Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 315
Filter
1.
J Biol Chem ; 300(2): 105643, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199574

ABSTRACT

Intestinal epithelia express two long myosin light-chain kinase (MLCK) splice variants, MLCK1 and MLCK2, which differ by the absence of a complete immunoglobulin (Ig)-like domain 3 within MLCK2. MLCK1 is preferentially associated with the perijunctional actomyosin ring at steady state, and this localization is enhanced by inflammatory stimuli including tumor necrosis factor (TNF). Here, we sought to identify MLCK1 domains that direct perijunctional MLCK1 localization and their relevance to disease. Ileal biopsies from Crohn's disease patients demonstrated preferential increases in MLCK1 expression and perijunctional localization relative to healthy controls. In contrast to MLCK1, MLCK2 expressed in intestinal epithelia is predominantly associated with basal stress fibers, and the two isoforms have distinct effects on epithelial migration and barrier regulation. MLCK1(Ig1-4) and MLCK1(Ig1-3), but not MLCK2(Ig1-4) or MLCK1(Ig3), directly bind to F-actin in vitro and direct perijunctional recruitment in intestinal epithelial cells. Further study showed that Ig1 is unnecessary, but that, like Ig3, the unstructured linker between Ig1 and Ig2 (Ig1/2us) is essential for recruitment. Despite being unable to bind F-actin or direct recruitment independently, Ig3 does have dominant negative functions that allow it to displace perijunctional MLCK1, increase steady-state barrier function, prevent TNF-induced MLCK1 recruitment, and attenuate TNF-induced barrier loss. These data define the minimal domain required for MLCK1 localization and provide mechanistic insight into the MLCK1 recruitment process. Overall, the results create a foundation for development of molecularly targeted therapies that target key domains to prevent MLCK1 recruitment, restore barrier function, and limit inflammatory bowel disease progression.


Subject(s)
Actins , Actomyosin , Humans , Actins/metabolism , Actomyosin/metabolism , Cytokinesis , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , Myosin-Light-Chain Kinase/genetics , Myosin-Light-Chain Kinase/metabolism , Myosins/metabolism , Tight Junctions/metabolism , Caco-2 Cells , Tumor Necrosis Factor-alpha/metabolism
2.
Biochem Biophys Res Commun ; 697: 149498, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38262291

ABSTRACT

Regulatory T cells (Tregs) are lymphocytes that play a central role in peripheral immune tolerance. Tregs are promising targets for the prevention and suppression of autoimmune diseases, allergies, and graft-versus-host disease, and treatments aimed at regulating their functions are being developed. In this study, we created a new modality consisting of a protein molecule that suppressed excessive immune responses by effectively and preferentially expanding Tregs. Recent studies reported that tumor necrosis factor receptor type 2 (TNFR2) expressed on Tregs is involved in the proliferation and activation of Tregs. Therefore, we created a functional immunocytokine, named TNFR2-ICK-Ig, consisting of a fusion protein of an anti-TNFR2 single-chain Fv (scFv) and a TNFR2 agonist TNF-α mutant protein, as a new modality that strongly enhances TNFR2 signaling. The formation of agonist-receptor multimerization (TNFR2 cluster) is effective for the induction of a strong TNFR2 signal, similar to the TNFR2 signaling mechanism exhibited by membrane-bound TNF. TNFR2-ICK-Ig improved the TNFR2 signaling activity and promoted TNFR2 cluster formation compared to a TNFR2 agonist TNF-α mutant protein that did not have an immunocytokine structure. Furthermore, the Treg expansion efficiency was enhanced. TNFR2-ICK-Ig promotes its effects via scFv, which crosslinks receptors whereas the agonists transmit stimulatory signals. Therefore, this novel molecule expands Tregs via strong TNFR2 signaling by the formation of TNFR2 clustering.


Subject(s)
Single-Chain Antibodies , T-Lymphocytes, Regulatory , Carrier Proteins/metabolism , Mutant Proteins/metabolism , Receptors, Tumor Necrosis Factor, Type II/genetics , Receptors, Tumor Necrosis Factor, Type II/agonists , Single-Chain Antibodies/genetics , Single-Chain Antibodies/pharmacology , Single-Chain Antibodies/metabolism , Tumor Necrosis Factor-alpha/metabolism , Humans , Animals , Mice
3.
J Autoimmun ; 145: 103189, 2024 May.
Article in English | MEDLINE | ID: mdl-38442677

ABSTRACT

OBJECTIVES: Monocyte-derived dendritic cells (DCs) are key players in the induction of inflammation, autoreactive T cell activation and loss of tolerance in rheumatoid arthritis (RA), but the precise mechanisms underlying their activation remain elusive. Here, we hypothesized that extracellular microRNAs released in RA synovial fluids may represent a novel, physiological stimulus triggering unwanted immune response via TLR8-expressing DC stimulation. METHODS: Human monocyte-derived DCs were stimulated with a mixture of GU-rich miRNAs upregulated in RA tissues and released in synovial fluids (Ex-miRNAs). Activation of DCs was assessed in terms of NF-κB activation by Western blot, cytokine production by ELISA, T cell proliferation and polarization by allogeneic mixed lymphocyte reaction. DC differentiation into osteoclasts was evaluated in terms of tartrate-resistant acid phosphatase production and formation of resorption pits in dentine slices. Induction of joint inflammation in vivo was evaluated using a murine model of DC-induced arthritis. TLR7/8 involvement was assessed by specific inhibitors. RESULTS: Ex-miRNAs activate DCs to secrete TNFα, induce joint inflammation, start an early autoimmune response and potentiate the differentiation of DCs into aggressive osteoclasts. CONCLUSIONS: This work represents a proof of concept that the pool of extracellular miRNAs overexpressed in RA joints can act as a physiological activator of inflammation via the stimulation of TLR8 expressed by human DCs, which in turn exert arthritogenic functions. In this scenario, pharmacological inhibition of TLR8 might offer a new therapeutic option to reduce inflammation and osteoclast-mediated bone destruction in RA.


Subject(s)
Arthritis, Rheumatoid , Cell Differentiation , Dendritic Cells , MicroRNAs , Osteoclasts , Toll-Like Receptor 7 , Toll-Like Receptor 8 , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , MicroRNAs/genetics , Toll-Like Receptor 8/metabolism , Osteoclasts/metabolism , Osteoclasts/immunology , Animals , Toll-Like Receptor 7/metabolism , Mice , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Synovial Fluid/immunology , Synovial Fluid/metabolism , Cells, Cultured , Female , Male
4.
Fish Shellfish Immunol ; 147: 109443, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354964

ABSTRACT

The tumor necrosis factor (TNF) receptor-associated factor (TRAF) family has been reported to be involved in many immune pathways. In a previous study, we identified 5 TRAF genes, including TRAF2, 3, 4, 6, and 7, in the bay scallop (Argopecten irradians, Air) and the Peruvian scallop (Argopecten purpuratus, Apu). Since TRAF6 is a key molecular link in the TNF superfamily, we conducted a series of studies targeting the TRAF6 gene in the Air and Apu scallops as well as their hybrid progeny, Aip (Air ♀ × Apu ♂) and Api (Apu ♀ × Air ♂). Subcellular localization assay showed that the Air-, Aip-, and Api-TRAF6 were widely distributed in the cytoplasm of the human embryonic kidney cell line (HEK293T). Additionally, dual-luciferase reporter assay revealed that among TRAF3, TRAF4, and TRAF6, only the overexpression of TRAF6 significantly activated NF-κB activity in the HEK293T cells in a dose-dependent manner. These results suggest a crucial role of TRAF6 in the immune response in Argopecten scallops. To investigate the specific immune mechanism of TRAF6 in Argopecten scallops, we conducted TRAF6 knockdown using RNA interference. Transcriptomic analyses of the TRAF6 RNAi and control groups identified 1194, 2403, and 1099 differentially expressed genes (DEGs) in the Air, Aip, and Api scallops, respectively. KEGG enrichment analyses revealed that these DEGs were primarily enriched in transport and catabolism, amino acid metabolism, peroxisome, lysosome, and phagosome pathways. Expression profiles of 28 key DEGs were confirmed by qRT-PCR assays. The results of this study may provide insights into the immune mechanisms of TRAF in Argopecten scallops and ultimately benefit scallop breeding.


Subject(s)
Pectinidae , TNF Receptor-Associated Factor 6 , Humans , Animals , TNF Receptor-Associated Factor 6/metabolism , HEK293 Cells , TNF Receptor-Associated Factor 2/metabolism , Receptors, Tumor Necrosis Factor , Pectinidae/genetics , TNF Receptor-Associated Factor 4/metabolism
5.
J Biochem Mol Toxicol ; 38(1): e23598, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38047396

ABSTRACT

Endothelial cell apoptosis driven by inflammation (TNF-α) plays a critical role in the pathogenesis of atherosclerosis, but the exact molecular mechanisms are not clearly elucidated. MicroRNA (miR)-29 families (a/b/c) take important roles in pathophysiological processes of atherosclerosis, also the underlying mechanisms have not been fully clarified. The aims are to explore whether or not miR-29 families mediate the apoptotic effects of TNF-α on endothelial cells and uncover the underlying molecular mechanisms. In this study, MTT assay and flow cytometer analysis were employed respectively to determine the proliferation and apoptosis of human umbilical vascular endothelial cells (HUVECs) under TNF-α exposure. Real-time quantitative PCR and western blot were performed to detect the levels of target RNAs and proteins/their phosphorylation in HUVECs. TNF-α could inhibit HUVEC proliferation and induce HUVEC apoptosis in a positive dose- and time-dependent manner, with a similar way of miR-29a upregulation, but no effects on miR-29b/c. Upregulation of miR-29a with its mimics enhanced the apoptotic effect of TNF-α on HUVECs, but downregulation of miR-29a using anti-miR-29a blocked up its apoptotic effect. MiR-29a inhibited the expression of PI3Kp85α and Bcl-2 and blocked up the signal transduction of PI3K/AKT/Bcl-2 axis to mediate the apoptotic effect of TNF-α on HUVECs. Mediating the inflammation-driven endothelial cell apoptosis is an important biology mechanism by which miR-29a promotes atherosclerosis and its complications. MiR-29a will be a potential diagnostic and therapeutic target for atherosclerotic cardiovascular diseases; it is worthwhile to further study.


Subject(s)
Atherosclerosis , MicroRNAs , Humans , Tumor Necrosis Factor-alpha/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis , Inflammation/metabolism , Atherosclerosis/metabolism
6.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791188

ABSTRACT

In our previous studies, a novel cryothermal therapy (CTT) was developed to induce systemic long-term anti-tumor immunity. Natural killer (NK) cells were found to play an important role in CTT-induced long-term immune-mediated tumor control at the late stage after CTT, but the underlying mechanism is unclear. Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that have potent immunosuppressive effects on T cells and weaken the long-term benefits of immunotherapy. Consequently, overcoming MDSC immunosuppression is essential for maintaining the long-term efficacy of immunotherapy. In this study, we revealed that NK cells considerably diminish MDSC accumulation at the late stage after CTT, boost T cell production, increase T cell activation, and promote MDSC maturation, culminating in Th1-dominant CD4+ T cell differentiation and enhancing NK and CD8+ T cell cytotoxicity. Additionally, NK cells activate ERK signaling in MDSCs through NKG2D-ligand interaction to increase the activity of tumor necrosis factor (TNF)-α converting enzyme (TACE)-cleaved membrane TNF-α. Furthermore, Increased TACE activity releases more soluble TNF-α from MDSCs to promote MDSC maturation. In our studies, we propose a novel mechanism by which NK cells can overcome MDSC-induced immunosuppression and maintain CTT-induced persistent anti-tumor immunity, providing a prospective therapeutic option to improve the performance of cancer immunotherapy.


Subject(s)
Killer Cells, Natural , Myeloid-Derived Suppressor Cells , NK Cell Lectin-Like Receptor Subfamily K , Tumor Necrosis Factor-alpha , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Mice , Tumor Necrosis Factor-alpha/metabolism , Mice, Inbred C57BL , Lymphocyte Activation/immunology , Cell Differentiation , Ligands , ADAM17 Protein/metabolism
7.
Biochem Biophys Res Commun ; 650: 87-95, 2023 04 02.
Article in English | MEDLINE | ID: mdl-36791546

ABSTRACT

Abnormal infiltration and activation of neutrophils play a pathogenic role in the development of lupus nephritis (LN). Myeloid-related proteins (MRPs), MRP-8 and -14, also known as the damage-associated molecular patterns (DAMPs), are mainly secreted by activated neutrophils in systemic lupus erythematosus (SLE). Mesenchymal stem cells (MSCs) regulate a variety of immune cells to treat LN, but it is not clear whether MSCs can regulate neutrophils and the expression of MRP-8/14 in LN. Here, we demonstrated that neutrophil infiltration and MRP-8/14 expression were increased in the kidney of MRL/lpr mice and both decreased after MSCs transplantation. Further, the results showed that tumor necrosis factor- (TNF) stimulated gene-6 (TSG-6) in MSCs is necessary for MSCs to inhibit MRP-8/14 expression in neutrophils and neutrophil migration. In addition, small-molecule immunosuppressant had no significant effect on the expression of MRP-8/14 in neutrophils. Therefore, our results suggest that MSCs inhibited MRP-8/14 expression and neutrophil migration by secreting TSG-6 in the treatment of LN.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Mesenchymal Stem Cells , Mice , Animals , Lupus Nephritis/pathology , Neutrophils/metabolism , Mice, Inbred MRL lpr , Lupus Erythematosus, Systemic/pathology
8.
J Transl Med ; 21(1): 485, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37475016

ABSTRACT

BACKGROUND: The nuclear factor kappa B (NFκB) regulatory pathways downstream of tumor necrosis factor (TNF) play a critical role in carcinogenesis. However, the widespread influence of NFκB in cells can result in off-target effects, making it a challenging therapeutic target. Ensemble learning is a machine learning technique where multiple models are combined to improve the performance and robustness of the prediction. Accordingly, an ensemble learning model could uncover more precise targets within the NFκB/TNF signaling pathway for cancer therapy. METHODS: In this study, we trained an ensemble learning model on the transcriptome profiles from 16 cancer types in the TCGA database to identify a robust set of genes that are consistently associated with the NFκB/TNF pathway in cancer. Our model uses cancer patients as features to predict the genes involved in the NFκB/TNF signaling pathway and can be adapted to predict the genes for different cancer types by switching the cancer type of patients. We also performed functional analysis, survival analysis, and a case study of triple-negative breast cancer to demonstrate our model's potential in translational cancer medicine. RESULTS: Our model accurately identified genes regulated by NFκB in response to TNF in cancer patients. The downstream analysis showed that the identified genes are typically involved in the canonical NFκB-regulated pathways, particularly in adaptive immunity, anti-apoptosis, and cellular response to cytokine stimuli. These genes were found to have oncogenic properties and detrimental effects on patient survival. Our model also could distinguish patients with a specific cancer subtype, triple-negative breast cancer (TNBC), which is known to be influenced by NFκB-regulated pathways downstream of TNF. Furthermore, a functional module known as mononuclear cell differentiation was identified that accurately predicts TNBC patients and poor short-term survival in non-TNBC patients, providing a potential avenue for developing precision medicine for cancer subtypes. CONCLUSIONS: In conclusion, our approach enables the discovery of genes in NFκB-regulated pathways in response to TNF and their relevance to carcinogenesis. We successfully categorized these genes into functional groups, providing valuable insights for discovering more precise and targeted cancer therapeutics.


Subject(s)
NF-kappa B , Triple Negative Breast Neoplasms , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Triple Negative Breast Neoplasms/drug therapy , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/therapeutic use , Signal Transduction/genetics , Carcinogenesis , Machine Learning
9.
BMC Pregnancy Childbirth ; 23(1): 247, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37055769

ABSTRACT

BACKGROUND: Clinical value of tumor necrosis factor (TNF) inhibitors in in vitro fertilization-embryo transfer (IVF-ET) in infertile women with polycystic ovary syndrome (PCOS) was investigated in this study. METHODS: A retrospective analysis was performed on the clinical data of 100 PCOS patients who received IVF-ET for the first time at Hebei Institute of reproductive health science and technology from January 2010 to June 2020. The patients were divided into Inhibitor group and Control group according to whether they were treated with or without TNF inhibitors. Next, the two groups were subject to comparison in terms of the days of gonadotropin (Gn) use, total dosage of Gn, trigger time, hormone level and endometrial condition on the day of human chorionic gonadotropin (HCG) injection, the effects of two different regimens on controlled ovarian hyperstimulation (COH) and pregnancy outcomes. RESULTS: There were no significant differences in baseline characteristics between the two groups, including age, duration of infertility, body mass index (BMI), ovarian volume, antral follicle count, and basal hormone levels. Compared with the Control group, the days of Gn use and trigger time of patients in the Inhibitor group were significantly shortened, and the total Gn dosage was notably reduced. In terms of sex hormone levels on the HCG injection, the Inhibitor group displayed much lower serum estradiol levels while higher serum luteinizing hormone and progesterone (P) levels than the Control group. Notably, the high-quality embryo rate was also significantly increased with the use of TNF inhibitors. However, significant differences were not observed in endometrial thickness (on the day of HCG injection), proportion of endometrial A, B and C morphology (on the day of HCG injection), cycle cancellation rate, number of oocytes retrieved, fertilization rate, and cleavage rate between the two groups. Importantly, the clinical pregnancy rate in the Inhibitor group was significantly higher than that in the Control group, but there was no significant difference in the biochemical pregnancy rate, early abortion rate, multiple birth rate, ectopic pregnancy rate and number of live births between the two groups. CONCLUSION: Collectively, after application of TNF-α inhibitor regimen, superior overall treatment effect can be observed in infertile PCOS patients receiving IVF-ET. Therefore, TNF inhibitors have certain application value in IVF-ET in infertile women with PCOS.


Subject(s)
Infertility, Female , Polycystic Ovary Syndrome , Pregnancy , Female , Humans , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/drug therapy , Infertility, Female/drug therapy , Infertility, Female/etiology , Tumor Necrosis Factor Inhibitors , Fertilization in Vitro , Retrospective Studies , Embryo Transfer , Pregnancy Rate , Chorionic Gonadotropin/therapeutic use
10.
Prep Biochem Biotechnol ; 53(10): 1288-1296, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37040146

ABSTRACT

The microbial expression system (Escherichia coli) is the most widely studied host for the production of biotherapeutic products, such as antibody fragments, single chain variable fragments and nanobodies. However, recombinant biotherapeutic proteins are often expressed as insoluble proteins, thereby limiting the utility of E. coli as expression system. To overcome this limitation, various strategies have been developed, such as changes at DNA level (codon optimization), fusion with soluble tags and variations in process parameters (temperature), and inducer concentration. However, there is no "one size fits all" strategy. The most commonly used approach involves induction at low temperature, as reducing the temperature during cultivation has been reported to increase bioactive protein production in E. coli. In this study, we examine the impact of various process parameters, such as temperature and inducer concentration, as well as, high plasmid copy number vector for achieving enhanced soluble expression of TNFα inhibitor Fab. An interaction amongst these parameters has been observed and their optimization has been demonstrated to result in expression of 30 ± 3 mg/L antibody fragment using E. coli. This case study illustrates how process optimization can contribute toward making biotherapeutics affordable.


Subject(s)
Escherichia coli , Single-Chain Antibodies , Escherichia coli/genetics , Escherichia coli/metabolism , Antibodies, Monoclonal , Periplasm/metabolism , Recombinant Proteins/metabolism , Single-Chain Antibodies/genetics
11.
J Biol Chem ; 297(4): 101156, 2021 10.
Article in English | MEDLINE | ID: mdl-34480898

ABSTRACT

In plasma, iron is normally bound to transferrin, the principal protein in blood responsible for binding and transporting iron throughout the body. However, in conditions of iron overload when the iron-binding capacity of transferrin is exceeded, non-transferrin-bound iron (NTBI) appears in plasma. NTBI is taken up by hepatocytes and other parenchymal cells via NTBI transporters and can cause cellular damage by promoting the generation of reactive oxygen species. However, how NTBI affects endothelial cells, the most proximal cell type exposed to circulating NTBI, has not been explored. We modeled in vitro the effects of systemic iron overload on endothelial cells by treating primary human umbilical vein endothelial cells (HUVECs) with NTBI (ferric ammonium citrate [FAC]). We showed by RNA-Seq that iron loading alters lipid homeostasis in HUVECs by inducing sterol regulatory element-binding protein 2-mediated cholesterol biosynthesis. We also determined that FAC increased the susceptibility of HUVECs to apoptosis induced by tumor necrosis factor-α (TNFα). Moreover, we showed that cholesterol biosynthesis contributes to iron-potentiated apoptosis. Treating HUVECs with a cholesterol chelator hydroxypropyl-ß-cyclodextrin demonstrated that depletion of cholesterol was sufficient to rescue HUVECs from TNFα-induced apoptosis, even in the presence of FAC. Finally, we showed that FAC or cholesterol treatment modulated the TNFα pathway by inducing novel proteolytic processing of TNFR1 to a short isoform that localizes to lipid rafts. Our study raises the possibility that iron-mediated toxicity in human iron overload disorders is at least in part dependent on alterations in cholesterol metabolism in endothelial cells, increasing their susceptibility to apoptosis.


Subject(s)
Apoptosis/drug effects , Cholesterol/biosynthesis , Ferric Compounds/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Iron/metabolism , Quaternary Ammonium Compounds/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Humans , Iron Overload/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
J Biol Chem ; 297(4): 101102, 2021 10.
Article in English | MEDLINE | ID: mdl-34419446

ABSTRACT

CD27 is a tumor necrosis factor (TNF) receptor, which stimulates lymphocytes and promotes their differentiation upon activation by TNF ligand CD70. Activation of the CD27 receptor provides a costimulatory signal to promote T cell, B cell, and NK cell activity to facilitate antitumor and anti-infection immunity. Aberrant increased and focused expression of CD70 on many tumor cells renders CD70 an attractive therapeutic target for direct tumor killing. However, despite their use as drug targets to treat cancers, the molecular basis and atomic details of CD27 and CD70 interaction remain elusive. Here we report the crystal structure of human CD27 in complex with human CD70. Analysis of our structure shows that CD70 adopts a classical TNF ligand homotrimeric assembly to engage CD27 receptors in a 3:3 stoichiometry. By combining structural and rational mutagenesis data with reported disease-correlated mutations, we identified the key amino acid residues of CD27 and CD70 that control this interaction. We also report increased potency for plate-bound CD70 constructs compared with solution-phase ligand in a functional activity to stimulate T-cells in vitro. These findings offer new mechanistic insight into this critical costimulatory interaction.


Subject(s)
CD27 Ligand/chemistry , Multiprotein Complexes/chemistry , Tumor Necrosis Factor Receptor Superfamily, Member 7/chemistry , CD27 Ligand/genetics , CD27 Ligand/immunology , Crystallography, X-Ray , Humans , Multiprotein Complexes/genetics , Multiprotein Complexes/immunology , Protein Structure, Quaternary , T-Lymphocytes/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
13.
J Biol Chem ; 296: 100400, 2021.
Article in English | MEDLINE | ID: mdl-33571521

ABSTRACT

The Hippo pathway is an evolutionarily conserved signaling pathway that controls organ size in animals via the regulation of cell proliferation and apoptosis. It consists of a kinase cascade, in which MST1/2 and MAP4Ks phosphorylate and activate LATS1/2, which in turn phosphorylate and inhibit YAP/TAZ activity. A variety of signals can modulate LATS1/2 kinase activity to regulate Hippo pathway. However, the full mechanistic details of kinase-mediated regulation of Hippo pathway signaling remain elusive. Here, we report that TNF activates LATS1/2 and inhibits YAP/TAZ activity through MEKK2/3. Furthermore, MEKK2/3 act in parallel to MST1/2 and MAP4Ks to regulate LATS1/2 and YAP/TAZ in response to various signals, such as serum and actin dynamics. Mechanistically, we show that MEKK2/3 interact with LATS1/2 and YAP/TAZ and phosphorylate them. In addition, Striatin-interacting phosphatase and kinase (STRIPAK) complex associates with MEKK3 via CCM2 and CCM3 to inactivate MEKK3 kinase activity. Upstream signals of Hippo pathway trigger the dissociation of MEKK3 from STRIPAK complex to release MEKK3 activity. Our work has uncovered a previous unrecognized regulation of Hippo pathway via MEKK2/3 and provides new insights into molecular mechanisms for the interplay between Hippo-YAP and NF-κB signaling and the pathogenesis of cerebral cavernous malformations.


Subject(s)
Cell Cycle Proteins/metabolism , MAP Kinase Kinase Kinase 2/metabolism , MAP Kinase Kinase Kinase 3/metabolism , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Cell Proliferation/physiology , Cells, Cultured , Hippo Signaling Pathway , Humans , Mice , Phosphorylation , Signal Transduction/physiology
14.
Mol Med ; 28(1): 135, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36401167

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a complex autoimmune disease with multiple etiological factors, among which aberrant memory CD4 T cells activation plays a key role in the initiation and perpetuation of the disease. SIGIRR (single immunoglobulin IL-1R-related receptor), a member of the IL-1 receptor (ILR) family, acts as a negative regulator of ILR and Toll-like receptor (TLR) downstream signaling pathways and inflammation. The aim of this study was to investigate the potential roles of SIGIRR on memory CD4 T cells in RA and the underlying cellular and molecular mechanisms. METHODS: Single-cell transcriptomics and bulk RNA sequencing data were integrated to predict SIGIRR gene distribution on different immune cell types of human PBMCs. Flow cytometry was employed to determine the differential expression of SIGIRR on memory CD4 T cells between the healthy and RA cohorts. A Spearman correlation study was used to determine the relationship between the percentage of SIGIRR+ memory CD4 T cells and RA disease activity. An AIA mouse model (antigen-induced arthritis) and CD4 T cells transfer experiments were performed to investigate the effect of SIGIRR deficiency on the development of arthritis in vivo. Overexpression of SIGIRR in memory CD4 T cells derived from human PBMCs or mouse spleens was utilized to confirm the roles of SIGIRR in the intracellular cytokine production of memory CD4 T cells. Immunoblots and RNA interference were employed to understand the molecular mechanism by which SIGIRR regulates TNF-α production in CD4 T cells. RESULTS: SIGIRR was preferentially distributed by human memory CD4 T cells, as revealed by single-cell RNA sequencing. SIGIRR expression was substantially reduced in RA patient-derived memory CD4 T cells, which was inversely associated with RA disease activity and related to enhanced TNF-α production. SIGIRR-deficient mice were more susceptible to antigen-induced arthritis (AIA), which was attributed to unleashed TNF-α production in memory CD4 T cells, confirmed by decreased TNF-α production resulting from ectopic expression of SIGIRR. Mechanistically, SIGIRR regulates the IL-1/C/EBPß/TNF-α signaling axis, as established by experimental evidence and cis-acting factor bioinformatics analysis. CONCLUSION: Taken together, SIGIRR deficiency in memory CD4 T cells in RA raises the possibility that receptor induction can target key abnormalities in T cells and represents a potentially novel strategy for immunomodulatory therapy.


Subject(s)
Arthritis, Rheumatoid , Tumor Necrosis Factor-alpha , Humans , Mice , Animals , CD4-Positive T-Lymphocytes/metabolism , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , Signal Transduction/physiology , Arthritis, Rheumatoid/genetics
15.
Mol Biol Rep ; 49(3): 2303-2309, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35076845

ABSTRACT

Global vaccination effort and better understanding of treatment strategies provided a ray of hope for improvement in COVID-19 pandemic, however, in many countries, the disease continues to collect its death toll. The major pathogenic mechanism behind severe cases associated with high mortality is the burst of pro-inflammatory cytokines TNF, IL-6, IFNγ and others, resulting in multiple organ failure. Although the exact contribution of each cytokine is not clear, we provide an evidence that the central mediator of cytokine storm and its devastating consequences may be TNF. This cytokine is known to be involved in activated blood clotting, lung damage, insulin resistance, heart failure, and other conditions. A number of currently available pharmaceutical agents such as monoclonal antibodies and soluble TNF receptors can effectively prevent TNF from binding to its receptor(s). Other drugs are known to block NFkB, the major signal transducer molecule used in TNF signaling, or to block kinases involved in downstream activation cascades. Some of these medicines have already been selected for clinical trials, but more work is needed. A simple, rapid, and inexpensive method of directly monitoring TNF levels may be a valuable tool for a timely selection of COVID-19 patients for anti-TNF therapy.


Subject(s)
COVID-19 Drug Treatment , Cytokine Release Syndrome/drug therapy , Pandemics , SARS-CoV-2 , Tumor Necrosis Factor Inhibitors/therapeutic use , Biomarkers , COVID-19/complications , COVID-19/metabolism , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/prevention & control , Drug Repositioning , Humans , Interleukin-6/metabolism , Multiple Organ Failure/etiology , Multiple Organ Failure/prevention & control , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Patient Selection , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction/drug effects , Tumor Necrosis Factor Inhibitors/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/physiology
16.
Mol Biol Rep ; 49(1): 19-29, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34820749

ABSTRACT

BACKGROUND: The tumor necrosis factor (TNF)-related apoptosis-inducing ligand, TRAIL, an apoptosis-inducing cytokine, has attracted much attention in the treatment of cancer for its selective toxicity to malignant rather than normal cells. However, the apoptosis-inducing ability of TRAIL is weaker than expected primarily due to cancer cell resistance. As one of the dietary flavonoids, kaempferol, has been shown to be antiproliferative and might have a protective effect against TRAIL resistance, particularly for hematologic malignancies. METHODS AND RESULTS: Here, we studied the potential of kaempferol to enhance the TRAIL-induced cytotoxicity and apoptosis in human chronic myelogenous leukemia (CML) cell line K-562, as well as the expression of specific genes with impact on TRAIL signal regulation. Analysis of flowcytometry data showed that treatment with kaempferol did enhance sensitivity of CML cells to pro-apoptotic effects of anti-TRAIL antibody. Although the gene expression levels were heterogeneous, cFLIP, cIAP1 and cIAP2 expression were generally downregulated where co-treatment of kaempferol and TRAIL was employed and these effects appeared to be dose-dependent. We further demonstrated that the expression of death receptors 4 and 5 tended to increase subsequent to the combination treatment. CONCLUSIONS: Consequently, it is reasonable to conclude that sensitization of chronic leukemia cells to TRAIL by kaempferol in vitro should be considered as a way of focusing clinical attention on leukemia therapy.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Kaempferols/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Baculoviral IAP Repeat-Containing 3 Protein/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inhibitor of Apoptosis Proteins/genetics , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Ubiquitin-Protein Ligases/genetics
17.
Mol Biol Rep ; 49(10): 9903-9913, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35759082

ABSTRACT

The immune system interacts with cancer cells in multiple intricate ways that can shield the host against hyper-proliferation but can also contribute to malignancy. Understanding the protective roles of the immune system in its interaction with cancer cells can help device new and alternate therapeutic strategies. Many immunotherapeutic methodologies, including adaptive cancer therapy, cancer peptide vaccines, monoclonal antibodies, and immune checkpoint treatment, have transformed the traditional cancer treatment landscape. However, many questions remain unaddressed. The development of personalized combination therapy and neoantigen-based cancer vaccines would be the avant-garde approach to cancer treatment. Desirable chemotherapy should be durable, safe, and target-specific. Managing both tumor (intrinsic factors) and its microenvironment (extrinsic factors) are critical for successful immunotherapy. This review describes current approaches and their advancement related to monoclonal antibody-related clinical trials, new cytokine therapy, a checkpoint inhibitor, adoptive T cell therapy, cancer vaccine, and oncolytic virus.


Subject(s)
Cancer Vaccines , Neoplasms , Antibodies, Monoclonal/therapeutic use , Cancer Vaccines/therapeutic use , Cytokines , Humans , Immunologic Factors , Immunotherapy/methods , Immunotherapy, Adoptive , Neoplasms/drug therapy , Tumor Microenvironment
18.
Int J Mol Sci ; 23(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36012570

ABSTRACT

Tumor necrosis factor (TNF)-α is a pleiotropic cytokine implicated in the etiology of several autoimmune diseases, including rheumatoid arthritis (RA). TNF-α regulates diverse effector functions through the activation of TNF-α receptor (TNFR)1 and TNFR2. Although the detrimental role of this cytokine has been addressed in distinct disease settings, the effects of TNF-α on cytokine production by isolated CD4+ T helper type 1 (Th1) and Th17 cells, two T cell subpopulations that contribute to the pathogenesis of RA, have not been completely elucidated. Here, we show that TNF-α promotes a reduction and expansion in the frequency of both T cell subsets producing IFN-γ and IL-17, respectively. Selective blockade of TNFR1 or TNFR2 on Th1 and Th17 cells revealed that TNFR2 mediates the decrease in IFN-γ production, while signaling through both receptors augments IL-17 production. We also demonstrate that Th1, but not Th17 cells from RA patients present lower levels of TNFR1 compared to healthy controls, whereas TNFR2 expression on both T cell types is similar between patients and controls. Since TNF-α receptors levels in RA patients are not significantly changed by the therapeutic blockade of TNF-α, we propose that targeting TNFR2 may represent an alternative strategy to normalize the levels of key cytokines that contribute to RA pathogenesis.


Subject(s)
Arthritis, Rheumatoid , Receptors, Tumor Necrosis Factor, Type II , Receptors, Tumor Necrosis Factor, Type I , Th1 Cells , Th17 Cells , Arthritis, Rheumatoid/metabolism , Cytokines/metabolism , Humans , Interleukin-17 , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Tumor Necrosis Factor-alpha/metabolism
19.
Int J Mol Sci ; 23(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35456966

ABSTRACT

Parkinson's disease (PD) is caused by abnormal accumulation of α-synuclein in dopaminergic neurons of the substantia nigra, which subsequently causes motor symptoms. Neuroinflammation plays a vital role in the pathogenesis of neurodegeneration in PD. This neuroinflammatory neurodegeneration involves the activation of microglia, upregulation of proinflammatory factors, and gut microbiota. In this review, we summarized the recent findings on detection of PD by using inflammatory biomarkers, such as interleukin (IL)-1ß, IL-2, IL-6, IL-10, tumor necrosis factor (TNF)-α; regulated upon activation, normal T cell expressed and presumably secreted (RANTES) and high-sensitivity c-reactive protein (hsCRP); and radiotracers such as [11C]PK11195 and [18F]-FEPPA, as well as by monitoring disease progression and the treatment response. Many PD-causing mutations in SNCA, LRRK2, PRKN, PINK1, and DJ-1 are also associated with neuroinflammation. Several anti-inflammatory medications, including nonsteroidal anti-inflammatory drugs (NSAID), inhibitors of TNF-α and NLR family pyrin domain containing 3 (NLRP3), agonists of nuclear factor erythroid 2-related factor 2 (NRF2), peroxisome proliferator-activated receptor gamma (PPAR-γ), and steroids, have demonstrated neuroprotective effects in in vivo or in vitro PD models. Clinical trials applying objective biomarkers are required to investigate the therapeutic potential of anti-inflammatory medications for PD.


Subject(s)
Parkinson Disease , Animals , Anti-Inflammatory Agents/pharmacology , Biomarkers/metabolism , Disease Models, Animal , Dopaminergic Neurons/metabolism , Humans , Mice , Mice, Inbred C57BL , Microglia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroinflammatory Diseases , Parkinson Disease/metabolism
20.
Toxicol Mech Methods ; 32(3): 224-232, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34651546

ABSTRACT

Atopic dermatitis (AD) is characterized by progressive skin inflammation. In addition, sulforaphane is an isothiocyanate organosulfur compound from cruciferous vegetables. Sulforaphane was reported to ameliorate inflammatory responses. Therefore, this study was conducted to evaluate the protective effects of sulforaphane in AD through affecting the balance between pro-inflammatory and anti-inflammatory cytokines and to evaluate its effect on AD-induced activation of the apoptotic pathway. The method of repeated rubbing of 2,4-dinitrochlorobenzene (DNCB) on shaved dorsal skin and ears of mice was used for induction of AD. After the development of AD, part of the mice was injected with 1 mg/kg sulforaphane, subcutaneously three times weekly. Samples of skin were isolated for assessment of gene and protein expression of 8-hydroxy2'-deoxyguanosine, IgE, NFκB, TNF-α, IL-1ß, IL-4, IL-10, Nrf2, and caspase-3. In addition, skin sections from different groups were stained with anti-caspase-3 antibodies. Mice in the AD group were characterized by increased gene and protein expression of 8-hydroxy2'-deoxyguanosine, IgE, NFκB, TNF-α, IL-1ß, and caspase-3 associated with reduced expression of Nrf2, IL-4, and IL-10. Treatment of AD mice with sulforaphane significantly reduced the number of scratches, dermatitis score, and ear thickness. In addition, sulforaphane significantly attenuated the gene and protein expressions produced by AD. Therefore, sulforaphane alleviated AD induced in mice through inhibition of oxidative stress, oxidative DNA damage, inflammation, and apoptosis. HIGHLIGHTSAtopic dermatitis is a chronic relapsing inflammatory disease.Sulforaphane is an isothiocyanate organosulfur compound obtained from cruciferous vegetables.Sulforaphane alleviated AD induced in mice.Sulforaphane inhibits oxidative stress, oxidative DNA damage, inflammation, and apoptosis.


Subject(s)
Dermatitis, Atopic , Animals , Apoptosis , Cytokines/metabolism , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Disease Models, Animal , Inflammation/metabolism , Isothiocyanates/metabolism , Isothiocyanates/therapeutic use , Isothiocyanates/toxicity , Mice , Mice, Inbred BALB C , Skin , Sulfoxides
SELECTION OF CITATIONS
SEARCH DETAIL