Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Cereb Cortex ; 34(13): 40-49, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696607

ABSTRACT

Attentional reorienting is dysfunctional not only in children with autism spectrum disorder (ASD), but also in infants who will develop ASD, thus constituting a potential causal factor of future social interaction and communication abilities. Following the research domain criteria framework, we hypothesized that the presence of subclinical autistic traits in parents should lead to atypical infants' attentional reorienting, which in turn should impact on their future socio-communication behavior in toddlerhood. During an attentional cueing task, we measured the saccadic latencies in a large sample (total enrolled n = 89; final sample n = 71) of 8-month-old infants from the general population as a proxy for their stimulus-driven attention. Infants were grouped in a high parental traits (HPT; n = 23) or in a low parental traits (LPT; n = 48) group, according to the degree of autistic traits self-reported by their parents. Infants (n = 33) were then longitudinally followed to test their socio-communicative behaviors at 21 months. Results show a sluggish reorienting system, which was a longitudinal predictor of future socio-communicative skills at 21 months. Our combined transgenerational and longitudinal findings suggest that the early functionality of the stimulus-driven attentional network-redirecting attention from one event to another-could be directly connected to future social and communication development.


Subject(s)
Attention , Parents , Humans , Male , Female , Infant , Attention/physiology , Parents/psychology , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/psychology , Social Behavior , Communication , Longitudinal Studies , Autistic Disorder/psychology , Autistic Disorder/physiopathology , Cues , Saccades/physiology , Adult
2.
Neuroimage ; 301: 120878, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357689

ABSTRACT

Working memory (WM) enables the temporary storage of limited information and is a central component of higher order cognitive function. Irrelevant and/or distracting information can have a negative impact on WM processing and suppressing such incoming stimuli is critical to maintaining adequate performance. However, the neural mechanisms and dynamics underlying such distractor inhibition remain poorly understood. In the current study, we enrolled 46 healthy adults (Mage: 27.92, Nfemale: 28) who completed a Sternberg type WM task with high- and low-distractor conditions during magnetoencephalography (MEG). MEG data were transformed into the time-frequency domain and significant task-related oscillatory responses were imaged to identify the underlying anatomical areas. Whole-brain paired t-tests, with cluster-based permutation testing for multiple comparisons correction, were performed to assess differences between the low- and high-distractor conditions for each oscillatory response. Across conditions, we found strong alpha and beta oscillations (i.e., decreases relative to baseline) and increases in theta power throughout the encoding and maintenance periods. Whole-brain contrasts revealed significantly stronger alpha and beta oscillations in bilateral prefrontal regions during maintenance in high- compared to low-distractor trials, with the stronger beta oscillations being centered on the left dorsolateral prefrontal cortex and right inferior frontal gyrus, while those for alpha being within the right anterior prefrontal cortices and the right middle frontal gyrus. These findings suggest that alpha and beta oscillations in the bilateral prefrontal cortices play a major role in the inhibition of distracting information during WM maintenance. Our results also contribute to prior research on cognitive control and functional inhibition, in which prefrontal regions have been widely implicated.

3.
Psychol Med ; 54(3): 473-487, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38047402

ABSTRACT

Behavioral addiction (BA) and substance use disorder (SUD) share similarities and differences in clinical symptoms, cognitive functions, and behavioral attributes. However, little is known about whether and how functional networks in the human brain manifest commonalities and differences between BA and SUD. Voxel-wise meta-analyses of resting-state functional connectivity (rs-FC) were conducted in BA and SUD separately, followed by quantitative conjunction analyses to identify the common and distinct alterations across both the BA and SUD groups. A total of 92 datasets with 2444 addicted patients and 2712 healthy controls (HCs) were eligible for the meta-analysis. Our findings demonstrated that BA and SUD exhibited common alterations in rs-FC between frontoparietal network (FPN) and other high-level neurocognitive networks (i.e. default mode network (DMN), affective network (AN), and salience network (SN)) as well as hyperconnectivity between SN seeds and the Rolandic operculum in SSN. In addition, compared with BA, SUD exhibited several distinct within- and between-network rs-FC alterations mainly involved in the DMN and FPN. Further, altered within- and between-network rs-FC showed significant association with clinical characteristics such as the severity of addiction in BA and duration of substance usage in SUD. The common rs-FC alterations in BA and SUD exhibited the relationship with consistent aberrant behaviors in both addiction groups, such as impaired inhibition control and salience attribution. By contrast, the distinct rs-FC alterations might suggest specific substance effects on the brain neural transmitter systems in SUD.


Subject(s)
Behavior, Addictive , Substance-Related Disorders , Humans , Brain/diagnostic imaging , Brain Mapping , Substance-Related Disorders/diagnostic imaging , Cognition , Behavior, Addictive/diagnostic imaging , Neural Pathways/diagnostic imaging , Magnetic Resonance Imaging
4.
J Neuropsychiatry Clin Neurosci ; : appineuropsych20240058, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39385577

ABSTRACT

OBJECTIVE: Posttraumatic stress disorder (PTSD) is a highly heterogeneous disorder, which makes it difficult to link clinical phenotypes with biomarkers to improve treatment outcomes. Findings from previous studies suggest that cognitive measures such as verbal memory or attention paired with within-ventral attention network (VAN) or salience network resting-state functional connectivity may predict treatment response among individuals with PTSD. METHODS: In a sample comprising 20 individuals with PTSD and 10 healthy control group individuals, the investigators subtyped individuals by using both discriminant function analysis and standardized norms for a single measure of memory and neuropsychological batteries of memory, attention, and executive functioning; attempted to replicate previous findings of lower within-VAN connectivity among individuals with cognitive impairment; and explored whether within-VAN connectivity paired with cognitive impairment predicted treatment outcomes. RESULTS: PTSD patients with cognitive impairment (defined by using a discriminant function analysis with verbal memory performance) had greater within-VAN resting-state functional connectivity compared with control group individuals and cognitively intact PTSD patients at a level that fell short of statistical significance (F=3.41; df=2, 21; ηp2=0.237). The interaction between verbal memory performance and within-VAN connectivity also predicted treatment-related change in PTSD symptoms at a level that also fell short of statistical significance (ß=-0.442). CONCLUSIONS: These findings somewhat support the clinical utility of identifying cognitive phenotypes within PTSD (by using discriminant function analysis and verbal memory performance) to predict treatment outcomes.

5.
Cereb Cortex ; 33(5): 2260-2272, 2023 02 20.
Article in English | MEDLINE | ID: mdl-35641153

ABSTRACT

Attention and reading are essential skills for successful schooling and in adult life. While previous studies have documented that attention development supports reading acquisition, whether and how learning to read may improve attention among school-age children and the brain structural and functional development that may be involved remain unknown. In this prospective longitudinal study, we examined bidirectional and longitudinal predictions between attention and reading development and the neural mediators of attention and reading development among school-age children using cross-lagged panel modeling. The results showed that better baseline reading performance significantly predicted better attention performance one year later after controlling for baseline attention performance. In contrast, after controlling for baseline reading performance, attention did not significantly predict reading performance one year later, while more attention problems also significantly predicted worse reading performance. Both the increasing gray matter volume of the left middle frontal gyrus and the increasing connectivity between the left middle frontal gyrus and the ventral attention network mediated the above significant longitudinal predictions. This study, directly revealed that reading skills may predict the development of important cognitive functions, such as attention, in school-age children. Therefore, learning to read is not only a challenge for school-age children but is also an important way to optimize attention and brain development.


Subject(s)
Brain , Reading , Child , Adult , Humans , Longitudinal Studies , Prospective Studies , Frontal Lobe , Magnetic Resonance Imaging
6.
Neuroimage ; 272: 120081, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37011715

ABSTRACT

Conscientiousness, and related constructs impulsivity and self-control, have been related to structural and functional properties of regions in the prefrontal cortex (PFC) and anterior insula. Network-based conceptions of brain function suggest that these regions belong to a single large-scale network, labeled the salience/ventral attention network (SVAN). The current study tested associations between conscientiousness and resting-state functional connectivity in this network using two community samples (N's = 244 and 239) and data from the Human Connectome Project (N = 1000). Individualized parcellation was used to improve functional localization accuracy and facilitate replication. Functional connectivity was measured using an index of network efficiency, a graph theoretical measure quantifying the capacity for parallel information transfer within a network. Efficiency of a set of parcels in the SVAN was significantly associated with conscientiousness in all samples. Findings are consistent with a theory of conscientiousness as a function of variation in neural networks underlying effective prioritization of goals.


Subject(s)
Connectome , Magnetic Resonance Imaging , Humans , Neural Pathways , Brain Mapping
7.
Cereb Cortex ; 32(21): 4698-4714, 2022 10 20.
Article in English | MEDLINE | ID: mdl-35088068

ABSTRACT

Updating beliefs after unexpected events is fundamental for an optimal adaptation to the environment. Previous findings suggested a causal involvement of the right temporoparietal junction (rTPJ) in belief updating in an attention task. We combined offline continuous theta-burst stimulation (cTBS) over rTPJ with functional magnetic resonance imaging (fMRI) to investigate local and remote stimulation effects within the attention and salience networks. In a sham-controlled, within-subject crossover design, 25 participants performed an attentional cueing task during fMRI with true or false information about cue predictability. By estimating learning rates from response times, we characterized participants' belief updating. Model-derived cue predictability entered the fMRI analysis as a parametric regressor to identify the neural correlates of updating. rTPJ-cTBS effects showed high interindividual variability. The expected learning rate reduction with false cue predictability information by cTBS was only observed in participants showing higher updating in false than in true blocks after sham. cTBS modulated the neural signatures of belief updating, both in rTPJ and in nodes of the attention and salience networks. The interindividual variability of the behavioral cTBS effect was related to differential activity and rTPJ connectivity of the right anterior insula. These results demonstrate a crucial interaction between ventral attention and salience networks for belief updating.


Subject(s)
Attention , Magnetic Resonance Imaging , Parietal Lobe , Humans , Attention/physiology , Cues , Parietal Lobe/physiology
8.
Neuroimage ; 246: 118760, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34875381

ABSTRACT

Control processes allow us to constrain the retrieval of semantic information from long-term memory so that it is appropriate for the task or context. Control demands are influenced by the strength of the target information itself and by the circumstances in which it is retrieved, with more control needed when relatively weak aspects of knowledge are required and after the sustained retrieval of related concepts. To investigate the neurocognitive basis of individual differences in these aspects of semantic control, we used resting-state fMRI to characterise the intrinsic connectivity of left ventrolateral prefrontal cortex (VLPFC), implicated in controlled retrieval, and examined associations on a paced serial semantic task, in which participants were asked to detect category members amongst distractors. This task manipulated both the strength of target associations and the requirement to sustain retrieval within a narrow semantic category over time. We found that individuals with stronger connectivity between VLPFC and medial prefrontal cortex within the default mode network (DMN) showed better retrieval of strong associations (which are thought to be recalled more automatically). Stronger connectivity between the same VLPFC seed and another DMN region in medial parietal cortex was associated with larger declines in retrieval over the course of the category. In contrast, participants with stronger connectivity between VLPFC and cognitive control regions within the ventral attention network (VAN) had better controlled retrieval of weak associations and were better able to sustain their comprehension throughout the category. These effects overlapped in left insular cortex within the VAN, indicating that a common pattern of connectivity is associated with different aspects of controlled semantic retrieval induced by both the structure of long-term knowledge and the sustained retrieval of related information.


Subject(s)
Connectome , Default Mode Network/physiology , Executive Function/physiology , Individuality , Mental Recall/physiology , Nerve Net/physiology , Prefrontal Cortex/physiology , Adolescent , Adult , Default Mode Network/diagnostic imaging , Female , Humans , Male , Nerve Net/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Semantics , Young Adult
9.
Neuroimage ; 231: 117869, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33607279

ABSTRACT

Previous neuroimaging studies have extensively evaluated the structural and functional connectivity of the Ventral Attention Network (VAN) and its role in reorienting attention in the presence of a salient (pop-out) stimulus. However, a detailed understanding of the "directed" functional connectivity within the VAN during the process of reorientation remains elusive. Functional magnetic resonance imaging (fMRI) studies have not adequately addressed this issue due to a lack of appropriate temporal resolution required to capture this dynamic process. The present study investigates the neural changes associated with processing salient distractors operating at a slow and a fast time scale using custom-designed experiment involving visual search on static images and dynamic motion tracking, respectively. We recorded high-density scalp electroencephalography (EEG) from healthy human volunteers, obtained saliency-specific behavioral and spectral changes during the tasks, localized the sources underlying the spectral power modulations with individual-specific structural MRI scans, reconstructed the waveforms of the sources and finally, investigated the causal relationships between the sources using spectral Granger-Geweke Causality (GGC). We found that salient stimuli processing, across tasks with varying spatio-temporal complexities, involves a characteristic modulation in the alpha frequency band which is executed primarily by the nodes of the VAN constituting the temporo-parietal junction (TPJ), the insula and the lateral prefrontal cortex (lPFC). The directed functional connectivity results further revealed the presence of bidirectional interactions among prominent nodes of right-lateralized VAN, corresponding only to the trials with saliency. Thus, our study elucidates the invariant network mechanisms for processing saliency in visual attention tasks across diverse time-scales.


Subject(s)
Attention/physiology , Magnetic Resonance Imaging/methods , Nerve Net/physiology , Parietal Lobe/physiology , Prefrontal Cortex/physiology , Temporal Lobe/physiology , Adult , Brain Mapping/methods , Electroencephalography/methods , Female , Humans , Male , Nerve Net/diagnostic imaging , Parietal Lobe/diagnostic imaging , Photic Stimulation/methods , Prefrontal Cortex/diagnostic imaging , Reaction Time/physiology , Temporal Lobe/diagnostic imaging , Young Adult
10.
Neuroimage ; 232: 117868, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33647500

ABSTRACT

Studies have indicated that the dorsal attention network (DAN) and the ventral attention network (VAN) functionally interact via several fronto-parietal connector hubs. However, the anatomical connectivity profiles of these connector hubs, and the coupling between the anatomical and functional connectivities of them, are still unknown. In the present study, we found that functional connector hubs anatomically bridged the DAN and VAN based on multimodal magnetic resonance imaging data from the Human Connectome Project (HCP) Consortium and an independent Chinese cohort. The three hubs had unique anatomical connectivity patterns with the attention sub-networks. For each connector hub, the pattern of anatomical connectivity resembled the functional one. Finally, the strength of the anatomical connectivity of these connector hubs was positively associated with the functional connectivity at the group- and individual-levels. Our findings help to better understand the anatomical mechanisms underlying the functional interactions between the DAN and the VAN.


Subject(s)
Brain/diagnostic imaging , Connectome/methods , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Adolescent , Adult , Brain/anatomy & histology , Brain/physiology , China/epidemiology , Cohort Studies , Databases, Factual , Female , Humans , Male , Nerve Net/anatomy & histology , Nerve Net/physiology , Young Adult
11.
Hum Brain Mapp ; 42(6): 1699-1713, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33347695

ABSTRACT

Detection of unexpected, yet relevant events is essential in daily life. fMRI studies have revealed the involvement of the ventral attention network (VAN), including the temporo-parietal junction (TPJ), in such process. In this MEG study with 34 participants (17 women), we used a bimodal (visual/auditory) attention task to determine the neuronal dynamics associated with suppression of the activity of the VAN during top-down attention and its recruitment when information from the unattended sensory modality is involuntarily integrated. We observed an anticipatory power increase of alpha/beta oscillations (12-20 Hz, previously associated with functional inhibition) in the VAN following a cue indicating the modality to attend. Stronger VAN power increases were associated with better task performance, suggesting that the VAN suppression prevents shifting attention to distractors. Moreover, the TPJ was synchronized with the frontal eye field in that frequency band, indicating that the dorsal attention network (DAN) might participate in such suppression. Furthermore, we found a 12-20 Hz power decrease and enhanced synchronization, in both the VAN and DAN, when information between sensory modalities was congruent, suggesting an involvement of these networks when attention is involuntarily enhanced due to multisensory integration. Our results show that effective multimodal attentional allocation includes the modulation of the VAN and DAN through upper-alpha/beta oscillations. Altogether these results indicate that the suppressing role of alpha/beta oscillations might operate beyond sensory regions.


Subject(s)
Attention/physiology , Brain Mapping , Brain Waves/physiology , Cerebral Cortex/physiology , Magnetoencephalography , Nerve Net/physiology , Pattern Recognition, Visual/physiology , Speech Perception/physiology , Adult , Female , Humans , Male , Young Adult
12.
BMC Neurosci ; 22(1): 74, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34852787

ABSTRACT

BACKGROUND: Pre-surgical mapping of language using functional MRI aimed principally to determine the dominant hemisphere. This mapping is currently performed using covert linguistic task in way to avoid motion artefacts potentially biasing the results. However, overt task is closer to natural speaking, allows a control on the performance of the task, and may be easier to perform for stressed patients and children. However, overt task, by activating phonological areas on both hemispheres and areas involved in pitch prosody control in the non-dominant hemisphere, is expected to modify the determination of the dominant hemisphere by the calculation of the lateralization index (LI). OBJECTIVE: Here, we analyzed the modifications in the LI and the interactions between cognitive networks during covert and overt speech task. METHODS: Thirty-three volunteers participated in this study, all but four were right-handed. They performed three functional sessions consisting of (1) covert and (2) overt generation of a short sentence semantically linked with an audibly presented word, from which we estimated the "Covert" and "Overt" contrasts, and a (3) resting-state session. The resting-state session was submitted to spatial independent component analysis to identify language network at rest (LANG), cingulo-opercular network (CO), and ventral attention network (VAN). The LI was calculated using the bootstrapping method. RESULTS: The LI of the LANG was the most left-lateralized (0.66 ± 0.38). The LI shifted from a moderate leftward lateralization for the Covert contrast (0.32 ± 0.38) to a right lateralization for the Overt contrast (- 0.13 ± 0.30). The LI significantly differed from each other. This rightward shift was due to the recruitment of right hemispheric temporal areas together with the nodes of the CO. CONCLUSION: Analyzing the overt speech by fMRI allowed improvement in the physiological knowledge regarding the coordinated activity of the intrinsic connectivity networks. However, the rightward shift of the LI in this condition did not provide the basic information on the hemispheric language dominance. Overt linguistic task cannot be recommended for clinical purpose when determining hemispheric dominance for language.


Subject(s)
Brain/physiology , Functional Laterality/physiology , Language , Magnetic Resonance Imaging , Speech/physiology , Adolescent , Adult , Brain Mapping/methods , Humans , Magnetic Resonance Imaging/methods , Male
13.
Psychol Med ; 51(8): 1249-1259, 2021 06.
Article in English | MEDLINE | ID: mdl-33902772

ABSTRACT

In the past decade, there has been a growing interest in examining resting-state functional connectivity deficits in subjects with conduct and antisocial personality disorder. Through meta-analyses and literature reviews, extensive work has been done to characterize their abnormalities in brain activation during a wide range of functional magnetic resonance imaging (fMRI) tasks. However, there is currently no meta-analytical evidence regarding neural connectivity patterns during resting-state fMRI. Therefore, we conducted a coordinate-based meta-analysis of resting-state fMRI studies on individuals exhibiting antisocial behaviors. Of the retrieved studies, 18 used a seed-based connectivity approach (513 cases v. 488 controls), 20 employed a non-seed-based approach (453 cases v. 460 controls) and 20 included a correlational analysis between the severity of antisocial behaviors and connectivity patterns (3462 subjects). Meta-analysis on seed-based studies revealed significant connectivity deficits in the amygdala, middle cingulate cortex, ventral posterior cingulate cortex-precuneus, ventromedial and dorsomedial prefrontal cortex, premotor cortex, and superior parietal lobule. Additionally, non-seed-based meta-analysis showed increased connectivity in the ventral posterior cingulate cortex and decreased connectivity in the parietal operculum, calcarine cortex, and cuneus. Finally, we found meta-analytical evidence for negative relationship between the severity of antisocial behaviors and connectivity with the ventromedial prefrontal cortex. Functional characterization and meta-analytical connectivity modeling indicated that these findings overlapped with socio-affective and attentional processes. This further underscores the importance of these functions in the pathophysiology of conduct and antisocial personality disorders.


Subject(s)
Antisocial Personality Disorder , Brain Mapping , Humans , Neural Pathways/pathology , Magnetic Resonance Imaging , Gyrus Cinguli
14.
J Integr Neurosci ; 20(1): 43-53, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33834690

ABSTRACT

The cingulo-opercular network (CON), dorsal attention network (DAN), and ventral attention network (VAN) are prominently activated during attention tasks. The function of these task-positive networks and their interplay mechanisms in attention is one of the central issues in understanding how the human brain manipulates attention to better adapt to the external environment. This study aimed to clarify the CON, DAN, and VAN's functional hierarchy by assessing causal interactions. Functional magnetic resonance imaging (fMRI) data from human participants performing a visual-spatial attention task and correlating Granger causal influences with behavioral performance revealed that CON exerts behavior-enhancing influences upon DAN and VAN, indicating a higher level of CON in top-down attention control. By contrast, the VAN exerts a behavior-degrading influence on CON, indicating external disruption of the CON's control set.


Subject(s)
Attention/physiology , Cerebral Cortex/physiology , Connectome/methods , Nerve Net/physiology , Psychomotor Performance/physiology , Space Perception/physiology , Visual Perception/physiology , Adult , Cerebral Cortex/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Young Adult
15.
Neuroimage ; 217: 116895, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32360929

ABSTRACT

Working memory engages multiple distributed brain networks to support goal-directed behavior and higher order cognition. Dysfunction in working memory has been associated with cognitive impairment in neuropsychiatric disorders. It is important to characterize the interactions among cortical networks that are sensitive to working memory load since such interactions can also hint at the impaired dynamics in patients with poor working memory performance. Functional connectivity is a powerful tool used to investigate coordinated activity among local and distant brain regions. Here, we identified connectivity footprints that differentiate task states representing distinct working memory load levels. We employed linear support vector machines to decode working memory load from task-based functional connectivity matrices in 177 healthy adults. Using neighborhood component analysis, we also identified the most important connectivity pairs in classifying high and low working memory loads. We found that between-network coupling among frontoparietal, ventral attention and default mode networks, and within-network connectivity in ventral attention network are the most important factors in classifying low vs. high working memory load. Task-based within-network connectivity profiles at high working memory load in ventral attention and default mode networks were the most predictive of load-related increases in response times. Our findings reveal the large-scale impact of working memory load on the cerebral cortex and highlight the complex dynamics of intrinsic brain networks during active task states.


Subject(s)
Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Machine Learning , Memory, Short-Term/physiology , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Adult , Brain/diagnostic imaging , Brain/physiology , Brain Mapping , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Nerve Net/physiology , Psychomotor Performance/physiology , Reaction Time/physiology , Support Vector Machine , Young Adult
16.
J Anat ; 237(4): 632-642, 2020 10.
Article in English | MEDLINE | ID: mdl-32579719

ABSTRACT

Resting-state functional MRI (RfMRI) analyses have identified two anatomically separable fronto-parietal attention networks in the human brain: a bilateral dorsal attention network and a right-lateralised ventral attention network (VAN). The VAN has been implicated in visuospatial cognition and, thus, potentially in the unilateral spatial neglect associated with right hemisphere lesions. Its parietal, frontal and temporal endpoints are thought to be structurally supported by undefined white matter tracts. We investigated the white matter tract connecting the VAN. We used three approaches to study the structural anatomy of the VAN: (a) independent component analysis on RfMRI (50 subjects), defining the endpoints of the VAN, (b) tractography in the same 50 healthy volunteers, with regions of interest defined by the MNI coordinates of cortical areas involved in the VAN used in a seed-based approach and (c) dissection, by Klingler's method, of 20 right hemispheres, for ex vivo studies of the fibre tracts connecting VAN endpoints. The VAN includes the temporoparietal junction and the ventral frontal cortex. The endpoints of the superior longitudinal fasciculus in its third portion (SLF III) and the arcuate fasciculus (AF) overlap with the VAN endpoints. The SLF III connects the supramarginal gyrus to the ventral portion of the precentral gyrus and the pars opercularis. The AF connects the middle and inferior temporal gyrus and the middle and inferior frontal gyrus. We reconstructed the structural connectivity of the VAN and considered it in the context if the pathophysiology of unilateral neglect and right hemisphere awake brain surgery.


Subject(s)
Attention/physiology , Brain/diagnostic imaging , Functional Laterality/physiology , Nerve Net/diagnostic imaging , White Matter/diagnostic imaging , Adult , Brain/physiology , Humans , Image Processing, Computer-Assisted , Language , Magnetic Resonance Imaging , Nerve Net/physiology , White Matter/physiology
17.
Neurosurg Focus ; 48(2): E9, 2020 02 01.
Article in English | MEDLINE | ID: mdl-32006946

ABSTRACT

Neurosurgery has been at the forefront of a paradigm shift from a localizationist perspective to a network-based approach to brain mapping. Over the last 2 decades, we have seen dramatic improvements in the way we can image the human brain and noninvasively estimate the location of critical functional networks. In certain patients with brain tumors and epilepsy, intraoperative electrical stimulation has revealed direct links between these networks and their function. The focus of these techniques has rightfully been identification and preservation of so-called "eloquent" brain functions (i.e., motor and language), but there is building momentum for more extensive mapping of cognitive and emotional networks. In addition, there is growing interest in mapping these functions in patients with a broad range of neurosurgical diseases. Resting-state functional MRI (rs-fMRI) is a noninvasive imaging modality that is able to measure spontaneous low-frequency blood oxygen level-dependent signal fluctuations at rest to infer neuronal activity. Rs-fMRI may be able to map cognitive and emotional networks for individual patients. In this review, the authors give an overview of the rs-fMRI technique and associated cognitive and emotional resting-state networks, discuss the potential applications of rs-fMRI, and propose future directions for the mapping of cognition and emotion in neurosurgical patients.


Subject(s)
Brain Mapping/methods , Emotions/physiology , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Nerve Net/physiology , Neurosurgical Procedures/methods , Brain/diagnostic imaging , Brain/physiology , Humans , Rest/physiology
18.
Neuroimage ; 200: 210-220, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31233909

ABSTRACT

Prism adaptation (PA) is a procedure used for studying visuomotor plasticity in healthy individuals, as well as for alleviating spatial neglect in patients. The adaptation is achieved by performing goal-directed movements while wearing prismatic lenses that induce a lateral displacement of visual information. This results in an initial movement error that is compensated by a recalibration of sensory-motor coordinates; consequently, a lateral bias in both motor and perceptual measurements occurs after prism removal, i.e., after effects. Neuroimaging studies have shown that a brief exposure to a rightward-shifting prism changes the activations in the inferior parietal lobule (IPL) and modulates interhemispheric balance during attention tasks. However, it is yet unknown how PA changes global interplay between cortical networks as evident from task-free resting state connectivity. Thus we compared resting state functional connectivity patterns before ('Pre') and after ('Post') participants performed a session of pointing movements with a rightward-shifting prism (N = 14) or with neutral lenses (as a control condition; N = 12). Global connectivity analysis revealed significant decreases in functional connectivity following PA in two nodes of the Default Mode Network (DMN), and in the left anterior insula. Further analyses of these regions showed specific connectivity decrease between either of the DMN nodes and areas within the attentional networks, including the inferior frontal gyrus, the anterior insula and the right superior temporal sulcus. On the other hand, the anterior insula decreased its connectivity to a large set of areas, all within the boundaries of the DMN. These results demonstrate that a brief exposure to PA enhances the decoupling between the DMN and the attention networks. The change in interplay between those pre-existing networks might be the basis of the rapid and wide-ranged behavioural changes induce by PA in healthy individuals.


Subject(s)
Adaptation, Physiological/physiology , Attention/physiology , Cerebral Cortex/physiology , Connectome , Nerve Net/physiology , Neuronal Plasticity/physiology , Visual Perception/physiology , Adult , Cerebral Cortex/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Visual Fields/physiology , Young Adult
19.
Hum Brain Mapp ; 40(2): 377-393, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30240494

ABSTRACT

Blink-related oscillations (BROs) have been linked with environmental monitoring processes associated with blinking, with cortical activations in the bilateral precuneus. Although BROs have been described under resting and passive fixation conditions, little is known about their characteristics under cognitive loading. To address this, we investigated BRO effects during both mental arithmetic (MA) and passive fixation (PF) tasks using magnetoencephalography (n =20), while maintaining the same sensory environment in both tasks. Our results confirmed the presence of BRO effects in both MA and PF tasks, with similar characteristics including blink-related increase in global field power and blink-related activation of the bilateral precuneus. In addition, cognitive loading due to MA also modulated BRO effects by decreasing BRO-induced cortical activations in key brain regions including the bilateral anterior precuneus. Interestingly, blinking during MA-but not PF-activated regions of the ventral attention network (i.e., right supramarginal gyrus and inferior frontal gyrus), suggesting possible recruitment of these areas for blink processing under cognitive loading conditions. Time-frequency analysis revealed a consistent pattern of BRO-related effects in the precuneus in both tasks, but with task-related functional segregation within the anterior and posterior subregions. Based on these findings, we postulate a potential neurocognitive mechanism for blink processing in the precuneus. This study is the first investigation of BRO effects under cognitive loading, and our results provide compelling new evidence for the important cognitive implications of blink-related processing in the human brain.


Subject(s)
Attention/physiology , Blinking/physiology , Brain Waves/physiology , Fixation, Ocular/physiology , Nerve Net/physiology , Parietal Lobe/physiology , Prefrontal Cortex/physiology , Problem Solving/physiology , Adult , Female , Humans , Magnetoencephalography , Male , Mathematical Concepts , Young Adult
20.
Hum Brain Mapp ; 39(5): 2177-2190, 2018 05.
Article in English | MEDLINE | ID: mdl-29411471

ABSTRACT

The ability to reorient attention within the visual field is central to daily functioning, and numerous fMRI studies have shown that the dorsal and ventral attention networks (DAN, VAN) are critical to such processes. However, despite the instantaneous nature of attentional shifts, the dynamics of oscillatory activity serving attentional reorientation remain poorly characterized. In this study, we utilized magnetoencephalography (MEG) and a Posner task to probe the dynamics of attentional reorienting in 29 healthy adults. MEG data were transformed into the time-frequency domain and significant oscillatory responses were imaged using a beamformer. Voxel time series were then extracted from peak voxels in the functional beamformer images. These time series were used to quantify the dynamics of attentional reorienting, and to compute dynamic functional connectivity. Our results indicated strong increases in theta and decreases in alpha and beta activity across many nodes in the DAN and VAN. Interestingly, theta responses were generally stronger during trials that required attentional reorienting relative to those that did not, while alpha and beta oscillations were more dynamic, with many regions exhibiting significantly stronger responses during non-reorienting trials initially, and the opposite pattern during later processing. Finally, stronger functional connectivity was found following target presentation (575-700 ms) between bilateral superior parietal lobules during attentional reorienting. In sum, these data show that visual attention is served by multiple cortical regions within the DAN and VAN, and that attentional reorienting processes are often associated with spectrally-specific oscillations that have largely distinct spatiotemporal dynamics.


Subject(s)
Attention/physiology , Brain Waves/physiology , Brain/physiology , Orientation/physiology , Visual Fields/physiology , Visual Pathways/physiology , Adult , Brain/diagnostic imaging , Cues , Electroencephalography , Female , Functional Laterality , Healthy Volunteers , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Magnetoencephalography , Male , Middle Aged , Photic Stimulation , Time Factors , User-Computer Interface , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL