Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Proc Natl Acad Sci U S A ; 121(33): e2402868121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39102536

ABSTRACT

Biomass burning plays an important role in climate-forcing and atmospheric chemistry. The drivers of fire activity over the past two centuries, however, are hotly debated and fueled by poor constraints on the magnitude and trends of preindustrial fire regimes. As a powerful tracer of biomass burning, reconstructions of paleoatmospheric carbon monoxide (CO) can provide valuable information on the evolution of fire activity across the preindustrial to industrial transition. Here too, however, significant disagreements between existing CO records currently allow for opposing fire histories. In this study, we reconstruct a continuous record of Antarctic ice core CO between 1821 and 1995 CE to overlap with direct atmospheric observations. Our record indicates that the Southern Hemisphere CO burden ([CO]) increased by 50% from a preindustrial mixing ratio of ca. 35 ppb to ca. 53 ppb by 1995 CE with more variability than allowed for by state-of-the-art chemistry-climate models, suggesting that historic CO dynamics have been not fully accounted for. Using a 6-troposphere box model, a 40 to 50% decrease in Southern Hemisphere biomass-burning emissions, coincident with unprecedented rates of early 20th century anthropogenic land-use change, is identified as a strong candidate for this mismatch.

2.
Proc Natl Acad Sci U S A ; 119(47): e2206085119, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36399546

ABSTRACT

The input of the soluble micronutrients iron (Fe) and/or manganese (Mn) by mineral dust stimulates net primary productivity in the Fe/Mn-deficient Southern Ocean. This mechanism is thought to increase carbon export, thus reducing atmospheric CO2 during the Pleistocene glacial cycles. Yet, relatively little is known about changes in the sources and transport pathways of Southern Hemisphere dust over glacial cycles. Here, we use the geochemical fingerprint of the dust fraction in marine sediments and multiisotope mixture modeling to identify changes in dust transport to the South Pacific Subantarctic Zone (SAZ). Our data show that dust from South America dominated the South Pacific SAZ during most of the last 260,000 a with maximum contributions of up to ∼70% in the early part of the glacial cycles. The enhanced dust-Fe fluxes of the latter parts of the glacial cycles show increased contributions from Australia and New Zealand, but South American dust remains the dominant component. The systematic changes in dust provenance correspond with grain size variations, consistent with the circumpolar transport of dust by the westerly winds. Maximum contributions of dust from more proximal sources in Australia and New Zealand (up to ∼63%) paired with a finer dust grain size indicate reduced westerly wind speeds over the South Pacific SAZ during deglacial and peak interglacial intervals. These quantitative dust provenance changes provide source-specific dust-Fe fluxes in the South Pacific SAZ and show how their systematic changes in magnitude and timing influence the Southern Ocean dust-Fe feedback on glacial-interglacial to millennial time scales.


Subject(s)
Dust , Seawater , Pacific Ocean , Dust/analysis , Atmosphere , Iron/analysis
3.
Glob Chang Biol ; 30(1): e17143, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273518

ABSTRACT

As charismatic and iconic species, penguins can act as "ambassadors" or flagship species to promote the conservation of marine habitats in the Southern Hemisphere. Unfortunately, there is a lack of reliable, comprehensive, and systematic analysis aimed at compiling spatially explicit assessments of the multiple impacts that the world's 18 species of penguin are facing. We provide such an assessment by combining the available penguin occurrence information from Global Biodiversity Information Facility (>800,000 occurrences) with three main stressors: climate-driven environmental changes at sea, industrial fisheries, and human disturbances on land. Our analyses provide a quantitative assessment of how these impacts are unevenly distributed spatially within species' distribution ranges. Consequently, contrasting pressures are expected among species, and populations within species. The areas coinciding with the greatest impacts for penguins are the coast of Perú, the Patagonian Shelf, the Benguela upwelling region, and the Australian and New Zealand coasts. When weighting these potential stressors with species-specific vulnerabilities, Humboldt (Spheniscus humboldti), African (Spheniscus demersus), and Chinstrap penguin (Pygoscelis antarcticus) emerge as the species under the most pressure. Our approach explicitly differentiates between climate and human stressors, since the more achievable management of local anthropogenic stressors (e.g., fisheries and land-based threats) may provide a suitable means for facilitating cumulative impacts on penguins, especially where they may remain resilient to global processes such as climate change. Moreover, our study highlights some poorly represented species such as the Northern Rockhopper (Eudyptes moseleyi), Snares (Eudyptes robustus), and Erect-crested penguin (Eudyptes sclateri) that need internationally coordinated efforts for data acquisition and data sharing to understand their spatial distribution properly.


