Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(26): e2316438121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38900799

ABSTRACT

Phase transitions occurring in nonequilibrium conditions can evolve through high-energy intermediate states inaccessible via equilibrium adiabatic conditions. Because of the subtle nature of such hidden phases, their direct observation is extremely challenging and requires simultaneous visualization of matter at subpicoseconds and subpicometer scales. Here, we show that a magnetite crystal in the vicinity of its metal-to-insulator transition evolves through different hidden states when controlled via energy-tuned ultrashort laser pulses. By directly monitoring magnetite's crystal structure with ultrafast electron diffraction, we found that upon near-infrared (800 nm) excitation, the trimeron charge/orbital ordering pattern is destroyed in favor of a phase-separated state made of cubic-metallic and monoclinic-insulating regions. On the contrary, visible light (400 nm) activates a photodoping charge transfer process that further promotes the long-range order of the trimerons by stabilizing the charge density wave fluctuations, leading to the reinforcement of the monoclinic insulating phase. Our results demonstrate that magnetite's structure can evolve through completely different metastable hidden phases that can be reached long after the initial excitation has relaxed, breaking ground for a protocol to control emergent properties of matter.

2.
Proc Natl Acad Sci U S A ; 119(4)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35074922

ABSTRACT

Under the irradiation of an ultrafast intense laser, solid materials can be driven into nonequilibrium states undergoing an ultrafast solid-liquid phase transition. Understanding such nonequilibrium states is essential for scientific research and industrial applications because they exist in various processes including laser fusion and laser machining yet challenging in the sense that high resolution and single-shot capability are required for the measurements. Herein, an ultrafast diffraction technique with megaelectron-volt (MeV) electrons is used to resolve the atomic pathway over the entire laser-induced ultrafast melting process, from the initial loss of long-range order and the formation of high-density liquid to the progressive evolution of short-range order and relaxation into the metastable low-density liquid state. High-resolution measurements using electron pulse compression and a time-stamping technique reveal a coherent breathing motion of polyhedral clusters in transient liquid aluminum during the ultrafast melting process, as indicated by the oscillation of the interatomic distance between the center atom and atoms in the nearest-neighbor shell. Furthermore, contraction of interatomic distance was observed in a superheated liquid state with temperatures up to 6,000 K. The results provide an atomic view of melting accompanied with internal pressure relaxation and are critical for understanding the structures and properties of matter under extreme conditions.

3.
Proc Natl Acad Sci U S A ; 119(15): e2122793119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35385356

ABSTRACT

Crystallography is the standard for determining the atomic structure of molecules. Unfortunately, many interesting molecules, including an extensive array of biological macromolecules, do not form crystals. While ultrashort and intense X-ray pulses from free-electron lasers are promising for imaging single isolated molecules with the so-called "diffraction before destruction" technique, nanocrystals are still needed for producing sufficient scattering signal for structure retrieval as implemented in serial femtosecond crystallography. Here, we show that a femtosecond laser pulse train may be used to align an ensemble of isolated molecules to a high level transiently, such that the diffraction pattern from the highly aligned molecules resembles that of a single molecule, allowing one to retrieve its atomic structure with a coherent diffraction imaging technique. In our experiment with CO2 molecules, a high degree of alignment is maintained for about 100 fs, and a precisely timed ultrashort relativistic electron beam from a table-top instrument is used to record the diffraction pattern within that duration. The diffraction pattern is further used to reconstruct the distribution of CO2 molecules with atomic resolution. Our results mark a significant step toward imaging noncrystallized molecules with atomic resolution and open opportunities in the study and control of dynamics in the molecular frame that provide information inaccessible with randomly oriented molecules.

4.
Nano Lett ; 24(20): 6031-6037, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717626

ABSTRACT

Manipulating the polarization of light at the nanoscale is key to the development of next-generation optoelectronic devices. This is typically done via waveplates using optically anisotropic crystals, with thicknesses on the order of the wavelength. Here, using a novel ultrafast electron-beam-based technique sensitive to transient near fields at THz frequencies, we observe a giant anisotropy in the linear optical response in the semimetal WTe2 and demonstrate that one can tune the THz polarization using a 50 nm thick film, acting as a broadband wave plate with thickness 3 orders of magnitude smaller than the wavelength. The observed circular deflections of the electron beam are consistent with simulations tracking the trajectory of the electron beam in the near field of the THz pulse. This finding offers a promising approach to enable atomically thin THz polarization control using anisotropic semimetals and defines new approaches for characterizing THz near-field optical response at far-subwavelength length scales.

5.
Nano Lett ; 23(6): 2287-2294, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36898060

ABSTRACT

Strong coupling between light and mechanical strain forms the foundation for next-generation optical micro- and nano-electromechanical systems. Such optomechanical responses in two-dimensional materials present novel types of functionalities arising from the weak van der Waals bond between atomic layers. Here, by using structure-sensitive megaelectronvolt ultrafast electron diffraction, we report the experimental observation of optically driven ultrafast in-plane strain in the layered group IV monochalcogenide germanium sulfide (GeS). Surprisingly, the photoinduced structural deformation exhibits strain amplitudes of order 0.1% with a 10 ps fast response time and a significant in-plane anisotropy between zigzag and armchair crystallographic directions. Rather than arising due to heating, experimental and theoretical investigations suggest deformation potentials caused by electronic density redistribution and converse piezoelectric effects generated by photoinduced electric fields are the dominant contributors to the observed dynamic anisotropic strains. Our observations define new avenues for ultrafast optomechanical control and strain engineering within functional devices.

6.
Nano Lett ; 23(23): 10772-10778, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37988604

ABSTRACT

Freestanding films provide a versatile platform for materials engineering thanks to additional structural motifs not found in films with a substrate. A ubiquitous example is wrinkles, yet little is known about how they can develop over as fast as a few picoseconds due to a lack of experimental probes to visualize their dynamics in real time on the nanoscopic scale. Here, we use time-resolved electron diffraction to directly observe light-activated wrinkling formation in freestanding La2/3Ca1/3MnO3 films. Via a "lock-in" analysis of oscillations in the diffraction peak position, intensity, and width, we quantitatively reconstructed how wrinkles develop on the time scale of lattice vibration. Contrary to the common assumption of fixed boundary conditions, we found that wrinkle development is associated with ultrafast delamination at the film boundaries. Our work provides a generic protocol to quantify wrinkling dynamics in freestanding films and highlights the importance of the film-substrate interaction in determining the properties of freestanding structures.

7.
Nano Lett ; 23(7): 2578-2585, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36972411

ABSTRACT

A thorough understanding of the photocarrier relaxation dynamics in semiconductor quantum dots (QDs) is essential to optimize their device performance. However, resolving hot carrier kinetics under high excitation conditions with multiple excitons per dot is challenging because it convolutes several ultrafast processes, including Auger recombination, carrier-phonon scattering, and phonon thermalization. Here, we report a systematic study of the lattice dynamics induced by intense photoexcitation in PbSe QDs. By probing the dynamics from the lattice perspective using ultrafast electron diffraction together with modeling the correlated processes collectively, we can differentiate their roles in photocarrier relaxation. The results reveal that the observed lattice heating time scale is longer than that of carrier intraband relaxation obtained previously using transient optical spectroscopy. Moreover, we find that Auger recombination efficiently annihilates excitons and speeds up lattice heating. This work can be readily extended to other semiconductor QDs systems with varying dot sizes.

8.
Nano Lett ; 23(7): 2677-2686, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36917456

ABSTRACT

MXenes have the potential for efficient light-to-heat conversion in photothermal applications. To effectively utilize MXenes in such applications, it is important to understand the underlying nonequilibrium processes, including electron-phonon and phonon-phonon couplings. Here, we use transient electron and X-ray diffraction to investigate the heating and cooling of photoexcited MXenes at femtosecond to nanosecond time scales. Our results show extremely strong electron-phonon coupling in Ti3C2-based MXenes, resulting in lattice heating within a few hundred femtoseconds. We also systematically study heat dissipation in MXenes with varying film thicknesses, chemical surface terminations, flake sizes, and annealing conditions. We find that the thermal boundary conductance (TBC) governs the thermal relaxation in films thinner than the optical penetration depth. We achieve a 2-fold enhancement of the TBC, reaching 20 MW m-2 K-1, by controlling the flake size or chemical surface termination, which is promising for engineering heat dissipation in photothermal and thermoelectric applications of the MXenes.

9.
Annu Rev Phys Chem ; 73: 21-42, 2022 04 20.
Article in English | MEDLINE | ID: mdl-34724395

ABSTRACT

Photoexcited molecules convert light into chemical and mechanical energy through changes in electronic and nuclear structure that take place on femtosecond timescales. Gas phase ultrafast electron diffraction (GUED) is an ideal tool to probe the nuclear geometry evolution of the molecules and complements spectroscopic methods that are mostly sensitive to the electronic state. GUED is a weak and passive probing tool that does not alter the molecular properties during the probing process and is sensitive to the spatial distribution of charge in the molecule, including both electrons and nuclei. Improvements in temporal resolution have enabled GUED to capture coherent nuclear motions in molecules in the excited and ground electronic states with femtosecond and subangstrom resolution. Here we present the basic theory of GUED and explain what information is encoded in the diffraction signal, review how GUED has been used to observe coherent structural dynamics in recent experiments, and discuss the advantages and limitations of the method.


Subject(s)
Electrons , Gases
10.
Sensors (Basel) ; 23(17)2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37687911

ABSTRACT

Ultrafast electron diffraction (UED) is a powerful tool for observing the evolution of transient structures at the atomic level. However, temporal resolution is a huge challenge for UEDs, mainly depending on the pulse duration. Unfortunately, the Coulomb force between electrons causes the pulse duration to increase continually when propagating, reducing the temporal resolution. In this paper, we theoretically design a radio frequency (RF) compression cavity using the finite-element method of electromagnetic-thermal coupling to overcome this limitation and obtain a high-brightness, short-pulse-duration, and stable electron beam. In addition, the cavity's size parameters are optimized, and a water-cooling system is designed to ensure stable operation. To the best of our knowledge, this is the first time that the electromagnetic-thermal coupling method has been used to study the RF cavity applied to UED. The results show that the RF cavity operates in TM010 mode with a resonant frequency of 2970 MHz and generates a resonant electric field. This mode of operation generates an electric field that varies periodically and transiently, compressing the electronic pulse duration. The electromagnetic-thermal coupling method proposed in this study effectively improves the temporal resolution of UED.

11.
Nano Lett ; 21(14): 6171-6178, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34279103

ABSTRACT

We combine ultrafast electron diffuse scattering experiments and first-principles calculations of the coupled electron-phonon dynamics to provide a detailed momentum-resolved picture of lattice thermalization in black phosphorus. The measurements reveal the emergence of highly anisotropic nonthermal phonon populations persisting for several picoseconds after exciting the electrons with a light pulse. Ultrafast dynamics simulations based on the time-dependent Boltzmann formalism are supplemented by calculations of the structure factor, defining an approach to reproduce the experimental signatures of nonequilibrium structural dynamics. The combination of experiments and theory enables us to identify highly anisotropic electron-phonon scattering processes as the primary driving force of the nonequilibrium lattice dynamics in black phosphorus. Our approach paves the way toward unravelling and controlling microscopic energy flows in two-dimensional materials and van der Waals heterostructures, and may be extended to other nonequilibrium phenomena involving coupled electron-phonon dynamics such as superconductivity, phase transitions, or polaron physics.

12.
Nano Lett ; 21(19): 8051-8057, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34529439

ABSTRACT

Vertically stacked transition metal dichalcogenide-graphene heterostructures provide a platform for novel optoelectronic applications with high photoresponse speeds. Photoinduced nonequilibrium carrier and lattice dynamics in such heterostructures underlie these applications but have not been understood. In particular, the dependence of these photoresponses on the twist angle, a key tuning parameter, remains elusive. Here, using ultrafast electron diffraction, we report the simultaneous visualization of charge transfer and electron-phonon coupling in MoS2-graphene heterostructures with different stacking configurations. We find that the charge transfer timescale from MoS2 to graphene varies strongly with twist angle, becoming faster for smaller twist angles, and show that the relaxation timescale is significantly shorter in a heterostructure as compared to a monolayer. These findings illustrate that twist angle constitutes an additional tuning knob for interlayer charge transfer in heterobilayers and deepen our understanding of fundamental photophysical processes in heterostructures, of importance for future applications in optoelectronics and light harvesting.

13.
Nano Lett ; 19(8): 4981-4989, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31260315

ABSTRACT

The light-induced selective population of short-lived far-from-equilibrium vibration modes is a promising approach for controlling ultrafast and irreversible structural changes in functional nanomaterials. However, this requires a detailed understanding of the dynamics and evolution of these phonon modes and their coupling to the excited-state electronic structure. Here, we combine femtosecond mega-electronvolt electron diffraction experiments on a prototypical layered material, MoTe2, with non-adiabatic quantum molecular dynamics simulations and ab initio electronic structure calculations to show how non-radiative energy relaxation pathways for excited electrons can be tuned by controlling the optical excitation energy. We show how the dominant intravalley and intervalley scattering mechanisms for hot and band-edge electrons leads to markedly different transient phonon populations evident in electron diffraction patterns. This understanding of how tuning optical excitations affect phonon populations and atomic motion is critical for efficiently controlling light-induced structural transitions of optoelectronic devices.

14.
Proc Natl Acad Sci U S A ; 113(43): E6555-E6561, 2016 10 25.
Article in English | MEDLINE | ID: mdl-27791028

ABSTRACT

Here, using ultrafast electron crystallography (UEC), we report the observation of rippling dynamics in suspended monolayer graphene, the prototypical and most-studied 2D material. The high scattering cross-section for electron/matter interaction, the atomic-scale spatial resolution, and the ultrafast temporal resolution of UEC represent the key elements that make this technique a unique tool for the dynamic investigation of 2D materials, and nanostructures in general. We find that, at early time after the ultrafast optical excitation, graphene undergoes a lattice expansion on a time scale of 5 ps, which is due to the excitation of short-wavelength in-plane acoustic phonon modes that stretch the graphene plane. On a longer time scale, a slower thermal contraction with a time constant of 50 ps is observed and associated with the excitation of out-of-plane phonon modes, which drive the lattice toward thermal equilibrium with the well-known negative thermal expansion coefficient of graphene. From our results and first-principles lattice dynamics and out-of-equilibrium relaxation calculations, we quantitatively elucidate the deformation dynamics of the graphene unit cell.

15.
Adv Sci (Weinh) ; : e2400919, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976563

ABSTRACT

Metal-semiconductor interfaces are crucial components of optoelectronic and electrical devices, the performance of which hinges on intricate dynamics involving charge transport and mechanical interaction at the interface. Nevertheless, structural changes upon photoexcitation and subsequent carrier transportation at the interface, which crucially impact hot carrier stability and lifetime, remain elusive. To address this long-standing problem, they investigated the electron dynamics and resulting structural changes at the Au/TiO2 interface using ultrafast electron diffraction (UED). The analysis of the UED data reveals that interlayer electron transfer from metal to semiconductor generates a strong coupling between the two layers, offering a new way for ultrafast heat transfer through the interface and leading to a coherent structural vibration that plays a critical role in propagating mechanical stress. These findings provide insights into the relationship between electron transfer and interfacial mechanical and thermal properties.

16.
Microscopy (Oxf) ; 72(1): 2-17, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36269108

ABSTRACT

Electron microscopy and diffraction with ultrashort pulsed electron beams are capable of imaging transient phenomena with the combined ultrafast temporal and atomic-scale spatial resolutions. The emerging field of optical electron beam control allowed the manipulation of relativistic and sub-relativistic electron beams at the level of optical cycles. Specifically, it enabled the generation of electron beams in the form of attosecond pulse trains and individual attosecond pulses. In this review, we describe the basics of the attosecond electron beam control and overview the recent experimental progress. High-energy electron pulses of attosecond sub-optical cycle duration open up novel opportunities for space-time-resolved imaging of ultrafast chemical and physical processes, coherent photon generation, free electron quantum optics, electron-atom scattering with shaped wave packets and laser-driven particle acceleration. Graphical Abstract.

17.
Ultramicroscopy ; 234: 113485, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35151041

ABSTRACT

We report a method for measuring spot size and focusing conditions of the femtosecond (fs) excitation laser in situ at the specimen location in 4D ultrafast electron microscopy (UEM). The method makes use of threshold laser ablation behaviors of thin amorphous carbon membranes. For Gaussian beam profiles and for ablation threshold fluence values, we analytically derive expressions describing the relationship between ablated hole size and the actual laser spot size. Using these expressions, we developed experimental procedures for characterizing the shape and spot size of the pump beam at the specimen. We demonstrate the viability of the approach for incident excitation wavelengths of 343 nm and 515 nm, thus illustrating the applicability of the method to a range of optical wavelengths without modification. Further, we show that by measuring ablated hole size as a function of focusing condition, a full metrological characterization of the Gaussian beam propagation properties can be performed. Finally, we find good agreement for spot sizes determined with this method and with those determined by extrapolation from measurements taken outside the microscope column. Overall, this method is a simple, cost-effective means for accurate and precise determination of key pump-beam parameters in situ at the specimen location in UEM experiments.

18.
ACS Nano ; 16(7): 11124-11135, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35793703

ABSTRACT

The microscopic arrangement of atoms and molecules is the determining factor in how materials behave and perform; i.e., the structure determines the property, a traditional paradigm in materials science. Photoexcitation-driven manipulation of the crystal structure and associated electronic properties in quantum materials provides opportunities for the exploration of exotic physics and practical applications; however, a generalized mechanism for such symmetry engineering is absent. Here, by ultrafast electron diffraction, structure factor calculation, and TDDFT-MD simulations, we report the photoinduced concurrent intralayer and interlayer structural transitions in the Td and 1T' phases of XTe2 (X = Mo, W). We discuss the modification of multiple quantum electronic states associated with the intralayer and interlayer structural transitions, such as the topological band inversion and the higher-order topological state. The twin structures and the stacking faults in XTe2 are also identified by ultrafast structural responses. The comprehensive study of the ultrafast structural response in XTe2 suggests the traversal of all double-well potential energy surfaces (DWPES) by laser excitation, which is expected to be an intrinsic mechanism in the field of photoexcitation-driven global/local symmetry engineering and also a critical ingredient inducing the exotic properties in the non-equilibrium state in a large number of material systems.

19.
Ultramicroscopy ; 230: 113389, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34530284

ABSTRACT

Integral to the exploration of nonequilibrium phenomena in solid-state systems is the study of lattice motion after photoexcitation by a femtosecond laser pulse. For the past two decades, ultrafast electron diffraction (UED) has played a critical role in this regard. Despite remarkable progress in instrumental development, this technique is still bottlenecked by a demanding sample preparation process, where ultrathin single crystals of large lateral size are typically required. In this work, we describe an efficient, versatile method that yields high-quality, laterally extended (≥ 100 µm), and thin (≤ 50 nm) single crystals on amorphous films of Si3N4 windows. It applies to most exfoliable materials, including those reactive in ambient conditions, and promises clean, flat surfaces. Besides the natural extension to fabricating van der Waals heterostructures, our method can also be applied to future-generation UED that enables additional control of sample parameters, such as electrostatic gating and excitation by a locally enhanced terahertz field. Our work significantly expands the type of samples for UED studies and also finds application in other time-resolved techniques such as attosecond extreme-ultraviolet absorption spectroscopy. This method hence provides further opportunities to explore photoinduced transitions and to discover novel states of matter out of equilibrium.

20.
ACS Nano ; 15(9): 14071-14079, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34464530

ABSTRACT

MXenes are two-dimensional materials with a rich set of chemical and electromagnetic properties, the latter including saturable absorption and intense surface plasmon resonances. To fully harness the functionality of MXenes for applications in optics, electronics, and sensing, it is important to understand the interaction of light with MXenes on atomic and femtosecond dimensions. Here, we use ultrafast electron diffraction and high-resolution electron microscopy to investigate the laser-induced structural dynamics of Ti3C2Tx nanosheets. We find an exceptionally fast lattice response with an electron-phonon coupling time of 230 fs. Repetitive femtosecond laser excitation transforms Ti3C2Tx through a structural transition into a metamaterial with deeply sub-wavelength nanoripples that are aligned with the laser polarization. By a further laser illumination, the material is reversibly photo-switchable between a flat and rippled morphology. The resulting nanostructured MXene metamaterial with directional nanoripples is expected to exhibit an anisotropic optical and electronic response as well as an enhanced chemical activity that can be switched on and off by light.

SELECTION OF CITATIONS
SEARCH DETAIL