcription factor binding sites direct site-specific chromatin accessibility and gene activation leading to distinct phenotypes. Notably, perturbation of mSWI/SNF complexes using genetic and clinically relevant chemical strategies enhances the persistence of T cells with attenuated exhaustion hallmarks and increased memory features in vitro and in vivo. Finally, pharmacologic mSWI/SNF inhibition improves CAR-T expansion and results in improved anti-tumor control in vivo. These findings reveal the central role of mSWI/SNF complexes in the coordination of T cell activation and exhaustion and nominate small-molecule-based strategies for the improvement of current immunotherapy protocols.


Subject(s)
Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Transcription Factors/metabolism , Chromatin/genetics , Transcriptional Activation
10.
Mol Cell ; 81(21): 4357-4368, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34619091

ABSTRACT

Arginine methylation is an influential post-translational modification occurring on histones, RNA binding proteins, and many other cellular proteins, affecting their function by altering their protein-protein and protein-nucleic acid interactions. Recently, a wealth of information has been gathered, implicating protein arginine methyltransferases (PRMTs), enzymes that deposit arginine methylation, in transcription, pre-mRNA splicing, DNA damage signaling, and immune signaling with major implications for cancer therapy, especially immunotherapy. This review summarizes this recent progress and the current state of PRMT inhibitors, some in clinical trials, as promising drug targets for cancer.


Subject(s)
Arginine/chemistry , Methylation , Neoplasms/metabolism , Protein Processing, Post-Translational , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Alternative Splicing , Animals , B7-H1 Antigen/metabolism , CRISPR-Cas Systems , Cell Communication , Cell Line, Tumor , DNA Damage , DNA Repair , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic , Histones , Humans , Immune System , Immunotherapy/methods , Mice , Mice, Knockout , Protein-Arginine N-Methyltransferases/chemistry , RNA Splicing , RNA, Messenger/metabolism , Signal Transduction
11.
Mol Cell ; 81(24): 5025-5038.e10, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34890564

ABSTRACT

The Sonic Hedgehog (SHH) morphogen pathway is fundamental for embryonic development and stem cell maintenance and is implicated in various cancers. A key step in signaling is transfer of a palmitate group to the SHH N terminus, catalyzed by the multi-pass transmembrane enzyme Hedgehog acyltransferase (HHAT). We present the high-resolution cryo-EM structure of HHAT bound to substrate analog palmityl-coenzyme A and a SHH-mimetic megabody, revealing a heme group bound to HHAT that is essential for HHAT function. A structure of HHAT bound to potent small-molecule inhibitor IMP-1575 revealed conformational changes in the active site that occlude substrate binding. Our multidisciplinary analysis provides a detailed view of the mechanism by which HHAT adapts the membrane environment to transfer an acyl chain across the endoplasmic reticulum membrane. This structure of a membrane-bound O-acyltransferase (MBOAT) superfamily member provides a blueprint for other protein-substrate MBOATs and a template for future drug discovery.


Subject(s)
Acyltransferases/antagonists & inhibitors , Acyltransferases/metabolism , Enzyme Inhibitors/pharmacology , Hedgehog Proteins/metabolism , Membrane Proteins/metabolism , Acylation , Acyltransferases/genetics , Acyltransferases/ultrastructure , Allosteric Regulation , Animals , COS Cells , Catalytic Domain , Chlorocebus aethiops , Cryoelectron Microscopy , HEK293 Cells , Heme/metabolism , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/ultrastructure , Molecular Dynamics Simulation , Palmitoyl Coenzyme A/metabolism , Protein Conformation , Signal Transduction , Structure-Activity Relationship
12.
Trends Biochem Sci ; 49(3): 224-235, 2024 03.
Article in English | MEDLINE | ID: mdl-38160064

ABSTRACT

At its most fundamental level, life is a collection of synchronized cellular processes driven by interactions among biomolecules. Proximity labeling has emerged as a powerful technique to capture these interactions in native settings, revealing previously unexplored elements of biology. This review highlights recent developments in proximity labeling, focusing on methods that push the fundamental technologies beyond the classic bait-prey paradigm, such as RNA-protein interactions, ligand/small-molecule-protein interactions, cell surface protein interactions, and subcellular protein trafficking. The advancement of proximity labeling methods to address different biological problems will accelerate our understanding of the complex biological systems that make up life.


Subject(s)
Membrane Proteins , Proteomics , Proteomics/methods , Membrane Proteins/metabolism
13.
Mol Cell ; 78(6): 1096-1113.e8, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32416067

ABSTRACT

BET bromodomain inhibitors (BBDIs) are candidate therapeutic agents for triple-negative breast cancer (TNBC) and other cancer types, but inherent and acquired resistance to BBDIs limits their potential clinical use. Using CRISPR and small-molecule inhibitor screens combined with comprehensive molecular profiling of BBDI response and resistance, we identified synthetic lethal interactions with BBDIs and genes that, when deleted, confer resistance. We observed synergy with regulators of cell cycle progression, YAP, AXL, and SRC signaling, and chemotherapeutic agents. We also uncovered functional similarities and differences among BRD2, BRD4, and BRD7. Although deletion of BRD2 enhances sensitivity to BBDIs, BRD7 loss leads to gain of TEAD-YAP chromatin binding and luminal features associated with BBDI resistance. Single-cell RNA-seq, ATAC-seq, and cellular barcoding analysis of BBDI responses in sensitive and resistant cell lines highlight significant heterogeneity among samples and demonstrate that BBDI resistance can be pre-existing or acquired.


Subject(s)
Drug Resistance, Neoplasm/genetics , Proteins/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Azepines/pharmacology , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Mice, Inbred NOD , Nuclear Proteins/metabolism , Proteins/metabolism , Signal Transduction/drug effects , Transcription Factors/metabolism , Triazoles/pharmacology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
14.
Genes Dev ; 34(9-10): 637-649, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32241802

ABSTRACT

The emergence of drug resistance is a major obstacle for the success of targeted therapy in melanoma. Additionally, conventional chemotherapy has not been effective as drug-resistant cells escape lethal DNA damage effects by inducing growth arrest commonly referred to as cellular dormancy. We present a therapeutic strategy termed "targeted chemotherapy" by depleting protein phosphatase 2A (PP2A) or its inhibition using a small molecule inhibitor (1,10-phenanthroline-5,6-dione [phendione]) in drug-resistant melanoma. Targeted chemotherapy induces the DNA damage response without causing DNA breaks or allowing cellular dormancy. Phendione treatment reduces tumor growth of BRAFV600E-driven melanoma patient-derived xenografts (PDX) and diminishes growth of NRASQ61R-driven melanoma, a cancer with no effective therapy. Remarkably, phendione treatment inhibits the acquisition of resistance to BRAF inhibition in BRAFV600E PDX highlighting its effectiveness in combating the advent of drug resistance.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Melanoma/drug therapy , Pyrazoles/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage/drug effects , Humans , Melanoma/enzymology , Melanoma/physiopathology , Protein Phosphatase 2/antagonists & inhibitors
15.
Annu Rev Pharmacol Toxicol ; 64: 481-506, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37722722

ABSTRACT

The exponential rise in the prevalence of allergic diseases since the mid-twentieth century has led to a genuine public health emergency and has also fostered major progress in research on the underlying mechanisms and potential treatments. The management of allergic diseases benefits from the biological revolution, with an array of novel immunomodulatory therapeutic and investigational tools targeting players of allergic inflammation at distinct pathophysiological steps. Prominent examples include therapeutic monoclonal antibodies against cytokines, alarmins, and their receptors, as well as small-molecule modifiers of signal transduction mainly mediated by Janus kinases and Bruton's tyrosine kinases. However, the first-line therapeutic options have yet to switch from symptomatic to disease-modifying interventions. Here we present an overview of available drugs in the context of our current understanding of allergy pathophysiology, identify potential therapeutic targets, and conclude by providing a selection of candidate immunopharmacological molecules under investigation for potential future use in allergic diseases.


Subject(s)
Hypersensitivity , Humans , Hypersensitivity/drug therapy , Antibodies, Monoclonal , Cytokines , Inflammation , Signal Transduction
16.
Annu Rev Pharmacol Toxicol ; 64: 527-550, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37738505

ABSTRACT

Drug discovery is adapting to novel technologies such as data science, informatics, and artificial intelligence (AI) to accelerate effective treatment development while reducing costs and animal experiments. AI is transforming drug discovery, as indicated by increasing interest from investors, industrial and academic scientists, and legislators. Successful drug discovery requires optimizing properties related to pharmacodynamics, pharmacokinetics, and clinical outcomes. This review discusses the use of AI in the three pillars of drug discovery: diseases, targets, and therapeutic modalities, with a focus on small-molecule drugs. AI technologies, such as generative chemistry, machine learning, and multiproperty optimization, have enabled several compounds to enter clinical trials. The scientific community must carefully vet known information to address the reproducibility crisis. The full potential of AI in drug discovery can only be realized with sufficient ground truth and appropriate human intervention at later pipeline stages.


Subject(s)
Artificial Intelligence , Physicians , Animals , Humans , Reproducibility of Results , Drug Discovery , Technology
17.
Proc Natl Acad Sci U S A ; 121(24): e2316892121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833472

ABSTRACT

The loss of function of AAA (ATPases associated with diverse cellular activities) mechanoenzymes has been linked to diseases, and small molecules that activate these proteins can be powerful tools to probe mechanisms and test therapeutic hypotheses. Unlike chemical inhibitors that can bind a single conformational state to block enzyme function, activator binding must be permissive to different conformational states needed for mechanochemistry. However, we do not know how AAA proteins can be activated by small molecules. Here, we focus on valosin-containing protein (VCP)/p97, an AAA unfoldase whose loss of function has been linked to protein aggregation-based disorders, to identify druggable sites for chemical activators. We identified VCP ATPase Activator 1 (VAA1), a compound that dose-dependently stimulates VCP ATPase activity up to ~threefold. Our cryo-EM studies resulted in structures (ranging from ~2.9 to 3.7 Å-resolution) of VCP in apo and ADP-bound states and revealed that VAA1 binds an allosteric pocket near the C-terminus in both states. Engineered mutations in the VAA1-binding site confer resistance to VAA1, and furthermore, modulate VCP activity. Mutation of a phenylalanine residue in the VCP C-terminal tail that can occupy the VAA1 binding site also stimulates ATPase activity, suggesting that VAA1 acts by mimicking this interaction. Together, our findings uncover a druggable allosteric site and a mechanism of enzyme regulation that can be tuned through small molecule mimicry.


Subject(s)
Valosin Containing Protein , Valosin Containing Protein/metabolism , Valosin Containing Protein/chemistry , Valosin Containing Protein/genetics , Allosteric Regulation , Humans , Protein Binding , Molecular Mimicry , Cryoelectron Microscopy , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Binding Sites , Allosteric Site , Models, Molecular , Protein Conformation
18.
Trends Biochem Sci ; 47(2): 124-135, 2022 02.
Article in English | MEDLINE | ID: mdl-34281791

ABSTRACT

Structure-based drug discovery (SBDD) is an indispensable approach for the design and optimization of new therapeutic agents. Here, we highlight the rapid progress that has turned cryo-electron microscopy (cryoEM) into an exceptional SBDD tool, and the wealth of new structural information it is providing for high-value pharmacological targets. We review key advantages of a technique that directly images vitrified biomolecules without the need for crystallization; both in terms of a broader array of systems that can be studied and the different forms of information it can provide, including heterogeneity and dynamics. We discuss near- and far-future developments, working in concert towards achieving the resolution and throughput necessary for cryoEM to make a widespread impact on the SBDD pipeline.


Subject(s)
Cryoelectron Microscopy , Drug Discovery , Cryoelectron Microscopy/methods , Crystallography, X-Ray , Drug Discovery/methods
19.
Annu Rev Pharmacol Toxicol ; 63: 617-636, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36662585

ABSTRACT

Phosphatases and kinases maintain an equilibrium of dephosphorylated and phosphorylated proteins, respectively, that are required for critical cellular functions. Imbalance in this equilibrium or irregularity in their function causes unfavorable cellular effects that have been implicated in the development of numerous diseases. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of protein substrates on tyrosine residues, and their involvement in cell signaling and diseases such as cancer and inflammatory and metabolic diseases has made them attractive therapeutic targets. However, PTPs have proved challenging in therapeutics development, garnering them the unfavorable reputation of being undruggable. Nonetheless, great strides have been made toward the inhibition of PTPs over the past decade. Here, we discuss the advancement in small-molecule inhibition for the PTP subfamily known as the mitogen-activated protein kinase (MAPK) phosphatases (MKPs). We review strategies and inhibitor discovery tools that have proven successful for small-molecule inhibition of the MKPs and discuss what the future of MKP inhibition potentially might yield.


Subject(s)
Mitogen-Activated Protein Kinase Phosphatases , Humans , Mitogen-Activated Protein Kinase Phosphatases/antagonists & inhibitors , Neoplasms/drug therapy , Protein Tyrosine Phosphatases/antagonists & inhibitors , Protein Tyrosine Phosphatases/metabolism , Signal Transduction , /pharmacology
20.
J Cell Sci ; 137(14)2024 07 15.
Article in English | MEDLINE | ID: mdl-39034922

ABSTRACT

Focal adhesion kinase (FAK; encoded by PTK2) was discovered over 30 years ago as a cytoplasmic protein tyrosine kinase that is localized to cell adhesion sites, where it is activated by integrin receptor binding to extracellular matrix proteins. FAK is ubiquitously expressed and functions as a signaling scaffold for a variety of proteins at adhesions and in the cell cytoplasm, and with transcription factors in the nucleus. FAK expression and intrinsic activity are essential for mouse development, with molecular connections to cell motility, cell survival and gene expression. Notably, elevated FAK tyrosine phosphorylation is common in tumors, including pancreatic and ovarian cancers, where it is associated with decreased survival. Small molecule and orally available FAK inhibitors show on-target inhibition in tumor and stromal cells with effects on chemotherapy resistance, stromal fibrosis and tumor microenvironment immune function. Herein, we discuss recent insights regarding mechanisms of FAK activation and signaling, its roles as a cytoplasmic and nuclear scaffold, and the tumor-intrinsic and -extrinsic effects of FAK inhibitors. We also discuss results from ongoing and advanced clinical trials targeting FAK in low- and high-grade serous ovarian cancers, where FAK acts as a master regulator of drug resistance. Although FAK is not known to be mutationally activated, preventing FAK activity has revealed multiple tumor vulnerabilities that support expanding clinical combinatorial targeting possibilities.


Subject(s)
Focal Adhesion Protein-Tyrosine Kinases , Neoplasms , Signal Transduction , Humans , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Female , Tumor Microenvironment , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL