Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.983
Filter
Add more filters

Publication year range
1.
Cell ; 185(19): 3551-3567.e39, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36055250

ABSTRACT

Interactions between cells are indispensable for signaling and creating structure. The ability to direct precise cell-cell interactions would be powerful for engineering tissues, understanding signaling pathways, and directing immune cell targeting. In humans, intercellular interactions are mediated by cell adhesion molecules (CAMs). However, endogenous CAMs are natively expressed by many cells and tend to have cross-reactivity, making them unsuitable for programming specific interactions. Here, we showcase "helixCAM," a platform for engineering synthetic CAMs by presenting coiled-coil peptides on the cell surface. helixCAMs were able to create specific cell-cell interactions and direct patterned aggregate formation in bacteria and human cells. Based on coiled-coil interaction principles, we built a set of rationally designed helixCAM libraries, which led to the discovery of additional high-performance helixCAM pairs. We applied this helixCAM toolkit for various multicellular engineering applications, such as spherical layering, adherent cell targeting, and surface patterning.


Subject(s)
Bacteria , Peptides , Humans , Peptides/chemistry
2.
Cell ; 184(14): 3702-3716.e30, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34133940

ABSTRACT

Many embryonic organs undergo epithelial morphogenesis to form tree-like hierarchical structures. However, it remains unclear what drives the budding and branching of stratified epithelia, such as in the embryonic salivary gland and pancreas. Here, we performed live-organ imaging of mouse embryonic salivary glands at single-cell resolution to reveal that budding morphogenesis is driven by expansion and folding of a distinct epithelial surface cell sheet characterized by strong cell-matrix adhesions and weak cell-cell adhesions. Profiling of single-cell transcriptomes of this epithelium revealed spatial patterns of transcription underlying these cell adhesion differences. We then synthetically reconstituted budding morphogenesis by experimentally suppressing E-cadherin expression and inducing basement membrane formation in 3D spheroid cultures of engineered cells, which required ß1-integrin-mediated cell-matrix adhesion for successful budding. Thus, stratified epithelial budding, the key first step of branching morphogenesis, is driven by an overall combination of strong cell-matrix adhesion and weak cell-cell adhesion by peripheral epithelial cells.


Subject(s)
Cell-Matrix Junctions/metabolism , Morphogenesis , Animals , Basement Membrane/metabolism , Cell Adhesion , Cell Division , Cell Movement , Cell Tracking , Embryo, Mammalian/cytology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelium , Gene Expression Regulation, Developmental , HEK293 Cells , Humans , Integrins/metabolism , Mice , Models, Biological , Salivary Glands/cytology , Salivary Glands/embryology , Salivary Glands/metabolism , Transcriptome/genetics
3.
Cell ; 183(5): 1402-1419.e18, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33152263

ABSTRACT

We propose that the teratoma, a recognized standard for validating pluripotency in stem cells, could be a promising platform for studying human developmental processes. Performing single-cell RNA sequencing (RNA-seq) of 179,632 cells across 23 teratomas from 4 cell lines, we found that teratomas reproducibly contain approximately 20 cell types across all 3 germ layers, that inter-teratoma cell type heterogeneity is comparable with organoid systems, and teratoma gut and brain cell types correspond well to similar fetal cell types. Furthermore, cellular barcoding confirmed that injected stem cells robustly engraft and contribute to all lineages. Using pooled CRISPR-Cas9 knockout screens, we showed that teratomas can enable simultaneous assaying of the effects of genetic perturbations across all germ layers. Additionally, we demonstrated that teratomas can be sculpted molecularly via microRNA (miRNA)-regulated suicide gene expression to enrich for specific tissues. Taken together, teratomas are a promising platform for modeling multi-lineage development, pan-tissue functional genetic screening, and tissue engineering.


Subject(s)
Cell Lineage , Models, Biological , Teratoma/pathology , Animals , HEK293 Cells , Humans , Male , Mice, Inbred NOD , Mice, SCID , MicroRNAs/genetics , MicroRNAs/metabolism , Reproducibility of Results , Teratoma/genetics
4.
Cell ; 176(4): 913-927.e18, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30686581

ABSTRACT

Tissue engineering using cardiomyocytes derived from human pluripotent stem cells holds a promise to revolutionize drug discovery, but only if limitations related to cardiac chamber specification and platform versatility can be overcome. We describe here a scalable tissue-cultivation platform that is cell source agnostic and enables drug testing under electrical pacing. The plastic platform enabled on-line noninvasive recording of passive tension, active force, contractile dynamics, and Ca2+ transients, as well as endpoint assessments of action potentials and conduction velocity. By combining directed cell differentiation with electrical field conditioning, we engineered electrophysiologically distinct atrial and ventricular tissues with chamber-specific drug responses and gene expression. We report, for the first time, engineering of heteropolar cardiac tissues containing distinct atrial and ventricular ends, and we demonstrate their spatially confined responses to serotonin and ranolazine. Uniquely, electrical conditioning for up to 8 months enabled modeling of polygenic left ventricular hypertrophy starting from patient cells.


Subject(s)
Myocytes, Cardiac/cytology , Tissue Culture Techniques/instrumentation , Tissue Engineering/methods , Action Potentials , Cell Differentiation , Cells, Cultured , Electrophysiological Phenomena , Humans , Induced Pluripotent Stem Cells/cytology , Models, Biological , Myocardium/cytology , Myocytes, Cardiac/metabolism , Pluripotent Stem Cells/cytology , Tissue Culture Techniques/methods
5.
Proc Natl Acad Sci U S A ; 121(9): e2304643121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38377210

ABSTRACT

Generating strong rapid adhesion between hydrogels has the potential to advance the capabilities of modern medicine and surgery. Current hydrogel adhesion technologies rely primarily on liquid-based diffusion mechanisms and the formation of covalent bonds, requiring prolonged time to generate adhesion. Here, we present a simple and versatile strategy using dry chitosan polymer films to generate instant adhesion between hydrogel-hydrogel and hydrogel-elastomer surfaces. Using this approach we can achieve extremely high adhesive energies (>3,000 J/m2), which are governed by pH change and non-covalent interactions including H-bonding, Van der Waals forces, and bridging polymer entanglement. Potential examples of biomedical applications are presented, including local tissue cooling, vascular sealing, prevention of surgical adhesions, and prevention of hydrogel dehydration. We expect these findings and the simplicity of this approach to have broad implications for adhesion strategies and hydrogel design.


Subject(s)
Adhesives , Polymers , Humans , Tissue Adhesions/prevention & control , Adhesives/chemistry , Elastomers , Hydrogels/chemistry
6.
Proc Natl Acad Sci U S A ; 120(8): e2213030120, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36791112

ABSTRACT

Load-bearing soft tissues normally show J-shaped stress-strain behaviors with high compliance at low strains yet high strength at high strains. They have high water content but are still tough and durable. By contrast, naturally derived hydrogels are weak and brittle. Although hydrogels prepared from synthetic polymers can be strong and tough, they do not have the desired bioactivity for emerging biomedical applications. Here, we present a thermomechanical approach to replicate the combinational properties of soft tissues in protein-based photocrosslinkable hydrogels. As a demonstration, we create a gelatin methacryloyl fiber hydrogel with soft tissue-like mechanical properties, such as low Young's modulus (0.1 to 0.3 MPa), high strength (1.1 ± 0.2 MPa), high toughness (9,100 ± 2,200 J/m3), and high fatigue resistance (2,300 ± 500 J/m2). This hydrogel also resembles the biochemical and architectural properties of native extracellular matrix, which enables a fast formation of 3D interconnected cell meshwork inside hydrogels. The fiber architecture also regulates cellular mechanoresponse and supports cell remodeling inside hydrogels. The integration of tissue-like mechanical properties and bioactivity is highly desirable for the next-generation biomaterials and could advance emerging fields such as tissue engineering and regenerative medicine.


Subject(s)
Biocompatible Materials , Hydrogels , Hydrogels/chemistry , Biocompatible Materials/chemistry , Tissue Engineering , Water/chemistry , Polymers
7.
Proc Natl Acad Sci U S A ; 120(8): e2211703120, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36780522

ABSTRACT

The immune system is increasingly recognized as an important regulator of tissue repair. We developed a regenerative immunotherapy from the helminth Schistosoma mansoni soluble egg antigen (SEA) to stimulate production of interleukin (IL)-4 and other type 2-associated cytokines without negative infection-related sequelae. The regenerative SEA (rSEA) applied to a murine muscle injury induced accumulation of IL-4-expressing T helper cells, eosinophils, and regulatory T cells and decreased expression of IL-17A in gamma delta (γδ) T cells, resulting in improved repair and decreased fibrosis. Encapsulation and controlled release of rSEA in a hydrogel further enhanced type 2 immunity and larger volumes of tissue repair. The broad regenerative capacity of rSEA was validated in articular joint and corneal injury models. These results introduce a regenerative immunotherapy approach using natural helminth derivatives.


Subject(s)
Schistosomiasis mansoni , Animals , Mice , Schistosomiasis mansoni/therapy , Cytokines/metabolism , Schistosoma mansoni , T-Lymphocytes, Helper-Inducer , Antigens, Helminth , Immunotherapy
8.
Circulation ; 149(25): 2002-2020, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38885303

ABSTRACT

Myocardial infarction is a cardiovascular disease characterized by a high incidence rate and mortality. It leads to various cardiac pathophysiological changes, including ischemia/reperfusion injury, inflammation, fibrosis, and ventricular remodeling, which ultimately result in heart failure and pose a significant threat to global health. Although clinical reperfusion therapies and conventional pharmacological interventions improve emergency survival rates and short-term prognoses, they are still limited in providing long-lasting improvements in cardiac function or reversing pathological progression. Recently, cardiac patches have gained considerable attention as a promising therapy for myocardial infarction. These patches consist of scaffolds or loaded therapeutic agents that provide mechanical reinforcement, synchronous electrical conduction, and localized delivery within the infarct zone to promote cardiac restoration. This review elucidates the pathophysiological progression from myocardial infarction to heart failure, highlighting therapeutic targets and various cardiac patches. The review considers the primary scaffold materials, including synthetic, natural, and conductive materials, and the prevalent fabrication techniques and optimal properties of the patch, as well as advanced delivery strategies. Last, the current limitations and prospects of cardiac patch research are considered, with the goal of shedding light on innovative products poised for clinical application.


Subject(s)
Myocardial Infarction , Humans , Myocardial Infarction/therapy , Myocardial Infarction/physiopathology , Animals , Tissue Scaffolds
9.
Development ; 149(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-35156682

ABSTRACT

The proper development and patterning of organs rely on concerted signaling events emanating from intracellular and extracellular molecular and biophysical cues. The ability to model and understand how these microenvironmental factors contribute to cell fate decisions and physiological processes is crucial for uncovering the biology and mechanisms of life. Recent advances in microfluidic systems have provided novel tools and strategies for studying aspects of human tissue and organ development in ways that have previously been challenging to explore ex vivo. Here, we discuss how microfluidic systems and organs-on-chips provide new ways to understand how extracellular signals affect cell differentiation, how cells interact with each other, and how different tissues and organs are formed for specialized functions. We also highlight key advancements in the field that are contributing to a broad understanding of human embryogenesis, organogenesis and physiology. We conclude by summarizing the key advantages of using dynamic microfluidic or microphysiological platforms to study intricate developmental processes that cannot be accurately modeled by using traditional tissue culture vessels. We also suggest some exciting prospects and potential future applications of these emerging technologies.


Subject(s)
Microfluidics/methods , Models, Biological , Heart/growth & development , Heart/physiology , Humans , Lab-On-A-Chip Devices , Microfluidics/instrumentation , Polyesters/chemistry , Printing, Three-Dimensional , Tissue Engineering
10.
FASEB J ; 38(6): e23559, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38502020

ABSTRACT

Articular cartilage injury is one of the most common diseases in orthopedic clinics. Following an articular cartilage injury, an inability to resist vascular invasion can result in cartilage calcification by newly formed blood vessels. This process ultimately leads to the loss of joint function, significantly impacting the patient's quality of life. As a result, developing anti-angiogenic methods to repair damaged cartilage has become a popular research topic. Despite this, tissue engineering, as an anti-angiogenic strategy in cartilage injury repair, has not yet been adequately investigated. This exhaustive literature review mainly focused on the process and mechanism of vascular invasion in articular cartilage injury repair and summarized the major regulatory factors and signaling pathways affecting angiogenesis in the process of cartilage injury. We aimed to discuss several potential methods for engineering cartilage repair with anti-angiogenic strategies. Three anti-angiogenic tissue engineering methods were identified, including administering angiogenesis inhibitors, applying scaffolds to manage angiogenesis, and utilizing in vitro bioreactors to enhance the therapeutic properties of cultured chondrocytes. The advantages and disadvantages of each strategy were also analyzed. By exploring these anti-angiogenic tissue engineering methods, we hope to provide guidance for researchers in related fields for future research and development in cartilage repair.


Subject(s)
Cartilage, Articular , Quality of Life , Humans , Immunotherapy , Angiogenesis Inhibitors , Calcification, Physiologic
11.
Circ Res ; 132(4): 519-540, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36795845

ABSTRACT

During cardiac development and morphogenesis, cardiac progenitor cells differentiate into cardiomyocytes that expand in number and size to generate the fully formed heart. Much is known about the factors that regulate initial differentiation of cardiomyocytes, and there is ongoing research to identify how these fetal and immature cardiomyocytes develop into fully functioning, mature cells. Accumulating evidence indicates that maturation limits proliferation and conversely proliferation occurs rarely in cardiomyocytes of the adult myocardium. We term this oppositional interplay the proliferation-maturation dichotomy. Here we review the factors that are involved in this interplay and discuss how a better understanding of the proliferation-maturation dichotomy could advance the utility of human induced pluripotent stem cell-derived cardiomyocytes for modeling in 3-dimensional engineered cardiac tissues to obtain truly adult-level function.


Subject(s)
Induced Pluripotent Stem Cells , Tissue Engineering , Humans , Tissue Engineering/methods , Myocytes, Cardiac/physiology , Myocardium , Cell Differentiation/physiology , Cell Proliferation
12.
Exp Cell Res ; 435(1): 113926, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38228225

ABSTRACT

The present research aims to evaluate the efficacy of Silibinin-loaded mesoporous silica nanoparticles (Sil@MSNs) immobilized into polylactic-co-glycolic acid/Collagen (PLGA/Col) nanofibers on the in vitro proliferation of adipose-derived stem cells (ASCs) and cellular senescence. Here, the fabricated electrospun PLGA/Col composite scaffolds were coated with Sil@MSNs and their physicochemical properties were examined by FTIR, FE-SEM, and TGA. The growth, viability and proliferation of ASCs were investigated using various biological assays including PicoGreen, MTT, and RT-PCR after 21 days. The proliferation and adhesion of ASCs were supported by the biological and mechanical characteristics of the Sil@MSNs PLGA/Col composite scaffolds, according to FE- SEM. PicoGreen and cytotoxicity analysis showed an increase in the rate of proliferation and metabolic activity of hADSCs after 14 and 21 days, confirming the initial and controlled release of Sil from nanofibers. Gene expression analysis further confirmed the increased expression of stemness markers as well as hTERT and telomerase in ASCs seeded on Sil@MSNs PLGA/Col nanofibers compared to the control group. Ultimately, the findings of the present study introduced Sil@MSNs PLGA/Col composite scaffolds as an efficient platform for long-term proliferation of ASCs in tissue engineering.


Subject(s)
Nanofibers , Tissue Scaffolds , Cell Adhesion , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Silybin/pharmacology , Tissue Scaffolds/chemistry , Nanofibers/chemistry , Collagen/pharmacology , Collagen/chemistry , Tissue Engineering , Stem Cells , Cell Proliferation , Cells, Cultured , Organic Chemicals
13.
Cell Mol Life Sci ; 81(1): 197, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664263

ABSTRACT

Congenital heart defects are associated with significant health challenges, demanding a deep understanding of the underlying biological mechanisms and, thus, better devices or platforms that can recapitulate human cardiac development. The discovery of human pluripotent stem cells has substantially reduced the dependence on animal models. Recent advances in stem cell biology, genetic editing, omics, microfluidics, and sensor technologies have further enabled remarkable progress in the development of in vitro platforms with increased fidelity and efficiency. In this review, we provide an overview of advancements in in vitro cardiac development platforms, with a particular focus on technological innovation. We categorize these platforms into four areas: two-dimensional solid substrate cultures, engineered substrate architectures that enhance cellular functions, cardiac organoids, and embryos/explants-on-chip models. We conclude by addressing current limitations and presenting future perspectives.


Subject(s)
Drug Evaluation, Preclinical , Heart , Tissue Engineering , Humans , Animals , Drug Evaluation, Preclinical/methods , Tissue Engineering/methods , Organoids/metabolism , Organoids/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Heart Defects, Congenital/genetics , Lab-On-A-Chip Devices
14.
Proc Natl Acad Sci U S A ; 119(35): e2200741119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36001689

ABSTRACT

The next robotics frontier will be led by biohybrids. Capable biohybrid robots require microfluidics to sustain, improve, and scale the architectural complexity of their core ingredient: biological tissues. Advances in microfluidics have already revolutionized disease modeling and drug development, and are positioned to impact regenerative medicine but have yet to apply to biohybrids. Fusing microfluidics with living materials will improve tissue perfusion and maturation, and enable precise patterning of sensing, processing, and control elements. This perspective suggests future developments in advanced biohybrids.


Subject(s)
Biomimetic Materials , Cells , Microfluidics , Robotics
15.
Proc Natl Acad Sci U S A ; 119(38): e2207525119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36095208

ABSTRACT

Progress in bottom-up synthetic biology has stimulated the development of synthetic cells (SCs), autonomous protein-manufacturing particles, as dynamic biomimetics for replacing diseased natural cells and addressing medical needs. Here, we report that SCs genetically encoded to produce proangiogenic factors triggered the physiological process of neovascularization in mice. The SCs were constructed of giant lipid vesicles and were optimized to facilitate enhanced protein production. When introduced with the appropriate genetic code, the SCs synthesized a recombinant human basic fibroblast growth factor (bFGF), reaching expression levels of up to 9⋅106 protein copies per SC. In culture, the SCs induced endothelial cell proliferation, migration, tube formation, and angiogenesis-related intracellular signaling, confirming their proangiogenic activity. Integrating the SCs with bioengineered constructs bearing endothelial cells promoted the remodeling of mature vascular networks, supported by a collagen-IV basement membrane-like matrix. In vivo, prolonged local administration of the SCs in mice triggered the infiltration of blood vessels into implanted Matrigel plugs without recorded systemic immunogenicity. These findings emphasize the potential of SCs as therapeutic platforms for activating physiological processes by autonomously producing biological drugs inside the body.


Subject(s)
Artificial Cells , Fibroblast Growth Factors , Neovascularization, Physiologic , Animals , Artificial Cells/transplantation , Cell Movement , Cell Proliferation , Collagen Type IV/metabolism , Endothelial Cells/physiology , Fibroblast Growth Factors/biosynthesis , Fibroblast Growth Factors/genetics , Humans , Mice , Protein Biosynthesis
16.
J Cell Mol Med ; 28(7): e18183, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38506078

ABSTRACT

Mechanical stress is an internal force between various parts of an object that resists external factors and effects that cause an object to deform, and mechanical stress is essential for various tissues that are constantly subjected to mechanical loads to function normally. Integrins are a class of transmembrane heterodimeric glycoprotein receptors that are important target proteins for the action of mechanical stress stimuli on cells and can convert extracellular physical and mechanical signals into intracellular bioelectrical signals, thereby regulating osteogenesis and osteolysis. Integrins play a bidirectional regulatory role in bone metabolism. In this paper, relevant literature published in recent years is reviewed and summarized. The characteristics of integrins and mechanical stress are introduced, as well as the mechanisms underlying responses of integrin to mechanical stress stimulation. The paper focuses on integrin-mediated mechanical stress in different cells involved in bone metabolism and its associated signalling mechanisms. The purpose of this review is to provide a theoretical basis for the application of integrin-mediated mechanical stress to the field of bone tissue repair and regeneration.


Subject(s)
Integrins , Signal Transduction , Integrins/metabolism , Stress, Mechanical , Signal Transduction/physiology , Cells, Cultured
17.
Cancer Metastasis Rev ; 42(2): 507-541, 2023 06.
Article in English | MEDLINE | ID: mdl-37004686

ABSTRACT

Diffuse high-grade gliomas contain some of the most dangerous human cancers that lack curative treatment options. The recent molecular stratification of gliomas by the World Health Organisation in 2021 is expected to improve outcomes for patients in neuro-oncology through the development of treatments targeted to specific tumour types. Despite this promise, research is hindered by the lack of preclinical modelling platforms capable of recapitulating the heterogeneity and cellular phenotypes of tumours residing in their native human brain microenvironment. The microenvironment provides cues to subsets of glioma cells that influence proliferation, survival, and gene expression, thus altering susceptibility to therapeutic intervention. As such, conventional in vitro cellular models poorly reflect the varied responses to chemotherapy and radiotherapy seen in these diverse cellular states that differ in transcriptional profile and differentiation status. In an effort to improve the relevance of traditional modelling platforms, recent attention has focused on human pluripotent stem cell-based and tissue engineering techniques, such as three-dimensional (3D) bioprinting and microfluidic devices. The proper application of these exciting new technologies with consideration of tumour heterogeneity and microenvironmental interactions holds potential to develop more applicable models and clinically relevant therapies. In doing so, we will have a better chance of translating preclinical research findings to patient populations, thereby addressing the current derisory oncology clinical trial success rate.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Neoplasms/pathology , Glioma/pathology , Cell Differentiation , Tumor Microenvironment
18.
Curr Issues Mol Biol ; 46(1): 585-611, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38248340

ABSTRACT

Numerous surgeries are carried out to replace tissues that have been harmed by an illness or an accident. Due to various surgical interventions and the requirement of bone substitutes, the emerging field of bone tissue engineering attempts to repair damaged tissues with the help of scaffolds. These scaffolds act as template for bone regeneration by controlling the development of new cells. For the creation of functional tissues and organs, there are three elements of bone tissue engineering that play very crucial role: cells, signals and scaffolds. For the achievement of these aims, various types of natural polymers, like chitosan, chitin, cellulose, albumin and silk fibroin, have been used for the preparation of scaffolds. Scaffolds produced from natural polymers have many advantages: they are less immunogenic as well as being biodegradable, biocompatible, non-toxic and cost effective. The hierarchal structure of bone, from microscale to nanoscale, is mostly made up of organic and inorganic components like nanohydroxyapatite and collagen components. This review paper summarizes the knowledge and updates the information about the use of natural polymers for the preparation of scaffolds, with their application in recent research trends and development in the area of bone tissue engineering (BTE). The article extensively explores the related research to analyze the advancement of nanotechnology for the treatment of bone-related diseases and bone repair.

19.
Curr Issues Mol Biol ; 46(2): 1424-1436, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38392210

ABSTRACT

Adipose stem cells (ASCs) have multilineage differentiation capacity and hold great potential for regenerative medicine. Compared to bone marrow-derived mesenchymal stem cells (bmMSCs), ASCs are easier to isolate from abundant sources with significantly higher yields. It is generally accepted that bmMSCs show age-related changes in their proliferation and differentiation potentials, whereas this aspect is still controversial in the case of ASCs. In this review, we evaluated the existing data on the effect of donor age on the osteogenic potential of human ASCs. Overall, a poor agreement has been achieved because of inconsistent findings in the previous studies. Finally, we attempted to delineate the possible reasons behind the lack of agreements reported in the literature. ASCs represent a heterogeneous cell population, and the osteogenic potential of ASCs can be influenced by donor-related factors such as age, but also gender, lifestyle, and the underlying health and metabolic state of donors. Furthermore, future studies should consider experimental factors in in vitro conditions, including passaging, cryopreservation, culture conditions, variations in differentiation protocols, and readout methods.

20.
Curr Issues Mol Biol ; 46(4): 3563-3578, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38666953

ABSTRACT

Polycaprolactone (PCL) scaffolds have demonstrated an effectiveness in articular cartilage regeneration due to their biomechanical properties. On the other hand, alginate hydrogels generate a 3D environment with great chondrogenic potential. Our aim is to generate a mixed PCL/alginate scaffold that combines the chondrogenic properties of the two biomaterials. Porous PCL scaffolds were manufactured using a modified salt-leaching method and embedded in a culture medium or alginate in the presence or absence of chondrocytes. The chondrogenic capacity was studied in vitro. Type II collagen and aggrecan were measured by immunofluorescence, cell morphology by F-actin fluorescence staining and gene expression of COL1A1, COL2A1, ACAN, COL10A1, VEGF, RUNX1 and SOX6 by reverse transcription polymerase chain reaction (RT-PCR). The biocompatibility of the scaffolds was determined in vivo using athymic nude mice and assessed by histopathological and morphometric analysis. Alginate improved the chondrogenic potential of PCL in vitro by increasing the expression of type II collagen and aggrecan, as well as other markers related to chondrogenesis. All scaffolds showed good biocompatibility in the in vivo model. The presence of cells in the scaffolds induced an increase in vascularization of the PCL/alginate scaffolds. The results presented here reinforce the benefits of the combined use of PCL and alginate for the regeneration of articular cartilage.

SELECTION OF CITATIONS
SEARCH DETAIL