Subject(s)
Spheniscidae , Animals , Humans , Australia , Ecosystem , Biodiversity , Fisheries
4.
Am J Bot ; : e16384, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095998

ABSTRACT

PREMISE: Fossil infructescences and isolated fruits with characters of Malvoideae, a subfamily of Malvaceae (mallow family), were collected from early Eocene sediments in Chubut, Argentina. The main goals of this research are to describe and place these fossils systematically, and to explore their biogeographical implications. METHODS: Fossils were collected at the Laguna del Hunco site, Huitrera Formation, Chubut, Patagonia, Argentina. They were prepared, photographed, and compared with extant and fossil infructescences and fruits of various families using herbarium material and literature. RESULTS: The infructescences are panicles with alternate arrangement of fruits. They bear the fruits on short pedicels that are subtended by a bract; the fruits display an infracarpelar disk and split to the base into five ovate sections interpreted as mericarps. Each mericarp is characterized by an acute apex and the presence of a longitudinal ridge. The isolated fruits show the same features as those on the infructescences. The fossils share unique features with members of the cosmopolitan family Malvaceae, subfamily Malvoideae. CONCLUSIONS: The fossils have a unique combination of characters that does not conform to any previously described genus, justifying the erection of a new genus and species, Uiher karuen. This new taxon constitutes the first known Malvoideae reproductive fossils of the Southern Hemisphere, expanding the distribution of Malvoideae during the early Eocene.

5.
Am J Bot ; : e16398, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192571

ABSTRACT

PREMISE: The Cenozoic Macquarie Harbour Formation (MHF) hosts one of the oldest and southernmost post-Cretaceous fossil plant assemblages in Australia. Coinciding with the Early Eocene Climatic Optimum (EECO) and predating the breakup of Australia from Antarctica, it offers critical data to study the diversity and extent of the Austral Polar Forest Biome, and the floristic divergence between Australasia and South America resulting from the Gondwana breakup. METHODS: The micromorphology and macromorphology of new fossil plant compressions from the MHF were described and systematically analyzed. Previously published non-flowering plant records were reviewed and revised. Macrofossil abundance data were provided. The flora was compared with other early Paleogene assemblages from across the Southern Hemisphere. RESULTS: Twelve species of non-flowering plants were identified from the macrofossil record. Conifers include Araucariaceae (Araucaria macrophylla, A. readiae, A. timkarikensis sp. nov., and Araucarioides linearis), Podocarpaceae (Acmopyle glabra, Dacrycarpus mucronatus, Podocarpus paralungatikensis sp. nov., and Retrophyllum sp.), and Cupressaceae (Libocedrus microformis). Dacrycarpus linifolius was designated a junior synonym of D. mucronatus. Further components include a cycad (Bowenia johnsonii, Zamiaceae), a pteridosperm (Komlopteris cenozoicus, Umkomasiaceae), and a fern (Lygodium dinmorphyllum, Schizaeaceae). CONCLUSIONS: The fossil assemblage represents a mixed near-polar forest with a high diversity of conifers. The morphology and preservation of several species indicate adaptations to life at high latitudes. The coexistence of large- and small-leaved conifers implies complex, possibly open forest structures. Comparisons with contemporaneous assemblages from Argentina support a circumpolar biome during the EECO, reaching from southern Australia across Antarctica to southern South America.

6.
J Fish Biol ; 105(1): 326-339, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38752522

ABSTRACT

The objective of this study was to estimate the reproductive parameters of porbeagle shark in the Southwest Atlantic Ocean and thus characterize the adult fraction of this population. Therefore, 1012 specimens were measured by scientific observers on board the commercial trawl fleet operating south of 50° S. The size range of the specimens was from 77 to 292 cm fork length (LF). The mean size at maturity was estimated to be 153 cm LF for males and 172 cm LF for females. Porbeagle shark catches were recorded throughout the year, with the highest frequency occurring between November and June. The presence of pregnant females was observed from December to July, along with an increase in the average size of embryos in each litter. The information presented in this study improves the knowledge of the reproductive biology and allows to propose a migratory pattern of adult porbeagle females in the Southwest Atlantic Ocean. The likely seasonal increase in vulnerability of this shark to austral trawl fishery, despite all conservation management measures established in Argentina, underscores the importance of promoting its proper management and conservation given the need to improve understanding of porbeagle population dynamics in the Southern Hemisphere.


Subject(s)
Animal Migration , Reproduction , Sharks , Animals , Sharks/physiology , Sharks/growth & development , Atlantic Ocean , Female , Male , Seasons , Body Size , Argentina
7.
Proc Biol Sci ; 290(2013): 20232177, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38113937

ABSTRACT

Baleen whales (mysticetes) include the largest animals on the Earth. How they achieved such gigantic sizes remains debated, with previous research focusing primarily on when mysticetes became large, rather than where. Here, we describe an edentulous baleen whale fossil (21.12-16.39 mega annum (Ma)) from South Australia. With an estimated body length of 9 m, it is the largest mysticete from the Early Miocene. Analysing body size through time shows that ancient baleen whales from the Southern Hemisphere were larger than their northern counterparts. This pattern seemingly persists for much of the Cenozoic, even though southern specimens contribute only 19% to the global mysticete fossil record. Our findings contrast with previous ideas of a single abrupt shift towards larger size during the Plio-Pleistocene, which we here interpret as a glacially driven Northern Hemisphere phenomenon. Our results highlight the importance of incorporating Southern Hemisphere fossils into macroevolutionary patterns, especially in light of the high productivity of Southern Ocean environments.


Subject(s)
Fossils , Whales , Animals , Body Size , South Australia
8.
Proc Natl Acad Sci U S A ; 117(29): 16816-16823, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32632003

ABSTRACT

South American (SA) societies are highly vulnerable to droughts and pluvials, but lack of long-term climate observations severely limits our understanding of the global processes driving climatic variability in the region. The number and quality of SA climate-sensitive tree ring chronologies have significantly increased in recent decades, now providing a robust network of 286 records for characterizing hydroclimate variability since 1400 CE. We combine this network with a self-calibrated Palmer Drought Severity Index (scPDSI) dataset to derive the South American Drought Atlas (SADA) over the continent south of 12°S. The gridded annual reconstruction of austral summer scPDSI is the most spatially complete estimate of SA hydroclimate to date, and well matches past historical dry/wet events. Relating the SADA to the Australia-New Zealand Drought Atlas, sea surface temperatures and atmospheric pressure fields, we determine that the El Niño-Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) are strongly associated with spatially extended droughts and pluvials over the SADA domain during the past several centuries. SADA also exhibits more extended severe droughts and extreme pluvials since the mid-20th century. Extensive droughts are consistent with the observed 20th-century trend toward positive SAM anomalies concomitant with the weakening of midlatitude Westerlies, while low-level moisture transport intensified by global warming has favored extreme rainfall across the subtropics. The SADA thus provides a long-term context for observed hydroclimatic changes and for 21st-century Intergovernmental Panel on Climate Change (IPCC) projections that suggest SA will experience more frequent/severe droughts and rainfall events as a consequence of increasing greenhouse gas emissions.


Subject(s)
Climate , Global Warming , Trees/growth & development , Droughts , Geographic Mapping , Models, Statistical , Rain , South America
9.
J Hered ; 113(4): 380-397, 2022 07 23.
Article in English | MEDLINE | ID: mdl-35439308

ABSTRACT

Pouched lamprey (Geotria australis) or kanakana/piharau is a culturally and ecologically significant jawless fish that is distributed throughout Aotearoa New Zealand. Despite its importance, much remains unknown about historical relationships and gene flow between populations of this enigmatic species within New Zealand. To help inform management, we assembled a draft G. australis genome and completed the first comprehensive population genomics analysis of pouched lamprey within New Zealand using targeted gene sequencing (Cyt-b and COI) and restriction site-associated DNA sequencing (RADSeq) methods. Employing 16 000 genome-wide single nucleotide polymorphisms (SNPs) derived from RADSeq (n = 186) and sequence data from Cyt-b (766 bp, n = 94) and COI (589 bp, n = 20), we reveal low levels of structure across 10 sampling locations spanning the species range within New Zealand. F-statistics, outlier analyses, and STRUCTURE suggest a single panmictic population, and Mantel and EEMS tests reveal no significant isolation by distance. This implies either ongoing gene flow among populations or recent shared ancestry among New Zealand pouched lamprey. We can now use the information gained from these genetic tools to assist managers with monitoring effective population size, managing potential diseases, and conservation measures such as artificial propagation programs. We further demonstrate the general utility of these genetic tools for acquiring information about elusive species.


Subject(s)
Lampreys , Metagenomics , Animals , Gene Flow , Lampreys/genetics , New Zealand , Sequence Analysis, DNA
10.
Clin Infect Dis ; 72(12): 2199-2202, 2021 06 15.
Article in English | MEDLINE | ID: mdl-32986804

ABSTRACT

Public health measures targeting coronavirus disease 2019 have potential to impact transmission of other respiratory viruses. We found 98.0% and 99.4% reductions in respiratory syncytial virus and influenza detections, respectively, in Western Australian children through winter 2020 despite schools reopening. Border closures have likely been important in limiting external introductions.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Syncytial Virus Infections , Australia/epidemiology , Child , Humans , Infant , Influenza, Human/epidemiology , Public Health , Respiratory Syncytial Virus Infections/epidemiology , SARS-CoV-2
11.
Article in English | MEDLINE | ID: mdl-34241711

ABSTRACT

Colour signalling by flowers appears to be the main plant-pollinator communication system observed across many diverse species and locations worldwide. Bees are considered one of the most important insect pollinators; however, native non-eusocial bees are often understudied compared to managed eusocial species, such as honeybees and bumblebees. Here, we tested two species of native Australian non-eusocial halictid bees on their colour preferences for seven different broadband colours with bee-colour-space dominant wavelengths ranging from 385 to 560 nm and a neutral grey control. Lasioglossum (Chilalictus) lanarium demonstrated preferences for a UV-absorbing white (455 nm) and a yellow (560 nm) stimulus. Lasioglossum (Parasphecodes) sp. showed no colour preferences. Subsequent analyses showed that green contrast and spectral purity had a significant positive relationship with the number of visits by L. lanarium to stimuli. Colour preferences were consistent with other bee species and may be phylogenetically conserved and linked to how trichromatic bees processes visual information, although the relative dearth of empirical evidence on different bee species currently makes it difficult to dissect mechanisms. Past studies and our current results suggest that both innate and environmental factors might both be at play in mediating bee colour preferences.


Subject(s)
Bees/physiology , Color Perception/physiology , Psychophysics , Animals , Australia , Choice Behavior , Color , Flowers , Photic Stimulation , Pollination , Species Specificity , Ultraviolet Rays
12.
J Phycol ; 56(1): 23-36, 2020 02.
Article in English | MEDLINE | ID: mdl-31642057

ABSTRACT

Long-distance dispersal plays a key role in evolution, facilitating allopatric divergence, range expansions, and species movement in response to environmental change. Even species that seem poorly suited to dispersal can sometimes travel long distances, for example via hitchhiking with other, more intrinsically dispersive species. In marine macroalgae, buoyancy can enable adults-and diverse hitchhikers-to drift long distances, but the evolution and role of this trait are poorly understood. The southern bull-kelp genus Durvillaea includes several non-buoyant and buoyant species, including some that have only recently been recognized. In revising the genus, we not only provide updated identification tools and describe two new species (D. incurvata comb. nov. from Chile and D. fenestrata sp. nov. from the Antipodes Islands), but also carry out biogeographic analyses to determine the evolutionary history of buoyancy in the genus. Although the ancestral state was resolved as non-buoyant, the distribution of species suggests that this trait has been both gained and lost, possibly more than once. We conclude that although buoyancy is a trait that can be useful for dispersal (creating evolutionary pressure for its gain), there is also evolutionary pressure for its loss as it restricts species to narrow environmental ranges (i.e., shallow depths).


Subject(s)
Kelp , Seaweed , Animals , Cattle , Chile , Male , Phylogeny
13.
Parasitol Res ; 119(2): 447-463, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31883048

ABSTRACT

In this study, we explore blood parasite prevalence, infection intensity, and co-infection levels in an urban population of feral pigeons Columba livia in Cape Town. We analyze the effect of blood parasites on host body condition and the association between melanin expression in the host's plumage and parasite infection intensity and co-infection levels. Relating to the haemosporidian parasite itself, we study their genetic diversity by means of DNA barcoding (cytochrome b) and show the geographic and host distribution of related parasite lineages in pigeons worldwide. Blood from 195 C. livia individuals was collected from April to June 2018. Morphometric measurements and plumage melanism were recorded from every captured bird. Haemosporidian prevalence and infection intensity were determined by screening blood smears and parasite lineages by DNA sequencing. Prevalence of Haemoproteus spp. was high at 96.9%. The body condition of the hosts was negatively associated with infection intensity. However, infection intensity was unrelated to plumage melanism. The cytochrome b sequences revealed the presence of four Haemoproteus lineages in our population of pigeons, which show high levels of co-occurrence within individual birds. Three lineages (HAECOL1, COLIV03, COQUI05) belong to Haemoproteus columbae and differ only by 0.1% to 0.8% in the cytochrome b gene. Another lineage (COLIV06) differs by 8.3% from the latter ones and is not linked to a morphospecies, yet. No parasites of the genera Leucocytozoon and Plasmodium were detected.


Subject(s)
Bird Diseases/parasitology , Columbidae/parasitology , Genetic Variation , Haemosporida/genetics , Protozoan Infections, Animal/parasitology , Animals , Bird Diseases/epidemiology , Cytochromes b/genetics , Prevalence , Protozoan Infections, Animal/epidemiology , South Africa/epidemiology
14.
Mol Phylogenet Evol ; 133: 236-255, 2019 04.
Article in English | MEDLINE | ID: mdl-30576758

ABSTRACT

Seven new species and two varieties of Klebsormidium were described using an integrative approach on the base of 28 strains from the poorly studied phylogenetic superclade G. These strains originated from the unusual and exotic habitats (semi-deserts, semi-arid shrublands, Mediterranean shrub and deciduous vegetation, temperate Araucaria forests, peat bogs, dumps after coal mining, maritime sand dunes etc.) of four continents (Africa, South and North America, and Europe). Molecular phylogenies based on ITS-1,2, rbcL gene and concatenated dataset of ITS-1,2-rbcL, secondary structure of ITS-2, morphology, ecology and biogeography, micrographs and drawings of the investigated strains were assessed. Additionally, phylogeny and morphology of 18 Klebsormidium strains from other lineages isolated from the same localities (different vegetation types of Chile and maritime sand dunes of Germany) were investigated for the comparison with representatives of clade G. Clade G Klebsormidium is characterized by distant phylogenetic position from the other Klebsormidium lineages and prominent morphology: four-lobed chloroplasts and mostly short swollen cells in young culture, compact small pyrenoids, curved or disintegrated filaments, unusual elongation of cells in old culture, formation of specific cluster- and knot-like colonies on agar surface, especially prominent in strains isolated from desert regions, from which the group probably originated. Comparison of Klebsormidium diversity from different biogeographic regions showed that the representatives of clade G are common algae in regions of the southern hemisphere (South Africa and Chile) and rare representatives in terrestrial ecosystems of the northern hemisphere. Further investigation of mostly unstudied territories of the southern hemisphere could bring many surprises and discoveries, leading to a change of the present concept that Klebsormidium is cosmopolitan in distribution.


Subject(s)
Biodiversity , Phylogeny , Soil , Streptophyta/classification , Chloroplasts , DNA, Intergenic/genetics , Forests , Geography , Nucleic Acid Conformation
15.
Microb Ecol ; 78(2): 534-538, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30535652

ABSTRACT

Unicellular free-living microbial eukaryotes of the order Arcellinida (Tubulinea; Amoebozoa) and Euglyphida (Cercozoa; SAR), commonly termed testate amoebae, colonise almost every freshwater ecosystem on Earth. Patterns in the distribution and productivity of these organisms are strongly linked to abiotic conditions-particularly moisture availability and temperature-however, the ecological impacts of changes in salinity remain poorly documented. Here, we examine how variable salt concentrations affect a natural community of Arcellinida and Euglyphida on a freshwater sub-Antarctic peatland. We principally report that deposition of wind-blown oceanic salt-spray aerosols onto the peatland surface corresponds to a strong reduction in biomass and to an alteration in the taxonomic composition of communities in favour of generalist taxa. Our results suggest novel applications of this response as a sensitive tool to monitor salinisation of coastal soils and to detect salinity changes within peatland palaeoclimate archives. Specifically, we suggest that these relationships could be used to reconstruct millennial scale variability in salt-spray deposition-a proxy for changes in wind-conditions-from sub-fossil communities of Arcellinida and Euglyphida preserved in exposed coastal peatlands.


Subject(s)
Cercozoa/growth & development , Lobosea/growth & development , Antarctic Regions , Biodiversity , Cercozoa/metabolism , Ecosystem , Lobosea/metabolism , Salinity , Sodium Chloride/analysis , Sodium Chloride/metabolism , Soil/chemistry , Soil/parasitology
16.
Geophys Res Lett ; 46(22): 13479-13487, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-32025065

ABSTRACT

The Southern Hemisphere zonal circulation manifests a downward influence of the stratosphere on the troposphere from late spring to early summer. However, the strength and timescale of the connection, given the stratospheric state, have not been explicitly quantified. Here, SH zonal wind reanalysis time series are analyzed with a methodology designed to detect the minimal set of statistical predictors of multiple interacting variables via conditional independence tests. Our results confirm from data that the variability of the stratospheric polar vortex is a predictor of the tropospheric eddy-driven jet between September and January. The vortex variability explains about 40% of monthly mean jet variability at a lead time of 1 month and can entirely account for the observed jet persistence. Our statistical model can quantitatively connect the multidecadal trends observed in the vortex and jet during the satellite era. This shows how short-term variability can help understand statistical links in long-term changes.

17.
Euro Surveill ; 24(45)2019 Nov.
Article in English | MEDLINE | ID: mdl-31718744

ABSTRACT

We compared 2019 influenza seasonality and vaccine effectiveness (VE) in four southern hemisphere countries: Australia, Chile, New Zealand and South Africa. Influenza seasons differed in timing, duration, intensity and predominant circulating viruses. VE estimates were also heterogeneous, with all-ages point estimates ranging from 7-70% (I2: 33%) for A(H1N1)pdm09, 4-57% (I2: 49%) for A(H3N2) and 29-66% (I2: 0%) for B. Caution should be applied when attempting to use southern hemisphere data to predict the northern hemisphere influenza season.


Subject(s)
Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza B virus/genetics , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Outcome Assessment, Health Care , Vaccination/statistics & numerical data , Vaccine Potency , Adolescent , Adult , Australia/epidemiology , Child , Chile/epidemiology , Female , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza B virus/immunology , Influenza B virus/isolation & purification , Influenza Vaccines/administration & dosage , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Influenza, Human/virology , Male , Middle Aged , New Zealand/epidemiology , Population Surveillance , Reverse Transcriptase Polymerase Chain Reaction , Seasons , Sentinel Surveillance , South Africa/epidemiology
18.
Persoonia ; 42: 261-290, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31551621

ABSTRACT

A section-based taxonomy of Cortinarius, covering large parts of the temperate North and South Hemispheres, is presented. Thirty-seven previously described sections are reviewed, while another forty-two sections are proposed as new or as new combinations. Twenty additional clades are recovered but not formally described. Furthermore, six new or combined species names are introduced, and one species is neotypified. The structure is supported by morphological characters and molecular evidence, based on two (nrITS and nrLSU) and four (nrITS, nrLSU, rpb1 and rpb2) loci datasets and analysed by Maximum Likelihood methods (PhyML, RAxML). Altogether 789 Cortinarius samples were included in the study.

19.
Mol Phylogenet Evol ; 127: 488-501, 2018 10.
Article in English | MEDLINE | ID: mdl-29733977

ABSTRACT

We explored the biogeographical history of a group of spore-bearing plants focusing on Phlegmariurus (Lycopodiaceae), a genus of lycophytes comprising ca. 250 species. Given its wide distribution in the Southern Hemisphere, Phlegmariurus provides a good model to address questions about the biogeographical processes underlying southern distributions, notably in Madagascar and surrounding islands, also called the Western Indian Ocean (WIO). Our aims were (i) to discuss the systematics of the Malagasy species in the light of molecular phylogenetic results, (ii) to provide the first dating analysis focused on Phlegmariurus and (iii) to understand the relative role of vicariance, dispersal and diversification in the origin of the Malagasy Phlegmariurus species. The phylogenetic relationships were inferred based on three plastid DNA regions (rbcL, trnH-psbA and trnL+trnL-trnF) and on a dataset comprising 93 species, including 16 Malagasy species (80% of the total Malagasy diversity for the genus). Our results highlighted the need to combine Malagasy Huperzia species in Phlegmariurus, as well as the polyphyly of widely distributed species: Phlegmariurus phlegmaria, P. squarrosus and P. verticillatus with the Malagasy species not belonging with the types of P. phlegmaria or P. squarrosus. This led us to propose new circumscriptions of Phlegmariurus species, especially in the WIO. Our dating analysis, relying on fossil calibrations, showed that Phlegmariurus would have originated in the Late Cretaceous and diversified in the Early Eocene. The biogeographical analysis highlighted uncertainties about the biogeographical origins of Phlegmariurus: the genus would have started to diversify in an ancestral range covering at least the Neotropics and Australasia. Hypotheses on the biogeographical history of Phlegmariurus were discussed, especially the roles of long distance dispersal, migration via Antarctica and via the Boreotropics. Six long distance dispersal events over the last 40 Ma would explain the Malagasy species diversity of Phlegmariurus, in combination with an important in situ diversification starting in the Miocene.


Subject(s)
Lycopodiaceae/classification , Fossils , Islands , Lycopodiaceae/genetics , Madagascar , Phylogeny , Phylogeography , Plastids/genetics , Sequence Analysis, DNA
20.
Mol Ecol ; 26(4): 977-994, 2017 02.
Article in English | MEDLINE | ID: mdl-27914203

ABSTRACT

Elucidating patterns of population structure for species with complex life histories, and disentangling the processes driving such patterns, remains a significant analytical challenge. Humpback whale (Megaptera novaeangliae) populations display complex genetic structures that have not been fully resolved at all spatial scales. We generated a data set of nuclear markers for 3575 samples spanning the seven breeding stocks and substocks found in the South Atlantic and western and northern Indian Oceans. For the total sample, and males and females separately, we assessed genetic diversity, tested for genetic differentiation between putative populations and isolation by distance, estimated the number of genetic clusters without a priori population information and estimated rates of gene flow using maximum-likelihood and Bayesian approaches. At the ocean basin scale, structure is governed by geographical distance (IBD P < 0.05) and female fidelity to breeding areas, in line with current understanding of the drivers of broadscale population structure. Consistent with previous studies, the Arabian Sea breeding stock was highly genetically differentiated (FST 0.034-0.161; P < 0.01 for all comparisons). However, the breeding stock boundary between west South Africa and east Africa was more porous than expected based on genetic differentiation, cluster and geneflow analyses. Instances of male fidelity to breeding areas and relatively high rates of dispersal for females were also observed between the three substocks in the western Indian Ocean. The relationships between demographic units and current management boundaries may have ramifications for assessments of the status and continued protections of populations still in recovery from commercial whaling.


Subject(s)
Gastrointestinal Microbiome , Humpback Whale , Lizards , Africa, Eastern , Africa, Western , Animals , Bayes Theorem , Female , Genetic Structures , Indian Ocean , Male , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL