Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
J Proteome Res ; 23(1): 149-160, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38043095

ABSTRACT

Host RNA binding proteins recognize viral RNA and play key roles in virus replication and antiviral mechanisms. SARS-CoV-2 generates a series of tiered subgenomic RNAs (sgRNAs), each encoding distinct viral protein(s) that regulate different aspects of viral replication. Here, for the first time, we demonstrate the successful isolation of SARS-CoV-2 genomic RNA and three distinct sgRNAs (N, S, and ORF8) from a single population of infected cells and characterize their protein interactomes. Over 500 protein interactors (including 260 previously unknown) were identified as associated with one or more target RNA. These included protein interactors unique to a single RNA pool and others present in multiple pools, highlighting our ability to discriminate between distinct viral RNA interactomes despite high sequence similarity. Individual interactomes indicated viral associations with cell response pathways, including regulation of cytoplasmic ribonucleoprotein granules and posttranscriptional gene silencing. We tested the significance of three protein interactors in these pathways (APOBEC3F, PPP1CC, and MSI2) using siRNA knockdowns, with several knockdowns affecting viral gene expression, most consistently PPP1CC. This study describes a new technology for high-resolution studies of SARS-CoV-2 RNA regulation and reveals a wealth of new viral RNA-associated host factors of potential functional significance to infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Subgenomic RNA , RNA, Viral/genetics , RNA, Viral/metabolism , COVID-19/genetics , Virus Replication/genetics , Genomics , RNA-Binding Proteins/genetics
2.
RNA ; 28(3): 277-289, 2022 03.
Article in English | MEDLINE | ID: mdl-34937774

ABSTRACT

Coronavirus RNA-dependent RNA polymerases produce subgenomic RNAs (sgRNAs) that encode viral structural and accessory proteins. User-friendly bioinformatic tools to detect and quantify sgRNA production are urgently needed to study the growing number of next-generation sequencing (NGS) data of SARS-CoV-2. We introduced sgDI-tector to identify and quantify sgRNA in SARS-CoV-2 NGS data. sgDI-tector allowed detection of sgRNA without initial knowledge of the transcription-regulatory sequences. We produced NGS data and successfully detected the nested set of sgRNAs with the ranking M > ORF3a > N>ORF6 > ORF7a > ORF8 > S > E>ORF7b. We also compared the level of sgRNA production with other types of viral RNA products such as defective interfering viral genomes.


Subject(s)
Computational Biology/methods , Genome, Viral , RNA, Viral/genetics , SARS-CoV-2/genetics , High-Throughput Nucleotide Sequencing , Open Reading Frames
3.
J Infect Dis ; 228(3): 235-244, 2023 08 11.
Article in English | MEDLINE | ID: mdl-36883903

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic and subgenomic RNA levels are frequently used as a correlate of infectiousness. The impact of host factors and SARS-CoV-2 lineage on RNA viral load is unclear. METHODS: Total nucleocapsid (N) and subgenomic N (sgN) RNA levels were measured by quantitative reverse transcription polymerase chain reaction (RT-qPCR) in specimens from 3204 individuals hospitalized with coronavirus disease 2019 (COVID-19) at 21 hospitals. RT-qPCR cycle threshold (Ct) values were used to estimate RNA viral load. The impact of time of sampling, SARS-CoV-2 variant, age, comorbidities, vaccination, and immune status on N and sgN Ct values were evaluated using multiple linear regression. RESULTS: Mean Ct values at presentation for N were 24.14 (SD 4.53) for non-variants of concern, 25.15 (SD 4.33) for Alpha, 25.31 (SD 4.50) for Delta, and 26.26 (SD 4.42) for Omicron. N and sgN RNA levels varied with time since symptom onset and infecting variant but not with age, comorbidity, immune status, or vaccination. When normalized to total N RNA, sgN levels were similar across all variants. CONCLUSIONS: RNA viral loads were similar among hospitalized adults, irrespective of infecting variant and known risk factors for severe COVID-19. Total N and subgenomic RNA N viral loads were highly correlated, suggesting that subgenomic RNA measurements add little information for the purposes of estimating infectivity.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , SARS-CoV-2/genetics , Subgenomic RNA , Viral Load , RNA , RNA, Viral/genetics
4.
J Infect Dis ; 227(8): 981-992, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36468309

ABSTRACT

BACKGROUND: Control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission requires understanding SARS-CoV-2 replication dynamics. METHODS: We developed a multiplexed droplet digital polymerase chain reaction (ddPCR) assay to quantify SARS-CoV-2 subgenomic RNAs (sgRNAs), which are only produced during active viral replication, and discriminate them from genomic RNAs (gRNAs). We applied the assay to specimens from 144 people with single nasopharyngeal samples and 27 people with >1 sample. Results were compared to quantitative PCR (qPCR) and viral culture. RESULTS: sgRNAs were quantifiable across a range of qPCR cycle threshold (Ct) values and correlated with Ct values. The ratio sgRNA:gRNA was stable across a wide range of Ct values, whereas adjusted amounts of N sgRNA to a human housekeeping gene declined with higher Ct values. Adjusted sgRNA and gRNA amounts were quantifiable in culture-negative samples, although levels were significantly lower than in culture-positive samples. Daily testing of 6 persons revealed that sgRNA is concordant with culture results during the first week of infection but may be discordant with culture later in infection. sgRNA:gRNA is constant during infection despite changes in viral culture. CONCLUSIONS: Ct values from qPCR correlate with active viral replication. More work is needed to understand why some cultures are negative despite presence of sgRNA.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19 Testing , Genomics , Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction/methods , RNA, Viral/genetics , RNA, Viral/analysis , SARS-CoV-2/genetics , Subgenomic RNA/genetics
5.
Clin Infect Dis ; 76(1): 32-38, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36097825

ABSTRACT

BACKGROUND: There is no reliable microbiological marker to guide the indication and the response to antiviral treatment in patients with coronavirus disease 2019 (COVID-19). We aimed to evaluate the dynamics of subgenomic RNA (sgRNA) in patients with COVID-19 before and after receiving treatment with remdesivir. METHODS: We included consecutive patients admitted for COVID-19 who received remdesivir according to our institutional protocol and accepted to participate in the study. A nasopharyngeal swab for quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was collected at baseline and after 3 and 5 days of treatment with remdesivir. Genomic and sgRNA were analyzed in those samples and main comorbidities and evolution were collected for the analyses. The main outcomes were early discharge (≤10 days) and 30-day mortality. RESULTS: A total of 117 patients were included in the study, of whom 24 had a negative sgRNA at baseline, with 62.5% (15/24) receiving early discharge (≤10 days) and no deaths in this group. From the 93 remaining patients, 62 had a negative sgRNA at day 5 with 37/62 (59.6%) with early discharge and a mortality rate of 4.8% (3/62). In the subgroup of 31 patients with positive sgRNA after 5 days of remdesivir, the early discharge rate was 29% (9/31) and the mortality rate was 16.1% (5/31). In multivariable analyses, the variables associated with early discharge were negative sgRNA at day 3 and not needing treatment with corticosteroids or intensive care unit admission. CONCLUSIONS: Qualitative sgRNA could help in monitoring the virological response in patients who receive remdesivir. Further studies are needed to confirm these findings.


Subject(s)
COVID-19 , Humans , Subgenomic RNA , SARS-CoV-2 , Length of Stay , COVID-19 Drug Treatment , Antiviral Agents/therapeutic use
6.
Am J Transplant ; 23(1): 101-107, 2023 01.
Article in English | MEDLINE | ID: mdl-36695611

ABSTRACT

Although the risk of SARS-CoV-2 transmission through lung transplantation from acutely infected donors is high, the risks of virus transmission and long-term lung allograft outcomes are not as well described when using pulmonary organs from COVID-19-recovered donors. We describe successful lung transplantation for a COVID-19-related lung injury using lungs from a COVID-19-recovered donor who was retrospectively found to have detectable genomic SARS-CoV-2 RNA in the lung tissue by multiple highly sensitive assays. However, SARS-CoV-2 subgenomic RNA (sgRNA), a marker of viral replication, was not detectable in the donor respiratory tissues. One year after lung transplantation, the recipient has a good functional status, walking 1 mile several times per week without the need for supplemental oxygen and without any evidence of donor-derived SARS-CoV-2 transmission. Our findings highlight the limitations of current clinical laboratory diagnostic assays in detecting the persistence of SARS-CoV-2 RNA in the lung tissue. The persistence of SARS-CoV-2 RNA in the donor tissue did not appear to represent active viral replication via sgRNA testing and, most importantly, did not negatively impact the allograft outcome in the first year after lung transplantation. sgRNA is easily performed and may be a useful assay for assessing viral infectivity in organs from donors with a recent infection.


Subject(s)
COVID-19 , Lung Transplantation , Humans , SARS-CoV-2/genetics , Subgenomic RNA , RNA, Viral/genetics , Retrospective Studies , Allografts
7.
J Virol ; 96(18): e0103422, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36040179

ABSTRACT

The duration of SARS-CoV-2 genomic RNA shedding is much longer than that of infectious SARS-CoV-2 in most COVID-19 patients. It is very important to determine the relationship between test results and infectivity for efficient isolation, contact tracing, and post-isolation. We characterized the duration of viable SARS-CoV-2, viral genomic and subgenomic RNA (gRNA and sgRNA), and rapid antigen test positivity in nasal washes, oropharyngeal swabs, and feces of experimentally infected Syrian hamsters. The duration of viral genomic RNA shedding is longer than that of viral subgenomic RNA, and far longer than those of rapid antigen test (RAgT) and viral culture positivity. The rapid antigen test results were strongly correlated with the viral culture results. The trend of subgenomic RNA is similar to that of genomic RNA, and furthermore, the subgenomic RNA load is highly correlated with the genomic RNA load. IMPORTANCE Our findings highlight the high correlation between rapid antigen test and virus culture results. The rapid antigen test would be an important supplement to real-time reverse transcription-RCR (RT-PCR) in early COVID-19 screening and in shortening the isolation period of COVID-19 patients. Because the subgenomic RNA load can be predicted from the genomic RNA load, measuring sgRNA does not add more benefit to determining infectivity than a threshold determined for gRNA based on viral culture.


Subject(s)
COVID-19 , RNA, Viral , SARS-CoV-2 , Animals , COVID-19/diagnosis , COVID-19/virology , Cricetinae , Feces/virology , Genomics , Humans , Mesocricetus , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Virus Shedding
8.
Clin Chem Lab Med ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38000044

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which caused coronavirus disease-2019 (COVID-19) is spreading worldwide and posing enormous losses to human health and socio-economic. Due to the limitations of medical and health conditions, it is still a huge challenge to develop appropriate discharge standards for patients with COVID-19 and to use medical resources in a timely and effective manner. Similar to other coronaviruses, SARS-CoV-2 has a very complex discontinuous transcription process to generate subgenomic RNA (sgRNA). Some studies support that sgRNA of SARS-CoV-2 can only exist when the virus is active and is an indicator of virus replication. The results of sgRNA detection in patients can be used to evaluate the condition of hospitalized patients, which is expected to save medical resources, especially personal protective equipment. There have been numerous investigations using different methods, especially molecular methods to detect sgRNA. Here, we introduce the process of SARS-CoV-2 sgRNA formation and the commonly used molecular diagnostic methods to bring a new idea for clinical detection in the future.

9.
Anal Bioanal Chem ; 415(23): 5745-5753, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37486370

ABSTRACT

Determining the quantity of active virus is the most important basis to judge the risk of virus infection, which usually relies on the virus median tissue culture infectious dose (TCID50) assay performed in a biosafety level 3 laboratory within 5-7 days. We have developed a culture-free method for rapid and accurate quantification of active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by targeting subgenomic RNA (sgRNA) based on reverse transcription digital PCR (RT-dPCR). The dynamic range of quantitative assays for sgRNA-N and sgRNA-E by RT-dPCR was investigated, and the result showed that the limits of detection (LoD) and quantification (LoQ) were 2 copies/reaction and 10 copies/reaction, respectively. The delta strain (NMDC60042793) of SARS-CoV-2 was cultured at an average titer of 106.13 TCID50/mL and used to evaluate the developed quantification method. Copy number concentrations of the cultured SARS-CoV-2 sgRNA and genomic RNA (gRNA) gave excellent linearity (R2 = 0.9999) with SARS-CoV-2 titers in the range from 500 to 105 TCID50/mL. Validation of 63 positive clinical samples further proves that the quantification of sgRNA-N by RT-dPCR is more sensitive for active virus quantitative detection. It is notable that we can infer the active virus titer through quantification of SARS-CoV-2 sgRNA based on the linear relationship in a biosafety level 2 laboratory within 3 h. It can be used to timely and effectively identify infectious patients and reduce unnecessary isolation especially when a large number of COVID-19 infected people impose a burden on medical resources.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Subgenomic RNA , COVID-19 Testing , RNA, Viral/genetics , RNA, Viral/analysis
10.
Methods ; 201: 15-25, 2022 05.
Article in English | MEDLINE | ID: mdl-33882362

ABSTRACT

The replication of SARS-CoV-2 and other coronaviruses depends on transcription of negative-sense RNA intermediates that serve as the templates for the synthesis of positive-sense genomic RNA (gRNA) and multiple different subgenomic mRNAs (sgRNAs) encompassing fragments arising from discontinuous transcription. Recent studies have aimed to characterize the expression of subgenomic SARS-CoV-2 transcripts in order to investigate their clinical significance. Here, we describe a novel panel of reverse transcription droplet digital PCR (RT-ddPCR) assays designed to specifically quantify multiple different subgenomic SARS-CoV-2 transcripts and distinguish them from transcripts that do not arise from discontinuous transcription at each locus. These assays can be applied to samples from SARS-CoV-2 infected patients to better understand the regulation of SARS-CoV-2 transcription and how different sgRNAs may contribute to viral pathogenesis and clinical disease severity.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Humans , Polymerase Chain Reaction , RNA, Messenger/genetics , RNA, Viral/analysis , RNA, Viral/genetics , Reverse Transcription , SARS-CoV-2/genetics
11.
J Infect Dis ; 226(5): 788-796, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35150571

ABSTRACT

While detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by diagnostic reverse-transcription polymerase chain reaction (RT-PCR) is highly sensitive for viral RNA, the nucleic acid amplification of subgenomic RNAs (sgRNAs) that are the product of viral replication may more accurately identify replication. We characterized the diagnostic RNA and sgRNA detection by RT-PCR from nasal swab samples collected daily by participants in postexposure prophylaxis or treatment studies for SARS-CoV-2. Among 1932 RT-PCR-positive swab samples with sgRNA tests, 40% (767) had detectable sgRNA. Above a diagnostic RNA viral load (VL) threshold of 5.1 log10 copies/mL, 96% of samples had detectable sgRNA with VLs that followed a linear trend. The trajectories of diagnostic RNA and sgRNA VLs differed, with 80% peaking on the same day but duration of sgRNA detection being shorter (8 vs 14 days). With a large sample of daily swab samples we provide comparative sgRNA kinetics and a diagnostic RNA threshold that correlates with replicating virus independent of symptoms or duration of illness.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Kinetics , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Viral Load
12.
Clin Infect Dis ; 75(10): 1698-1705, 2022 11 14.
Article in English | MEDLINE | ID: mdl-35442437

ABSTRACT

The novel coronavirus pandemic incited unprecedented demand for assays that detect viral nucleic acids, viral proteins, and corresponding antibodies. The 320 molecular diagnostics in receipt of US Food and Drug Administration emergency use authorization mainly focus on viral detection; however, no currently approved test can be used to infer infectiousness, that is, the presence of replicable virus. As the number of tests conducted increased, persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA positivity by reverse-transcription polymerase chain reaction (RT-PCR) in some individuals led to concerns over quarantine guidelines. To this end, we attempted to design an assay that reduces the frequency of positive test results from individuals who do not shed culturable virus. We describe multiplex quantitative RT-PCR assays that detect genomic RNA (gRNA) and subgenomic RNA (sgRNA) species of SARS-CoV-2, including spike, nucleocapsid, membrane, envelope, and ORF8. Viral RNA abundances calculated from these assays were compared with antigen presence, self-reported symptoms, and culture outcome (virus isolation) using samples from a 14-day longitudinal household transmission study. By characterizing the clinical and molecular dynamics of infection, we show that sgRNA detection has higher predictive value for culture outcome compared to detection of gRNA alone. Our findings suggest that sgRNA presence correlates with active infection and may help identify individuals shedding culturable virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , RNA, Viral/analysis , Self Report , Longitudinal Studies , RNA, Guide, Kinetoplastida , COVID-19/diagnosis
13.
Clin Infect Dis ; 75(1): e27-e34, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35362530

ABSTRACT

BACKGROUND: Data on the clinical and virological characteristics of the Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are limited. This prospective cohort study compared the characteristics of the Delta variant to other variants. METHODS: Adult patients with mild coronavirus disease 2019 (COVID-19) who agreed to daily saliva sampling at a community isolation facility in South Korea between July and August 2021 were enrolled. Scores of 28 COVID-19-related symptoms were recorded daily. The genomic RNA and subgenomic RNA from saliva samples were measured by real-time reverse-transcription polymerase chain reaction (PCR). Cell cultures were performed on saliva samples with positive genomic RNA results. RESULTS: A total of 141 patients (Delta group, n = 108 [77%]; non-Delta group, n = 33 [23%]) were enrolled. Myalgia was more common in the Delta group than in the non-Delta group (52% vs 27%, P = .03). Total symptom scores were significantly higher in the Delta group between days 3 and 10 after symptom onset. Initial genomic RNA titers were similar between the 2 groups; however, during the late course of disease, genomic RNA titers were higher in the Delta group. Negative conversion of subgenomic RNA was slower in the Delta group (median 9 vs 5 days; P < .001). The duration of viral shedding in terms of positive viral culture was also longer in the Delta group (median 5 vs 3 days; P = .002). CONCLUSIONS: COVID-19 patients infected with the Delta variant exhibited prolonged viable viral shedding with more severe symptoms than those infected with non-Delta variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , Prospective Studies , RNA , RNA, Viral , SARS-CoV-2/genetics
14.
J Clin Microbiol ; 60(1): e0160921, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34669457

ABSTRACT

Determining SARS-CoV-2 viral infectivity is crucial for patient clinical assessment and isolation decisions. We assessed subgenomic RNA (sgRNA) as a surrogate marker of SARS-CoV-2 infectivity in SARS-CoV-2-positive reverse transcription PCR (RT-PCR) respiratory samples (n = 105) in comparison with viral culture as the reference standard for virus replication. sgRNA and viral isolation results were concordant in 99/105 cases (94%), indicating highly significant agreement between the two techniques (Cohen's kappa coefficient 0.88, 95% confidence interval [CI] 0.78 to 0.97, P < 0.001). sgRNA RT-PCR showed a sensitivity of 97% and a positive predictive value of 94% to detect replication-competent virus, further supporting sgRNA as a surrogate marker of SARS-CoV-2 infectivity. sgRNA RT-PCR is an accurate, rapid, and affordable technique that can overcome culture and cycle threshold (CT) value limitations and be routinely implemented in hospital laboratories to detect viral infectivity, which is essential for optimizing patient monitoring, the efficacy of treatments/vaccines, and work reincorporation policies, as well as for safely shortening isolation precautions.


Subject(s)
COVID-19 , SARS-CoV-2 , Biomarkers , Humans , RNA , RNA, Viral/genetics , Reverse Transcription
15.
J Virol ; 95(20): e0083121, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34379502

ABSTRACT

Many positive-strand (+) RNA viruses produce subgenomic RNAs (sgRNAs) in the infection cycle through the combined activities of viral replicase and host proteins. However, knowledge about host proteins involved in direct sgRNA promoter recognition is limited. Here, in the partially purified replicase complexes from Bamboo mosaic virus (BaMV)-infected tissue, we have identified the Nicotiana benthamiana photosystem II oxygen-evolving complex protein, NbPsbO1, which specifically interacted with the promoter of sgRNA but not that of genomic RNA (gRNA). Silencing of NbPsbO1 expression suppressed BaMV accumulation in N. benthamiana protoplasts without affecting viral gRNA replication. Overexpression of wild-type NbPsbO1 stimulated BaMV sgRNA accumulation. Fluorescent microscopy examination revealed that the fluorescence associated with NbPsbO1 was redistributed from chloroplast granal thylakoids to stroma in BaMV-infected cells. Overexpression of a mislocalized mutant of NbPsbO1, dTPPsbO1-T7, inhibited BaMV RNA accumulation in N. benthamiana, whereas overexpression of an NbPsbO1 derivative, sPsbO1-T7, designed to be targeted to chloroplast stroma, upregulated the sgRNA level. Furthermore, depletion of NbPsbO1 in BaMV RdRp preparation significantly inhibited sgRNA synthesis in vitro but exerted no effect on (+) or (-) gRNA synthesis, which indicates that NbPsbO1 is required for efficient sgRNA synthesis. These results reveal a novel role for NbPsbO1 in the selective enhancement of BaMV sgRNA transcription, most likely via direct interaction with the sgRNA promoter. IMPORTANCE Production of subgenomic RNAs (sgRNAs) for efficient translation of downstream viral proteins is one of the major strategies adapted for viruses that contain a multicistronic RNA genome. Both viral genomic RNA (gRNA) replication and sgRNA transcription rely on the combined activities of viral replicase and host proteins, which recognize promoter regions for the initiation of RNA synthesis. However, compared to the cis-acting elements involved in the regulation of sgRNA synthesis, the host factors involved in sgRNA promoter recognition mostly remain to be elucidated. Here, we found a chloroplast protein, NbPsbO1, which specifically interacts with Bamboo mosaic virus (BaMV) sgRNA promoter. We showed that NbPsbO1 is relocated to the BaMV replication site in BaMV-infected cells and demonstrated that NbPsbO1 is required for efficient BaMV sgRNA transcription but exerts no effect on gRNA replication. This study provides a new insight into the regulating mechanism of viral gRNA and sgRNA synthesis.


Subject(s)
Nicotiana/metabolism , Photosystem II Protein Complex/metabolism , Potexvirus/metabolism , 3' Untranslated Regions , Chloroplasts/metabolism , Plant Proteins/genetics , Potexvirus/genetics , Promoter Regions, Genetic/genetics , Protein Binding , RNA/genetics , RNA/metabolism , RNA, Viral/genetics , RNA-Dependent RNA Polymerase , Nicotiana/genetics , Nicotiana/virology , Viral Proteins/metabolism , Viral Replicase Complex Proteins/genetics , Viral Replicase Complex Proteins/metabolism , Virus Replication/physiology
16.
J Virol ; 95(9)2021 04 12.
Article in English | MEDLINE | ID: mdl-33597210

ABSTRACT

Opium poppy mosaic virus (OPMV) is a recently discovered umbravirus in the family Tombusviridae OPMV has a plus-sense genomic RNA (gRNA) of 4,241 nucleotides (nt) from which replication protein p35 and p35 extension product p98, the RNA-dependent RNA polymerase (RdRp), are expressed. Movement proteins p27 (long distance) and p28 (cell to cell) are expressed from a 1,440-nt subgenomic RNA (sgRNA2). A highly conserved structure was identified just upstream from the sgRNA2 transcription start site in all umbraviruses, which includes a carmovirus consensus sequence, denoting generation by an RdRp-mediated mechanism. OPMV also has a second sgRNA of 1,554 nt (sgRNA1) that starts just downstream of a canonical exoribonuclease-resistant sequence (xrRNAD). sgRNA1 codes for a 30-kDa protein in vitro that is in frame with p28 and cannot be synthesized in other umbraviruses. Eliminating sgRNA1 or truncating the p30 open reading frame (ORF) without affecting p28 substantially reduced accumulation of OPMV gRNA, suggesting a functional role for the protein. The 652-nt 3' untranslated region of OPMV contains two 3' cap-independent translation enhancers (3' CITEs), a T-shaped structure (TSS) near its 3' end, and a Barley yellow dwarf virus-like translation element (BTE) in the central region. Only the BTE is functional in luciferase reporter constructs containing gRNA or sgRNA2 5' sequences in vivo, which differs from how umbravirus 3' CITEs were used in a previous study. Similarly to most 3' CITEs, the OPMV BTE links to the 5' end via a long-distance RNA-RNA interaction. Analysis of 14 BTEs revealed additional conserved sequences and structural features beyond the previously identified 17-nt conserved sequence.IMPORTANCEOpium poppy mosaic virus (OPMV) is an umbravirus in the family Tombusviridae We determined that OPMV accumulates two similarly sized subgenomic RNAs (sgRNAs), with the smaller known to code for proteins expressed from overlapping open reading frames. The slightly larger sgRNA1 has a 5' end just upstream from a previously predicted xrRNAD site, identifying this sgRNA as an unusually long product produced by exoribonuclease trimming. Although four umbraviruses have similar predicted xrRNAD sites, only sgRNA1 of OPMV can code for a protein that is an extension product of umbravirus ORF4. Inability to generate the sgRNA or translate this protein was associated with reduced gRNA accumulation in vivo We also characterized the OPMV BTE structure, a 3' cap-independent translation enhancer (3' CITE). Comparisons of 13 BTEs with the OPMV BTE revealed additional stretches of sequence similarity beyond the 17-nt signature sequence, as well as conserved structural features not previously recognized in these 3' CITEs.


Subject(s)
Gene Expression Regulation, Viral , Genome, Viral , RNA, Viral/genetics , Tombusviridae , Viral Proteins/genetics , 3' Untranslated Regions , Open Reading Frames , Protein Biosynthesis , Tombusviridae/genetics
17.
J Virol ; 95(17): e0051821, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34076477

ABSTRACT

A critical step in replication of positive-stranded RNA viruses is the assembly of replication and transcription complexes (RTC). We have recently mapped the nonstructural protein (nsp) interaction network of porcine reproductive and respiratory syndrome virus (PRRSV) and provided evidence by truncation mutagenesis that the recruitment of viral core replicase enzymes (nsp9 and nsp10) to membrane proteins (nsp2, nsp3, nsp5, and nsp12) is subject to regulation. Here, we went further to discover an intramolecular switch within the helicase nsp10 that controls its interaction with the membrane-associated protein nsp12. Deletion of nsp10 linker region amino acids 124 to 133, connecting domain 1B to 1A, led to complete relocalization and colocalization in the cells coexpressing nsp12. Moreover, single-amino-acid substitutions (e.g., nsp10 E131A and I132A) were sufficient to enable the nsp10-nsp12 interaction. Further proof came from membrane floatation assays that revealed a clear movement of nsp10 mutants, but not wild-type nsp10, toward the top of sucrose gradients in the presence of nsp12. Interestingly, the same mutations were not able to activate the nsp10-nsp2/3 interaction, suggesting a differential requirement for conformation. Reverse genetics analysis showed that PRRSV mutants carrying the single substitutions were not viable and were defective in subgenomic RNA (sgRNA) accumulation. Together, our results provide strong evidence for a regulated interaction between nsp10 and nsp12 and suggest an essential role for an orchestrated RTC assembly in sgRNA synthesis. IMPORTANCE Assembly of replication and transcription complexes (RTC) is a limiting step for viral RNA synthesis. The PRRSV RTC macromolecular complexes are comprised of mainly viral nonstructural replicase proteins (nsps), but how they come together remains elusive. We previously showed that viral helicase nsp10 interacts nsp12 in a regulated manner by truncation mutagenesis. Here, we revealed that the interaction is controlled by single residues within the domain linker region of nsp10. Moreover, the activation mutations lead to defects in viral sgRNA synthesis. Our results provide important insight into the mechanisms of PRRSV RTC assembly and regulation of viral sgRNA synthesis.


Subject(s)
Host-Pathogen Interactions , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/metabolism , RNA, Viral/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication , Amino Acid Substitution , Animals , Mutation , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/isolation & purification , Protein Conformation , Protein Interaction Maps , RNA, Viral/genetics , Swine , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
18.
J Infect Dis ; 224(8): 1287-1293, 2021 10 28.
Article in English | MEDLINE | ID: mdl-33870434

ABSTRACT

BACKGROUND: Previous studies demonstrated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA can be detected for weeks after infection. The significance of this finding is unclear and, in most patients, does not represent active infection. Detection of subgenomic RNA has been proposed to represent productive infection and may be a useful marker for monitoring infectivity. METHODS: We used quantitative reverse-transcription polymerase chain reaction (RT-qPCR) to quantify total and subgenomic nucleocapsid (sgN) and envelope (sgE) transcripts in 185 SARS-CoV-2-positive nasopharyngeal swab samples collected on hospital admission and to relate to symptom duration. RESULTS: We find that all transcripts decline at the same rate; however, sgE becomes undetectable before other transcripts. The median duration of symptoms to a negative test is 14 days for sgE and 25 days for sgN. There is a linear decline in subgenomic compared to total RNA, suggesting that subgenomic transcript copy number is dependent on copy number of total transcripts. The mean difference between total and sgN is 16-fold and the mean difference between total and sgE is 137-fold. This relationship is constant over duration of symptoms, allowing prediction of subgenomic copy number from total copy number. CONCLUSIONS: Subgenomic RNA may be no more useful in determining infectivity than a copy number threshold determined for total RNA.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Viral Load , Aged , COVID-19/transmission , COVID-19/virology , COVID-19 Nucleic Acid Testing/standards , COVID-19 Nucleic Acid Testing/statistics & numerical data , Coronavirus Envelope Proteins/genetics , Coronavirus Nucleocapsid Proteins/genetics , Feasibility Studies , Female , Humans , Male , Middle Aged , Nasopharynx/pathology , Nasopharynx/virology , Phosphoproteins/genetics , Real-Time Polymerase Chain Reaction/statistics & numerical data , Reference Values , Retrospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity
19.
J Infect Dis ; 224(8): 1325-1332, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34329473

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse-transcription polymerase chain reaction (RT-PCR) provides a highly variable cycle threshold (Ct) value that cannot distinguish viral infectivity. Subgenomic ribonucleic acid (sgRNA) has been used to monitor active replication. Given the importance of long RT-PCR positivity and the need for work reincorporation and discontinuing isolation, we studied the functionality of normalized viral loads (NVLs) for patient monitoring and sgRNA for viral infectivity detection. METHODS: The NVLs measured through the Nucleocapsid and RNA-dependent-RNA-polymerase genes and sgRNA RT-PCRs were performed in 2 consecutive swabs from 84 healthcare workers. RESULTS: The NVLs provided similar and accurate quantities of both genes of SARS-CoV-2 at 2 different timepoints of infection, overcoming Ct-value and swab collection variability. Among SARS-CoV-2-positive samples, 51.19% were sgRNA-positive in the 1st RT-PCR and 5.95% in the 2nd RT-PCR. All sgRNA-positive samples had >4 log10 RNA copies/1000 cells, whereas samples with ≤1 log10 NVLs were sgRNA-negative. Although NVLs were positive until 29 days after symptom onset, 84.1% of sgRNA-positive samples were from the first 7 days, which correlated with viral culture viability. Multivariate analyses showed that sgRNA, NVLs, and days of symptoms were significantly associated (P < .001). CONCLUSIONS: The NVLs and sgRNA are 2 rapid accessible techniques that could be easily implemented in routine hospital practice providing a useful proxy for viral infectivity and coronavirus disease 2019 patient follow-up.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Viral Load/standards , Adult , Aftercare/standards , COVID-19/therapy , COVID-19/transmission , COVID-19/virology , COVID-19 Nucleic Acid Testing/statistics & numerical data , Clinical Decision-Making/methods , Epidemiological Monitoring , Female , Health Personnel/statistics & numerical data , Humans , Male , Middle Aged , Nasopharynx/pathology , Nasopharynx/virology , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity
20.
Emerg Infect Dis ; 27(11): 2887-2891, 2021 11.
Article in English | MEDLINE | ID: mdl-34424838

ABSTRACT

Among symptomatic outpatients, subgenomic RNA of severe acute respiratory syndrome coronavirus 2 in nasal midturbinate swab specimens was concordant with antigen detection but remained detectable in 13 (82.1%) of 16 nasopharyngeal swab specimens from antigen-negative persons. Subgenomic RNA in midturbinate swab specimens might be useful for routine diagnostics to identify active virus replication.


Subject(s)
COVID-19 , SARS-CoV-2 , Diagnostic Tests, Routine , Humans , Nasopharynx , RNA
SELECTION OF CITATIONS
SEARCH DETAIL