Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 283
Filter
1.
Ecotoxicol Environ Saf ; 272: 116055, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38340597

ABSTRACT

2-Methyl-1-butanol (2MB) and 3-Methyl-1-butanol (3MB) are microbial volatile organic compounds (VOCs) and found in indoor air. Here, we applied rice as a bioindicator to investigate the effects of these indoor microbial volatile pollutants. A remarkable decrease in germination percentage, shoot and root elongation, as well as lateral root numbers were observed in 3MB. Furthermore, ROS production increased by 2MB and 3MB, suggesting that pentanol isomers could induce cytotoxicity in rice seedlings. The enhancement of peroxidase (POD) and catalase (CAT) activity provided evidence that pentanol isomers activated the enzymatic antioxidant scavenging systems, with a more significant effect observed in 3MB. Furthermore, 3MB induced higher activity levels of glutathione (GSH), oxidized glutathione (GSSG), and the GSH/GSSG ratio in rice compared to the levels induced by 2MB. Additionally, qRT-PCR analysis showed more up-regulation in the expression of glutaredoxins (GRXs), peroxiredoxins (PRXs), thioredoxins (TRXs), and glutathione S-transferases (GSTUs) genes in 3MB. Taking the impacts of pentanol isomers together, the present study suggests that 3MB exhibits more cytotoxic than 2MB, as such has critical effects on germination and the early seedling stage of rice. Our results provide molecular insights into how isomeric indoor microbial volatile pollutants affect plant growth through airborne signals.


Subject(s)
Environmental Pollutants , Oryza , Antioxidants/metabolism , Seedlings , Oryza/metabolism , Pentanols/metabolism , Pentanols/pharmacology , 1-Butanol/metabolism , 1-Butanol/pharmacology , Environmental Pollutants/metabolism , Glutathione Disulfide/metabolism , Oxidative Stress , Glutathione/metabolism , Plant Roots/metabolism
2.
Metab Eng ; 77: 64-75, 2023 05.
Article in English | MEDLINE | ID: mdl-36948242

ABSTRACT

Butyl butyrate has broad applications in foods, cosmetics, solvents, and biofuels. Microbial synthesis of bio-based butyl butyrate has been regarded as a promising approach recently. Herein, we engineered Clostridium tyrobutyricum ATCC 25755 to achieve de novo biosynthesis of butyl butyrate from fermentable sugars. Through introducing the butanol synthetic pathway (enzyme AdhE2), screening alcohol acyltransferases (AATs), adjusting transcription of VAAT and adhE2 (i.e., optimizing promoter), and efficient supplying butyryl-CoA, an excellent engineered strain, named MUV3, was obtained with ability to produce 4.58 g/L butyl butyrate at 25 °C with glucose in serum bottles. More NADH is needed for butyl butyrate synthesis, thus mannitol (the more reduced substrate) was employed to produce butyl butyrate. Ultimately, 62.59 g/L butyl butyrate with a selectivity of 95.97%, and a yield of 0.21 mol/mol was obtained under mannitol with fed-batch fermentation in a 5 L bioreactor, which is the highest butyl butyrate titer reported so far. Altogether, this study presents an anaerobic fermentative platform for de novo biosynthesis of butyl butyrate in one step, which lays the foundation for butyl butyrate biosynthesis from renewable biomass feedstocks.


Subject(s)
Clostridium tyrobutyricum , Clostridium tyrobutyricum/genetics , Clostridium tyrobutyricum/metabolism , Butyrates/metabolism , 1-Butanol/metabolism , Fermentation , Mannitol/metabolism
3.
Metab Eng ; 76: 179-192, 2023 03.
Article in English | MEDLINE | ID: mdl-36738854

ABSTRACT

Although strain tolerance to high product concentrations is a barrier to the economically viable biomanufacturing of industrial chemicals, chemical tolerance mechanisms are often unknown. To reveal tolerance mechanisms, an automated platform was utilized to evolve Escherichia coli to grow optimally in the presence of 11 industrial chemicals (1,2-propanediol, 2,3-butanediol, glutarate, adipate, putrescine, hexamethylenediamine, butanol, isobutyrate, coumarate, octanoate, hexanoate), reaching tolerance at concentrations 60%-400% higher than initial toxic levels. Sequencing genomes of 223 isolates from 89 populations, reverse engineering, and cross-compound tolerance profiling were employed to uncover tolerance mechanisms. We show that: 1) cells are tolerized via frequent mutation of membrane transporters or cell wall-associated proteins (e.g., ProV, KgtP, SapB, NagA, NagC, MreB), transcription and translation machineries (e.g., RpoA, RpoB, RpoC, RpsA, RpsG, NusA, Rho), stress signaling proteins (e.g., RelA, SspA, SpoT, YobF), and for certain chemicals, regulators and enzymes in metabolism (e.g., MetJ, NadR, GudD, PurT); 2) osmotic stress plays a significant role in tolerance when chemical concentrations exceed a general threshold and mutated genes frequently overlap with those enabling chemical tolerance in membrane transporters and cell wall-associated proteins; 3) tolerization to a specific chemical generally improves tolerance to structurally similar compounds whereas a tradeoff can occur on dissimilar chemicals, and 4) using pre-tolerized starting isolates can hugely enhance the subsequent production of chemicals when a production pathway is inserted in many, but not all, evolved tolerized host strains, underpinning the need for evolving multiple parallel populations. Taken as a whole, this study provides a comprehensive genotype-phenotype map based on identified mutations and growth phenotypes for 223 chemical tolerant isolates.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Mutation , 1-Butanol/metabolism , Membrane Transport Proteins/genetics , Repressor Proteins/genetics , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
4.
J Appl Microbiol ; 134(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36657041

ABSTRACT

The second generation (2 G) biofuels were introduced to solve the issues associated with first-generation biofuel (dependency on food materials) and fossil fuels, such as reservoirs diminution, high demand, price fluctuation, and lethal greenhouse gases emission. Butanol and ethanol are the main 2 G biofuels. They are used as a disinfectant, antiseptic, and chemical solvent in the pharmaceutical, plastic, textiles, cosmetics, and fuel industries. Currently, their bacterial biological production from lignocellulosic material at the industrial level with primitive microorganisms is under development and not economical and qualitative compatible as compared to that of fossil origin, due to the slow growth rate, low titer, recalcitrant nature of lignocellulose, strain intolerance to a higher amount of butanol and ethanol, and strain inability to tolerate inhibitors accumulated during pretreatment of lignocellulosic materials. Therefore, metabolic engineering strategies such as redirection of carbon flux, knocking out competing pathways, enhancing strain robustness and wide range of substrate utilization ability, and overexpression of enzymes involved in their biological synthesis have been applied to bacteria for enhancing their ability for 2 G ethanol and butanol production in a highly cost-effective amount from lignocellulosic materials. Herein, we summarized and reviewed the progress in metabolic engineering of bacterial species such as Clostridium spp,Escherichia coli, and Zymomonas mobilis for the synthesis of 2 G butanol and ethanol, especially from lignocellulosic materials.


Subject(s)
Biofuels , Metabolic Engineering , 1-Butanol/metabolism , Biofuels/microbiology , Butanols/metabolism , Ethanol/metabolism , Fermentation
5.
J Ind Microbiol Biotechnol ; 49(6)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36367297

ABSTRACT

A system for co-cultivation of anaerobic fungi with anaerobic bacteria was established based on lactate cross-feeding to produce butyrate and butanol from plant biomass. Several co-culture formulations were assembled that consisted of anaerobic fungi (Anaeromyces robustus, Neocallimastix californiae, or Caecomyces churrovis) with the bacterium Clostridium acetobutylicum. Co-cultures were grown simultaneously (e.g., 'one pot'), and compared to cultures where bacteria were cultured in fungal hydrolysate sequentially. Fungal hydrolysis of lignocellulose resulted in 7-11 mM amounts of glucose and xylose, as well as acetate, formate, ethanol, and lactate to support clostridial growth. Under these conditions, one-stage simultaneous co-culture of anaerobic fungi with C. acetobutylicum promoted the production of butyrate up to 30 mM. Alternatively, two-stage growth slightly promoted solventogenesis and elevated butanol levels (∼4-9 mM). Transcriptional regulation in the two-stage growth condition indicated that this cultivation method may decrease the time required to reach solventogenesis and induce the expression of cellulose-degrading genes in C. acetobutylicum due to relieved carbon-catabolite repression. Overall, this study demonstrates a proof of concept for biobutanol and bio-butyrate production from lignocellulose using an anaerobic fungal-bacterial co-culture system.


Subject(s)
Butanols , Clostridium acetobutylicum , Butanols/metabolism , Clostridium acetobutylicum/genetics , Clostridium acetobutylicum/metabolism , Butyrates/metabolism , Anaerobiosis , Cellulose/metabolism , 1-Butanol/metabolism , Lactic Acid/metabolism , Fungi/metabolism , Fermentation
6.
Bioprocess Biosyst Eng ; 46(12): 1837-1845, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37924351

ABSTRACT

Severe butanol toxicity to the metabolism of solventogenic clostridia significantly impede the application of fermentative butanol as a biofuel. Liquid-liquid extraction is an efficient method to reduce the butanol toxicity by in-situ removing it in the extractant phase. Butanol mass transfer into extractant phase in static acetone-butanol-ethanol (ABE) extractive fermentation with biodiesel as the extractant could be enhanced by adding a tiny amount of surfactant such as tween-80. In the case of corn-based ABE extractive fermentation by Clostridium acetobutylicum ATCC 824 using biodiesel originated from waste cooking oil as extractant, addition of 0.14% (w/v) tween-80 could increase butanol production in biodiesel and total solvents production by 21% and 17%, respectively, compared to those of control under non-surfactant existence. Furthermore, a mathematical model was developed to elucidate the mechanism of enhanced ABE extractive fermentation performance. The results indicated that the mass transfer improvement was obtained by effectively altering the physical properties of the self-generated bubbles during ABE extractive fermentation, such as reducing bubble size and extending its retention time in extractant phase, etc. Overall, this study provided an efficient approach for enhancing biobutanol production by integration of bioprocess optimization and model interpretation.


Subject(s)
Butanols , Clostridium acetobutylicum , Butanols/metabolism , Acetone/metabolism , Fermentation , Surface-Active Agents/metabolism , Polysorbates/metabolism , Biofuels , Ethanol/metabolism , 1-Butanol/metabolism
7.
Int J Mol Sci ; 24(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38139056

ABSTRACT

Candida albicans is the causative agent of invasive fungal infections. Its hyphae-forming ability is regarded as one of the important virulence factors. To unravel the impact of butanol on Candida albicans, it was placed in O+ve complete human serum with butanol (1% v/v). The Candida transcriptome under butanol stress was then identified by mRNA sequencing. Studies including electron microscopy demonstrated the inhibition of hyphae formation in Candida under the influence of butanol, without any significant alteration in growth rate. The numbers of genes upregulated in the butanol in comparison to the serum alone were 1061 (20 min), 804 (45 min), and 537 (120 min). Candida cells exhibited the downregulation of six hypha-specific transcription factors and the induction of four repressor/regulator genes. Many of the hypha-specific genes exhibited repression in the medium with butanol. The genes related to adhesion also exhibited repression, whereas, among the heat-shock genes, three showed inductions in the presence of butanol. The fungal-specific genes exhibited induction as well as repression in the butanol-treated Candida cells. Furthermore, ten upregulated genes formed the core stress gene set in the presence of butanol. In the gene ontology analysis, enrichment of the processes related to non-coding RNA, ribosome biosynthesis, and metabolism was observed in the induced gene set. On the other side, a few GO biological process terms, including biofilm formation and filamentous growth, were enriched in the repressed gene set. Taken together, under butanol stress, Candida albicans is unable to extend hyphae and shows growth by budding. Many of the genes with perturbed expression may have fitness or virulence attributes and may provide prospective sites of antifungal targets against C. albicans.


Subject(s)
Candida albicans , Fungal Proteins , Humans , Candida albicans/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hyphae/metabolism , Butanols , Prospective Studies , 1-Butanol/metabolism , Gene Expression , Gene Expression Regulation, Fungal
8.
Metab Eng ; 69: 87-97, 2022 01.
Article in English | MEDLINE | ID: mdl-34774761

ABSTRACT

Cyanobacteria hold promise for renewable chemical production due to their photosynthetic nature, but engineered strains frequently display poor production characteristics. These difficulties likely arise in part due to the distinctive photoautotrophic metabolism of cyanobacteria. In this work, we apply a genome-scale metabolic model of the cyanobacteria Synechococus sp. PCC 7002 to identify strain designs accounting for this unique metabolism that are predicted to improve the production of various biofuel alcohols (e.g. 2-methyl-1-butanol, isobutanol, and 1-butanol) synthesized via an engineered biosynthesis pathway. Using the model, we identify that the introduction of a large, non-native NADH-demand into PCC 7002's metabolic network is predicted to enhance production of these alcohols by promoting NADH-generating reactions upstream of the production pathways. To test this, we construct strains of PCC 7002 that utilize a heterologous, NADH-dependent nitrite reductase in place of the native, ferredoxin-dependent enzyme to create an NADH-demand in the cells when grown on nitrate-containing media. We find that photosynthetic production of both isobutanol and 2-methyl-1-butanol is significantly improved in the engineered strain background relative to that in a wild-type background. We additionally identify that the use of high-nutrient media leads to a substantial prolongment of the production curve in our alcohol production strains. The metabolic engineering strategy identified and tested in this work presents a novel approach to engineer cyanobacterial production strains that takes advantage of a unique aspect of their metabolism and serves as a basis on which to further develop strains with improved production of these alcohols and related products.


Subject(s)
Synechococcus , 1-Butanol/metabolism , Butanols , NAD/genetics , NAD/metabolism , Nitrates/metabolism , Synechococcus/genetics , Synechococcus/metabolism
9.
Biochem Soc Trans ; 50(2): 867-876, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35356968

ABSTRACT

Biobutanol is gaining much attention as a potential biofuel due to its superior properties over ethanol. Butanol has been naturally produced via acetone-butanol-ethanol (ABE) fermentation by many Clostridium species, which are not very user-friendly bacteria. Therefore, to improve butanol titers and yield, various butanol synthesis pathways have been engineered in Escherichia coli, a much more robust and convenient host than Clostridium species. This review mainly focuses on the biosynthesis of n-butanol in engineered E. coli with an emphasis on efficient enzymes for butanol production in E. coli, butanol competing pathways, and genome engineering of E. coli for butanol production. In addition, the use of alternate strategies for butanol biosynthesis/enhancement, alternate substrates for the low cost of butanol production, and genetic improvement for butanol tolerance in E. coli have also been discussed.


Subject(s)
1-Butanol , Butanols , 1-Butanol/metabolism , Butanols/metabolism , Clostridium/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Ethanol/metabolism , Fermentation , Metabolic Engineering
10.
Appl Environ Microbiol ; 88(7): e0241921, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35311509

ABSTRACT

Butyrate is produced by chemical synthesis based on crude oil, produced by microbial fermentation, or extracted from animal fats (M. Dwidar, J.-Y. Park, R. J. Mitchell, and B.-I. Sang, The Scientific World Journal, 2012:471417, 2012, https://doi.org/10.1100/2012/471417). Butyrate production by anaerobic bacteria is highly favorable since waste or sustainable resources can be used as the substrates. For this purpose, the native hyper-butanol producer Clostridium saccharoperbutylacetonicum N1-4(HMT) was used as a chassis strain due to its broad substrate spectrum. BLASTp analysis of the predicted proteome of C. saccharoperbutylacetonicum N1-4(HMT) resulted in the identification of gene products potentially involved in acetone-butanol-ethanol (ABE) fermentation. Their participation in ABE fermentation was either confirmed or disproven by the parallel production of acids or solvents and the respective transcript levels obtained by transcriptome analysis of this strain. The genes encoding phosphotransacetylase (pta) and butyraldehyde dehydrogenase (bld) were deleted to reduce acetate and alcohol formation. The genes located in the butyryl-CoA synthesis (bcs) operon encoding crotonase, butyryl-CoA dehydrogenase with electron-transferring protein subunits α and ß, and 3-hydroxybutyryl-CoA dehydrogenase were overexpressed to channel the flux further towards butyrate formation. Thereby, the native hyper-butanol producer C. saccharoperbutylacetonicum N1-4(HMT) was converted into the hyper-butyrate producer C. saccharoperbutylacetonicum ΔbldΔpta [pMTL83151_BCS_PbgaL]. The transcription pattern following deletion and overexpression was characterized by a second transcriptomic study, revealing partial compensation for the deletion. Furthermore, this strain was characterized in pH-controlled fermentations with either glucose or Excello, a substrate yielded from spruce biomass. Butyrate was the main product, with maximum butyrate concentrations of 11.7 g·L-1 and 14.3 g·L-1, respectively. Minimal amounts of by-products were detected. IMPORTANCE Platform chemicals such as butyrate are usually produced chemically from crude oil, resulting in the carry-over of harmful compounds. The selective production of butyrate using sustainable resources or waste without harmful by-products can be achieved by bacteria such as clostridia. The hyper-butanol producer Clostridium saccharoperbutylacetonicum N1-4(HMT) was converted into a hyper-butyrate producer. Butyrate production with very small amounts of by-products was established with glucose and the sustainable lignocellulosic sugar substrate Excello extracted from spruce biomass by the biorefinery Borregaard (Sarpsborg, Norway).


Subject(s)
Butyrates , Petroleum , 1-Butanol/metabolism , Acetone/metabolism , Butanols/metabolism , Butyrates/metabolism , Clostridium/genetics , Clostridium/metabolism , Ethanol/metabolism , Fermentation , Glucose/metabolism , Lignin , Petroleum/metabolism , Sugars/metabolism
11.
Arch Microbiol ; 204(11): 672, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36251102

ABSTRACT

The growing population increases the need to develop advanced biological methods for utilizing renewable and sustainable resources to produce environmentally friendly biofuels. Currently, energy resources are limited for global demand and are constantly depleting and creating environmental problems. Some higher chain alcohols, like butanol and ethanol, processing similar properties to gasoline, can be alternate sources of biofuel. However, the industrial production of these alcohols remains challenging because they cannot be efficiently produced by microbes naturally. Therefore, butanol is the most interesting biofuel candidate with a higher octane number produced naturally by microbes through Acetone-Butanol-Ethanol fermentation. Feedstock selection as the substrate is the most crucial step in biobutanol production. Lignocellulosic biomass has been widely used to produce cellulosic biobutanol using agricultural wastes and residue. Specific necessary pretreatments, fermentation strategies, bioreactor designing and kinetics, and modeling can also enhance the efficient production of biobutanol. The recent genetic engineering approaches of gene knock in, knock out, and overexpression to manipulate pathways can increase the production of biobutanol in a user friendly host organism. So far various genetic manipulation techniques like antisense RNA, TargeTron Technology and CRISPR have been used to target Clostridium acetobutylicum for biobutanol production. This review summarizes the recent research and development for the efficient production of biobutanol in various aspects.


Subject(s)
Clostridium acetobutylicum , 1-Butanol/metabolism , Acetone/metabolism , Anaerobiosis , Biofuels , Biomass , Butanols/metabolism , Clostridium acetobutylicum/genetics , Clostridium acetobutylicum/metabolism , Ethanol/metabolism , Fermentation , Gasoline , Octanes/metabolism , RNA, Antisense/metabolism
12.
Microb Cell Fact ; 21(1): 130, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35761287

ABSTRACT

BACKGROUND: Lignocellulosic biomass is recognized as an effective potential substrate for biobutanol production. Though many pretreatment and detoxification methods have been set up, the fermentability of detoxicated lignocellulosic substrate is still far lower than that of starchy feedstocks. On the other hand, the number of recent efforts on rational metabolic engineering approaches to increase butanol production in Clostridium strains is also quite limited, demonstrating the physiological complexity of solventogenic clostridia. In fact, the strain performance is greatly impacted by process control. developing efficient process control strategies could be a feasible solution to this problem. RESULTS: In this study, oxidoreduction potential (ORP) controlling was applied to increase the fermentability of enzymatically hydrolyzed steam-exploded corn stover (SECS) for butanol production. When ORP of detoxicated SECS was controlled at - 350 mV, the period of fermentation was shortened by 6 h with an increase of 27.5% in the total solvent (to 18.1 g/L) and 34.2% in butanol (to 10.2 g/L) respectively. Silico modeling revealed that the fluxes of NADPH, NADH and ATP strongly differed between the different scenarios. Quantitative analysis showed that intracellular concentrations of ATP, NADPH/NADP+, and NADH/NAD+ were increased by 25.1%, 81.8%, and 62.5%. ORP controlling also resulted in a 2.1-fold increase in butyraldehyde dehydrogenase, a 1.2-fold increase in butanol dehydrogenase and 29% increase in the cell integrity. CONCLUSION: ORP control strategy effectively changed the intracellular metabolic spectrum and significantly improved Clostridium cell growth and butanol production. The working mechanism can be summarized into three aspects: First, Glycolysis and TCA circulation pathways were strengthened through key nodes such as pyruvate carboxylase [EC: 6.4.1.1], which provided sufficient NADH and NADPH for the cell. Second, sufficient ATP was provided to avoid "acid crash". Third, the key enzymes activities regulating butanol biosynthesis and cell membrane integrity were improved.


Subject(s)
Butanols , Clostridium acetobutylicum , 1-Butanol/metabolism , Adenosine Triphosphate/metabolism , Butanols/metabolism , Clostridium/metabolism , Clostridium acetobutylicum/metabolism , Fermentation , NAD/metabolism , NADP/metabolism , Steam , Zea mays/metabolism
13.
Microb Cell Fact ; 21(1): 85, 2022 May 14.
Article in English | MEDLINE | ID: mdl-35568911

ABSTRACT

BACKGROUND: The replacement of fossil fuels and petrochemicals with sustainable alternatives is necessary to mitigate the effects of climate change and also to counteract diminishing fossil resources. Acetogenic microorganisms such as Clostridium spp. are promising sources of fuels and basic chemical precursors because they efficiently utilize CO and CO2 as carbon source. However the conversion into high titers of butanol and hexanol is challenging. RESULTS: Using a metabolic engineering approach we transferred a 17.9-kb gene cluster via conjugation, containing 13 genes from C. kluyveri and C. acetobutylicum for butanol and hexanol biosynthesis, into C. ljungdahlii. Plasmid-based expression resulted in 1075 mg L-1 butanol and 133 mg L-1 hexanol from fructose in complex medium, and 174 mg L-1 butanol and 15 mg L-1 hexanol from gaseous substrate (20% CO2 and 80% H2) in minimal medium. Product formation was increased by the genomic integration of the heterologous gene cluster. We confirmed the expression of all 13 enzymes by targeted proteomics and identified potential rate-limiting steps. Then, we removed the first-round selection marker using CRISPR/Cas9 and integrated an additional 7.8 kb gene cluster comprising 6 genes from C. carboxidivorans. This led to a significant increase in the hexanol titer (251 mg L-1) at the expense of butanol (158 mg L-1), when grown on CO2 and H2 in serum bottles. Fermentation of this strain at 2-L scale produced 109 mg L-1 butanol and 393 mg L-1 hexanol. CONCLUSIONS: We thus confirmed the function of the butanol/hexanol biosynthesis genes and achieved hexanol biosynthesis in the syngas-fermenting species C. ljungdahlii for the first time, reaching the levels produced naturally by C. carboxidivorans. The genomic integration strain produced hexanol without selection and is therefore suitable for continuous fermentation processes.


Subject(s)
Butanols , Metabolic Engineering , 1-Butanol/metabolism , Butanols/metabolism , Carbon Dioxide/metabolism , Clostridium/genetics , Clostridium/metabolism , Fermentation , Hexanols/metabolism , Metabolic Engineering/methods
14.
Microb Cell Fact ; 21(1): 28, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35193559

ABSTRACT

BACKGROUND: Butyl acetate is a versatile compound that is widely used in the chemical and food industry. The conventional butyl acetate synthesis via Fischer esterification of butanol and acetic acid using catalytic strong acids under high temperature is not environmentally benign. Alternative lipase-catalyzed ester formation requires a significant amount of organic solvent which also presents another environmental challenge. Therefore, a microbial cell factory capable of producing butyl acetate through fermentation of renewable resources would provide a greener approach to butyl acetate production. RESULT: Here, we developed a metabolically engineered strain of Escherichia coli that efficiently converts glucose to butyl acetate. A modified Clostridium CoA-dependent butanol production pathway was used to synthesize butanol which was then condensed with acetyl-CoA through an alcohol acetyltransferase. Optimization of alcohol acetyltransferase expression and redox balance with auto-inducible fermentative controlled gene expression led to an effective titer of 22.8 ± 1.8 g/L butyl acetate produced in a bench-top bioreactor. CONCLUSION: Building on the well-developed Clostridium CoA-dependent butanol biosynthetic pathway, expression of an alcohol acetyltransferase converts the butanol produced into butyl acetate. The results from this study provided a strain of E. coli capable of directly producing butyl acetate from renewable resources at ambient conditions.


Subject(s)
Acetates/metabolism , Biosynthetic Pathways , Escherichia coli/metabolism , Metabolic Engineering/methods , 1-Butanol/metabolism , Acetic Acid/metabolism , Acetyl Coenzyme A/metabolism , Bioreactors , Butanols/metabolism , Escherichia coli/genetics , Fermentation , Glucose/metabolism
15.
Appl Microbiol Biotechnol ; 106(22): 7563-7575, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36287220

ABSTRACT

Serine/threonine protein kinases (STKs) are important for signal transduction and involved in multiple physiological processes, including cell growth, central metabolism, and sporulation in bacteria. However, the role of STKs in solventogenic clostridia remains unclear. Here, we identified and comprehensively investigated six STK candidates in Clostridium beijerinckii. These STKs were classified into four groups with distinct characteristics via analysis of genetic organizations, prediction of protein domains, and multiple sequence alignment. Cbei0566 is a member of the PrkA family with 41% identity to PrkA from Bacillus subtilis, and both Cbei0666 and Cbei0813 are two-component-like STKs. Cbei1151 and Cbei1929 belong to the Hanks family STKs and consist of a cytoplasmic catalytic domain, a transmembrane region, and extracellular sensor domains. In-frame deletion mutants of cbei0566, cbei0666, cbei1929, and cbei2661 displayed similar cell growth with wild type. Both Δcbei0666 and Δcbei2661 improved acetone-butanol-ethanol (ABE) production by 14.3% (19.2 g/L vs. 16.8 g/L), and the sporulation frequencies of Δcbei0566, Δcbei1929, and Δcbei2661 significantly decreased to 35.5%, 55.1% and 44.8%, respectively. The restored phenotypes after genetic complementation demonstrated their direct link to STKs deletion. Remarkably, overexpressing cbei0566 contributed to 41.5% more spore formation and cbei1929 overexpression enhanced ABE production from 19.3 to 24.2 g/L, along with 25% less acids. These results revealed that Cbei0566 and Cbei1929 had prominent regulatory functions. This study expands the current knowledge of the existence and functions of STKs in prokaryotes and highlights the importance of STK-mediated signaling networks in developing superior strains. KEY POINTS: • First reported serine/threonine protein kinases in solventogenic clostridia • Six STKs with distinct properties possessed diverse functions in C. beijerinckii • Cbei1929 and Cbei0566 remarkably regulated solventogenesis and sporulation.


Subject(s)
Clostridium beijerinckii , Clostridium beijerinckii/genetics , Clostridium beijerinckii/metabolism , Protein Serine-Threonine Kinases , Fermentation , Ethanol/metabolism , Butanols/metabolism , 1-Butanol/metabolism , Clostridium/metabolism , Threonine/metabolism , Serine/metabolism
16.
Biotechnol Bioeng ; 118(7): 2703-2718, 2021 07.
Article in English | MEDLINE | ID: mdl-33844271

ABSTRACT

Cellulosic n-butanol from renewable lignocellulosic biomass has gained increased interest. Previously, we have engineered Clostridium cellulovorans, a cellulolytic acidogen, to overexpress the bifunctional butyraldehyde/butanol dehydrogenase gene adhE2 from C. acetobutylicum for n-butanol production from crystalline cellulose. However, butanol production by this engineered strain had a relatively low yield of approximately 0.22 g/g cellulose due to the coproduction of ethanol and acids. We hypothesized that strengthening the carbon flux through the central butyryl-CoA biosynthesis pathway and increasing intracellular NADH availability in C. cellulovorans adhE2 would enhance n-butanol production. In this study, thiolase (thlACA ) from C. acetobutylicum and 3-hydroxybutyryl-CoA dehydrogenase (hbdCT ) from C. tyrobutyricum were overexpressed in C. cellulovorans adhE2 to increase the flux from acetyl-CoA to butyryl-CoA. In addition, ferredoxin-NAD(P)+ oxidoreductase (fnr), which can regenerate the intracellular NAD(P)H and thus increase butanol biosynthesis, was also overexpressed. Metabolic flux analyses showed that mutants overexpressing these genes had a significantly increased carbon flux toward butyryl-CoA, which resulted in increased production of butyrate and butanol. The addition of methyl viologen as an electron carrier in batch fermentation further directed more carbon flux towards n-butanol biosynthesis due to increased reducing equivalent or NADH. The engineered strain C. cellulovorans adhE2-fnrCA -thlACA -hbdCT produced n-butanol from cellulose at a 50% higher yield (0.34 g/g), the highest ever obtained in batch fermentation by any known bacterial strain. The engineered C. cellulovorans is thus a promising host for n-butanol production from cellulosic biomass in consolidated bioprocessing.


Subject(s)
1-Butanol/metabolism , Cellulose/metabolism , Clostridium cellulovorans , Metabolic Engineering , Microorganisms, Genetically-Modified , Clostridium cellulovorans/genetics , Clostridium cellulovorans/metabolism , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/metabolism
17.
Biotechnol Lett ; 43(3): 601-612, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33104936

ABSTRACT

OBJECTIVE: The aim of the study was to evaluate the possibility of using Y. lipolytica biomass as a whole-cell catalyst in the synthesis of lipophilic antioxidants, with the example of esterification of five phenolic acids with 1-butanol. RESULTS: Freeze-dried Y. lipolytica biomass was successfully applied as a biocatalyst in the synthesis of esters of phenylpropanoic acid derivatives with 75-98% conversion. However, in the case of phenylacetic acid derivatives, results below 10% were obtained. The biological activity of phenolic acid esters was strongly associated with their chemical structures. Butyl 3-(4-hydroxyphenyl)propanoate showed an IC50 value of 19 mg/ml (95 mM) and TEAC value of 0.427. Among the compounds tested, butyl esters of 3-(4-hydroxyphenyl)propanoic and 4-hydroxyphenylacetic acids exhibited the highest antifungal activity. CONCLUSIONS: Lipophilization of phenolic acids achieved by enzymatic esterification creates prospects for using these compounds as food additives with antioxidant properties in lipid-rich food matrices.


Subject(s)
Antioxidants , Biomass , Hydroxybenzoates , Yarrowia , 1-Butanol/chemistry , 1-Butanol/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Esterification , Freeze Drying , Hydrophobic and Hydrophilic Interactions , Hydroxybenzoates/chemistry , Hydroxybenzoates/metabolism , Yarrowia/metabolism , Yarrowia/physiology
18.
World J Microbiol Biotechnol ; 37(12): 205, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34698975

ABSTRACT

n-Butanol is an essential chemical intermediate produced through microbial fermentation. However, its toxicity to microbial cells has limited its production to a great extent. The anaerobe lactic acid bacteria (LAB) are the most resistant to n-butanol, so it should be the first choice for improving n-butanol production. The present article aims to review the following aspects of n-butanol production by LAB: (1) the tolerance of LAB to n-butanol, including its tolerance level and potential tolerance mechanisms; (2) genome editing tools in the n-butanol-resistant LAB; (3) methods of LAB modification for n-butanol production and the production levels after modification. This review will provide a theoretical basis for further research on n-butanol production by LAB.


Subject(s)
1-Butanol/metabolism , Lactobacillales/genetics , Lactobacillales/metabolism , Metabolic Engineering , 1-Butanol/pharmacology , Anaerobiosis , Butanols , Drug Tolerance , Fermentation , Gene Editing , Industrial Microbiology , Lactobacillales/drug effects , Metabolic Networks and Pathways/genetics , Stress, Physiological
19.
Chembiochem ; 21(22): 3273-3281, 2020 11 16.
Article in English | MEDLINE | ID: mdl-32656928

ABSTRACT

Propene is one of the most important starting materials in the chemical industry. Herein, we report an enzymatic cascade reaction for the biocatalytic production of propene starting from n-butanol, thus offering a biobased production from glucose. In order to create an efficient system, we faced the issue of an optimal cofactor supply for the fatty acid decarboxylase OleTJE , which is said to be driven by either NAD(P)H or H2 O2 . In the first system, we used an alcohol and aldehyde dehydrogenase coupled to OleTJE by the electron-transfer complex putidaredoxin reductase/putidaredoxin, allowing regeneration of the NAD+ cofactor. With the second system, we intended full oxidation of n-butanol to butyric acid, generating one equivalent of H2 O2 that can be used for the oxidative decarboxylation. As the optimal substrate is a long-chain fatty acid, we also tried to create an improved variant for the decarboxylation of butyric acid by using rational protein design. Within a mutational study with 57 designed mutants, we generated the mutant OleTV292I , which showed a 2.4-fold improvement in propene production in our H2 O2 -driven cascade system and reached total turnover numbers >1000.


Subject(s)
1-Butanol/metabolism , Alkenes/metabolism , Cytochrome P-450 Enzyme System/metabolism , 1-Butanol/chemistry , Alkenes/chemistry , Models, Molecular , Staphylococcaceae/enzymology
20.
Microb Cell Fact ; 19(1): 79, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32220254

ABSTRACT

BACKGROUND: Owing to the increase in energy consumption, fossil fuel resources are gradually depleting which has led to the growing environmental concerns; therefore, scientists are being urged to produce sustainable and ecofriendly fuels. Thus, there is a growing interest in the generation of biofuels from renewable energy resources using microbial fermentation. MAIN TEXT: Butanol is a promising biofuel that can substitute for gasoline; unfortunately, natural microorganisms pose challenges for the economical production of 1-butanol at an industrial scale. The availability of genetic and molecular tools to engineer existing native pathways or create synthetic pathways have made non-native hosts a good choice for the production of 1-butanol from renewable resources. Non-native hosts have several distinct advantages, including using of cost-efficient feedstock, solvent tolerant and reduction of contamination risk. Therefore, engineering non-native hosts to produce biofuels is a promising approach towards achieving sustainability. This paper reviews the currently employed strategies and synthetic biology approaches used to produce 1-butanol in non-native hosts over the past few years. In addition, current challenges faced in using non-native hosts and the possible solutions that can help improve 1-butanol production are also discussed. CONCLUSION: Non-native organisms have the potential to realize commercial production of 1- butanol from renewable resources. Future research should focus on substrate utilization, cofactor imbalance, and promoter selection to boost 1-butanol production in non-native hosts. Moreover, the application of robust genetic engineering approaches is required for metabolic engineering of microorganisms to make them industrially feasible for 1-butanol production.


Subject(s)
1-Butanol/metabolism , Genetic Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL