Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.881
Filter
1.
Nature ; 631(8022): 876-883, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38987605

ABSTRACT

Advancements in precision oncology over the past decades have led to new therapeutic interventions, but the efficacy of such treatments is generally limited by an adaptive process that fosters drug resistance1. In addition to genetic mutations2, recent research has identified a role for non-genetic plasticity in transient drug tolerance3 and the acquisition of stable resistance4,5. However, the dynamics of cell-state transitions that occur in the adaptation to cancer therapies remain unknown and require a systems-level longitudinal framework. Here we demonstrate that resistance develops through trajectories of cell-state transitions accompanied by a progressive increase in cell fitness, which we denote as the 'resistance continuum'. This cellular adaptation involves a stepwise assembly of gene expression programmes and epigenetically reinforced cell states underpinned by phenotypic plasticity, adaptation to stress and metabolic reprogramming. Our results support the notion that epithelial-to-mesenchymal transition or stemness programmes-often considered a proxy for phenotypic plasticity-enable adaptation, rather than a full resistance mechanism. Through systematic genetic perturbations, we identify the acquisition of metabolic dependencies, exposing vulnerabilities that can potentially be exploited therapeutically. The concept of the resistance continuum highlights the dynamic nature of cellular adaptation and calls for complementary therapies directed at the mechanisms underlying adaptive cell-state transitions.


Subject(s)
Adaptation, Physiological , Cell Plasticity , Drug Resistance, Neoplasm , Neoplasms , Female , Humans , Mice , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Cell Line, Tumor , Cell Plasticity/drug effects , Cell Plasticity/genetics , Cellular Reprogramming/drug effects , Cellular Reprogramming/genetics , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Epigenesis, Genetic , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Phenotype
2.
BMC Genomics ; 25(1): 725, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060996

ABSTRACT

BACKGROUND: Daphnia galeata is a suitable model organism for investigating predator-induced defense. Genes and pathways exhibiting differential expression between fish kairomone-treated and untreated groups in D. galeata have been identified. However, understanding of the significance of alternative splicing, a crucial process of the regulation of gene expression in eukaryotes, to this mechanism remains limited. This study measured life-history traits and conducted short-read RNA sequencing and long-read isoform sequencing of two Korean D. galeata genotypes (KB1 and KE2) to uncover the genetic mechanism underlying their phenotypic plasticity under predation stress. RESULTS: KB1 exhibited strategies to enhance fertility and decrease body length when exposed to fish kairomones, while KE2 deployed an adaptive strategy to increase body length. Full-length transcriptomes from KB1 and KE2 yielded 65,736 and 57,437 transcripts, respectively, of which 32 differentially expressed transcripts (DETs) were shared under predation stress across both genotypes. Prominent DETs common to both genotypes were related to energy metabolism and the immune system. Additionally, differential alternative splicing (DAS) events were detected in both genotypes in response to fish kairomones. DAS genes shared between both genotypes may indicate their significant role in the post-transcriptional stress response to fish predation. Calpain-3, involved in digestion and nutrient absorption, was identified as a DAS gene in both genotypes when exposed to fish kairomones. In addition, the gene encoding thymosin beta, which is related to growth, was found to be a statistically significant DAS only in KB1, while that encoding ultraspiracle protein, also associated with growth, was only identified in KE2. Moreover, transcripts encoding proteins such as EGF-like domain-containing protein, vitellogenin fused with superoxide dismutase, and others were identified overlapping between DAS events and DETs and potentially elucidating their association with the observed phenotypic variation in each genotype. CONCLUSIONS: Our findings highlight the crucial role of alternative splicing in modulating transcriptome landscape under predation stress in D. galeata, emphasizing the requirement for integrating gene expression and splicing analyses in evolutionary adaptation studies.


Subject(s)
Alternative Splicing , Daphnia , Genotype , Animals , Daphnia/genetics , Daphnia/drug effects , Daphnia/growth & development , Adaptation, Physiological/genetics , Adaptation, Physiological/drug effects , Pheromones/pharmacology , Fishes/genetics , Transcriptome/drug effects , Gene Expression Profiling
3.
New Phytol ; 242(6): 2719-2733, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38229566

ABSTRACT

The chemical arms race between plants and insects is foundational to the generation and maintenance of biological diversity. We asked how the evolution of a novel defensive compound in an already well-defended plant lineage impacts interactions with diverse herbivores. Erysimum cheiranthoides (Brassicaceae), which produces both ancestral glucosinolates and novel cardiac glycosides, served as a model. We analyzed gene expression to identify cardiac glycoside biosynthetic enzymes in E. cheiranthoides and characterized these enzymes via heterologous expression and CRISPR/Cas9 knockout. Using E. cheiranthoides cardiac glycoside-deficient lines, we conducted insect experiments in both the laboratory and field. EcCYP87A126 initiates cardiac glycoside biosynthesis via sterol side-chain cleavage, and EcCYP716A418 has a role in cardiac glycoside hydroxylation. In EcCYP87A126 knockout lines, cardiac glycoside production was eliminated. Laboratory experiments with these lines revealed that cardiac glycosides were highly effective defenses against two species of glucosinolate-tolerant specialist herbivores, but did not protect against all crucifer-feeding specialist herbivores in the field. Cardiac glycosides had lesser to no effect on two broad generalist herbivores. These results begin elucidation of the E. cheiranthoides cardiac glycoside biosynthetic pathway and demonstrate in vivo that cardiac glycoside production allows Erysimum to escape from some, but not all, specialist herbivores.


Subject(s)
Cardiac Glycosides , Erysimum , Glucosinolates , Herbivory , Glucosinolates/metabolism , Animals , Cardiac Glycosides/pharmacology , Erysimum/metabolism , Gene Expression Regulation, Plant , Gene Knockout Techniques , Adaptation, Physiological/genetics , Adaptation, Physiological/drug effects
4.
New Phytol ; 242(6): 2604-2619, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563391

ABSTRACT

Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood. In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite. Through genomic resequencing and complementation tests, we identified OsLPD1 as the causal gene, which encodes a putative lipoamide dehydrogenase. OsLPD1 was expressed in the outer cell layer of roots, root meristem cells, and in the mesophyll and vascular tissues of leaves. Subcellular localization and immunoblot analysis demonstrated that OsLPD1 is localized in the stroma of plastids. In vitro assays showed that OsLPD1 exhibited lipoamide dehydrogenase (LPD) activity, which was strongly inhibited by arsenite, but not by arsenate. The ahs1 and OsLPD1 knockout mutants exhibited significantly reduced NADH/NAD+ and GSH/GSSG ratios, along with increased levels of reactive oxygen species and greater oxidative stress in the roots compared with wild-type (WT) plants under As treatment. Additionally, loss-of-function of OsLPD1 also resulted in decreased fatty acid concentrations in rice grain. Taken together, our finding reveals that OsLPD1 plays an important role for maintaining redox homeostasis, conferring tolerance to arsenic stress, and regulating fatty acid biosynthesis in rice.


Subject(s)
Arsenic , Dihydrolipoamide Dehydrogenase , Fatty Acids , Homeostasis , Oryza , Plant Proteins , Stress, Physiological , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Arsenic/toxicity , Arsenites/toxicity , Dihydrolipoamide Dehydrogenase/metabolism , Dihydrolipoamide Dehydrogenase/genetics , Fatty Acids/biosynthesis , Gene Expression Regulation, Plant/drug effects , Mutation/genetics , Oryza/genetics , Oryza/drug effects , Oryza/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/drug effects , Plant Roots/metabolism , Plastids/metabolism , Plastids/drug effects , Reactive Oxygen Species/metabolism , Stress, Physiological/drug effects , Stress, Physiological/genetics
5.
Curr Opin Clin Nutr Metab Care ; 27(5): 457-461, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38963563

ABSTRACT

PURPOSE OF REVIEW: Over the past decade, trophic gastrointestinal hormonal factors have been included in the intestinal rehabilitation programs for short bowel syndrome (SBS). Up today the only trophic factor approved for clinical practice is the glucagon-like peptide-2 (GLP-2) analogue, teduglutide. A literature review on the last 2-year data on GLP-2 analogues for the treatment of SBS in adults has been performed. RECENT FINDINGS: Several reports on real-world data on the efficacy and safety of teduglutide treatment for SBS, some case-reports on the use of teduglutide in non-SBS conditions as well as phase 2 trials on new GL-2 analogues on patients with SBS have been retrieved. SUMMARY: Real-world data confirmed the teduglutide efficacy not only in weaning off IVS in accurately selected patients but also increased the alert on the risk of development of gastrointestinal polyps related to the drug; the impact of the therapy on patients' QoL deserves further studies and the cost-utility of the treatment is still uncertain. Some case reports highlighted the potential benefit of treatment with teduglutide in non-SBS gastrointestinal diseases, such as graft-versus-host disease, primary amyloidosis and refractory microscopic colitis. Phase 2 RCTs on safety and efficacy of two new long-acting GLP-2 analogues, glepaglutide and apraglutide, were published, and phase 3 RCTs have been completed.


Subject(s)
Gastrointestinal Agents , Glucagon-Like Peptide 2 , Peptides , Short Bowel Syndrome , Humans , Short Bowel Syndrome/drug therapy , Short Bowel Syndrome/rehabilitation , Glucagon-Like Peptide 2/therapeutic use , Peptides/therapeutic use , Gastrointestinal Agents/therapeutic use , Adaptation, Physiological/drug effects , Adult , Intestines/drug effects , Intestines/physiopathology , Quality of Life
6.
Physiol Plant ; 176(3): e14404, 2024.
Article in English | MEDLINE | ID: mdl-38922894

ABSTRACT

Soil acidity is a global issue; soils with pH <4.5 are widespread in Europe. This acidity adversely affects nutrient availability to plants; pH levels <5.0 lead to aluminum (Al3+) toxicity, a significant problem that hinders root growth and nutrient uptake in faba bean (Vicia faba L.) and its symbiotic relationship with Rhizobium. However, little is known about the specific traits and tolerant genotypes among the European faba beans. This study aimed to identify response traits associated with tolerance to root zone acidity and Al3+ toxicity and potentially tolerant genotypes for future breeding efforts. Germplasm survey was conducted using 165 genotypes in a greenhouse aquaponics system. Data on the root and shoot systems were collected. Subsequently, 12 genotypes were selected for further phenotyping in peat medium, where data on physiological and morphological parameters were recorded along with biochemical responses in four selected genotypes. In the germplasm survey, about 30% of genotypes showed tolerance to acidity and approximately 10% exhibited tolerance to Al3+, while 7% showed tolerance to both. The phenotyping experiment indicated diverse morphological and physiological responses among treatments and genotypes. Acid and Al3+ increased proline concentration. Interaction between genotype and environment was observed for ascorbate peroxidase activity, malondialdehyde, and proline concentrations. Genomic markers associated with acidity and acid+Al3+-toxicity tolerances were identified using GWAS analysis. Four faba bean genotypes with varying levels of tolerance to acidity and Al3+ toxicity were identified.


Subject(s)
Aluminum , Genotype , Phenotype , Vicia faba , Vicia faba/genetics , Vicia faba/drug effects , Vicia faba/growth & development , Vicia faba/metabolism , Aluminum/toxicity , Soil/chemistry , Hydrogen-Ion Concentration , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/growth & development , Proline/metabolism , Adaptation, Physiological/genetics , Adaptation, Physiological/drug effects , Acids/metabolism
7.
Alcohol Alcohol ; 59(5)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39233472

ABSTRACT

AIMS: As the interactions of alcohol and HIV/SIV infection and their impact on liver metabolic homeostasis remain to be fully elucidated, this study aimed to determine alcohol-mediated hepatic adaptations of metabolic pathways in SIV/ART-treated female rhesus macaques fed a nutritionally balanced diet. METHODS: Macaques were administered chronic binge alcohol (CBA; 13-14 g ethanol/kg/week for 14.5 months; n = 7) or vehicle (VEH; n = 8) for 14.5 months. Livers were excised following an overnight fast. Gene and protein expression, enzymatic activity, and lipid content were determined using frozen tissue and histological staining was performed using paraffin-embedded tissue. RESULTS: CBA/SIV macaques showed increased hepatic protein expression of electron transport Complex III and increased gene expression of glycolytic (phosphofructokinase and aldolase) and gluconeogenic (pyruvate carboxylase) enzymes and of genes involved in lipid turnover homeostasis (perilipin 1, peroxisome proliferator-activated receptor gamma, carbohydrate responsive binding protein, and acetyl-CoA carboxylase B) as compared to that of livers from the VEH/SIV group. Plasma triglyceride concentration had a significant positive association with liver triglyceride content in the CBA/SIV group. CONCLUSIONS: These results reflect CBA-associated alterations in expression of proteins and genes involved in glucose and lipid metabolism homeostasis without significant evidence of steatosis or dysglycemia. Whether these changes predispose to greater liver pathology upon consumption of a high fat/high sugar diet that is more aligned with dietary intake of PWH and/or exposure to additional environmental factors warrants further investigation.


Subject(s)
Binge Drinking , Liver , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome , Animals , Female , Simian Acquired Immunodeficiency Syndrome/metabolism , Liver/metabolism , Liver/drug effects , Binge Drinking/metabolism , Adaptation, Physiological/drug effects , Ethanol/pharmacology , Lipid Metabolism/drug effects
8.
Plant Cell Rep ; 43(6): 159, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822842

ABSTRACT

KEY MESSAGE: AcEXPA1, an aluminum (Al)-inducible expansin gene, is demonstrated to be involved in carpetgrass (Axonopus compressus) root elongation under Al toxicity through analyzing composite carpetgrass plants overexpressing AcEXPA1. Aluminum (Al) toxicity is a major mineral toxicity that limits plant productivity in acidic soils by inhibiting root growth. Carpetgrass (Axonopus compressus), a dominant warm-season turfgrass widely grown in acidic tropical soils, exhibits superior adaptability to Al toxicity. However, the mechanisms underlying its Al tolerance are largely unclear, and knowledge of the functional genes involved in Al detoxification in this turfgrass is limited. In this study, phenotypic variation in Al tolerance, as indicated by relative root elongation, was observed among seventeen carpetgrass genotypes. Al-responsive genes related to cell wall modification were identified in the roots of the Al-tolerant genotype 'A58' via transcriptome analysis. Among them, a gene encoding α-expansin was cloned and designated AcEXPA1 for functional characterization. Observed Al dose effects and temporal responses revealed that Al induced AcEXPA1 expression in carpetgrass roots. Subsequently, an efficient and convenient Agrobacterium rhizogenes-mediated transformation method was established to generate composite carpetgrass plants with transgenic hairy roots for investigating AcEXPA1 involvement in carpetgrass root growth under Al toxicity. AcEXPA1 was successfully overexpressed in the transgenic hairy roots, and AcEXPA1 overexpression enhanced Al tolerance in composite carpetgrass plants through a decrease in Al-induced root growth inhibition. Taken together, these findings suggest that AcEXPA1 contributes to Al tolerance in carpetgrass via root growth regulation.


Subject(s)
Aluminum , Gene Expression Regulation, Plant , Plant Proteins , Plant Roots , Plants, Genetically Modified , Aluminum/toxicity , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/drug effects , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Adaptation, Physiological/genetics , Adaptation, Physiological/drug effects , Poaceae/genetics , Poaceae/drug effects
9.
Ecotoxicol Environ Saf ; 276: 116301, 2024 May.
Article in English | MEDLINE | ID: mdl-38599159

ABSTRACT

To study the heavy metal accumulation and its impact on insect exterior and chromosome morphology, and reveal the molecular mechanism of insects adapting to long-term heavy metal compound pollution habitats, this study, in the Diaojiang river basin, which has been polluted by heavy metals(HMs) for nearly a thousand years, two Eucriotettix oculatus populations was collected from mining and non-mining areas. It was found that the contents of 7 heavy metals (As, Cd, Pb, Zn, Cu, Sn, Sb) in E. oculatus of the mining area were higher than that in the non-mining 1-11 times. The analysis of morphology shows that the external morphology, the hind wing type and the chromosomal morphology of E. oculatus are significant differences between the two populations. Based on the heavy metal accumulation,morphological change, and stable population density, it is inferred that the mining area population has been affected by heavy metals and has adapted to the environment of heavy metals pollution. Then, by analyzing the transcriptome of the two populations, it was found that the digestion, immunity, excretion, endocrine, nerve, circulation, reproductive and other systems and lysosomes, endoplasmic reticulum and other cell structure-related gene expression were suppressed. This shows that the functions of the above-mentioned related systems of E. oculatus are inhibited by heavy metal stress. However, it has also been found that through the significant up-regulation of genes related to the above system, such as ATP2B, pepsin A, ubiquitin, AQP1, ACOX, ATPeV0A, SEC61A, CANX, ALDH7A1, DLD, aceE, Hsp40, and catalase, etc., and the down-regulation of MAPK signalling pathway genes, can enhanced nutrient absorption, improve energy metabolism, repair damaged cells and degrade abnormal proteins, maintain the stability of cells and systems, and resist heavy metal damage so that E. oculatus can adapt to the environment of heavy metal pollution for a long time.


Subject(s)
Grasshoppers , Metals, Heavy , Water Pollutants, Chemical , Animals , Metals, Heavy/toxicity , Water Pollutants, Chemical/toxicity , Grasshoppers/drug effects , Grasshoppers/anatomy & histology , Environmental Monitoring/methods , Mining , China , Adaptation, Physiological/drug effects , Transcriptome/drug effects , Rivers/chemistry
10.
Int J Mol Sci ; 25(16)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39201756

ABSTRACT

Thiosemicarbazones and their metal complexes have been studied for their biological activities against bacteria, cancer cells and protozoa. Short-term in vitro treatment with one gold (III) complex (C3) and its salicyl-thiosemicarbazone ligand (C4) selectively inhibited proliferation of T. gondii. Transmission Electron Microscopy (TEM) detected transient structural alterations in the parasitophorous vacuole membrane and the tachyzoite cytoplasm, but the mitochondrial membrane potential appeared unaffected by these compounds. Proteins potentially interacting with C3 and C4 were identified using differential affinity chromatography coupled with mass spectrometry (DAC-MS). Moreover, long-term in vitro treatment was performed to investigate parasitostatic or parasiticidal activity of the compounds. DAC-MS identified 50 ribosomal proteins binding both compounds, and continuous drug treatments for up to 6 days caused the loss of efficacy. Parasite tolerance to both compounds was, however, rapidly lost in their absence and regained shortly after re-exposure. Proteome analyses of six T. gondii ME49 clones adapted to C3 and C4 compared to the non-adapted wildtype revealed overexpression of ribosomal proteins, of two transmembrane proteins involved in exocytosis and of an alpha/beta hydrolase fold domain-containing protein. Results suggest that C3 and C4 may interfere with protein biosynthesis and that adaptation may be associated with the upregulated expression of tachyzoite transmembrane proteins and transporters, suggesting that the in vitro drug tolerance in T. gondii might be due to reversible, non-drug specific stress-responses mediated by phenotypic plasticity.


Subject(s)
Ribosomal Proteins , Thiosemicarbazones , Toxoplasma , Toxoplasma/drug effects , Toxoplasma/metabolism , Thiosemicarbazones/pharmacology , Ribosomal Proteins/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Adaptation, Physiological/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Up-Regulation/drug effects , Humans , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Animals
11.
Plant Physiol ; 188(3): 1686-1708, 2022 03 04.
Article in English | MEDLINE | ID: mdl-34893896

ABSTRACT

Drought stress tolerance is a complex trait regulated by multiple factors. Here, we demonstrate that the miRNA160-Auxin Response Factor 17 (ARF17)-HYPONASTIC LEAVES 1 module is crucial for apple (Malus domestica) drought tolerance. Using stable transgenic plants, we found that drought tolerance was improved by higher levels of Mdm-miR160 or MdHYL1 and by decreased levels of MdARF17, whereas reductions in MdHYL1 or increases in MdARF17 led to greater drought sensitivity. Further study revealed that modulation of drought tolerance was achieved through regulation of drought-responsive miRNA levels by MdARF17 and MdHYL1; MdARF17 interacted with MdHYL1 and bound to the promoter of MdHYL1. Genetic analysis further suggested that MdHYL1 is a direct downstream target of MdARF17. Importantly, MdARF17 and MdHYL1 regulated the abundance of Mdm-miR160. In addition, the Mdm-miR160-MdARF17-MdHYL1 module regulated adventitious root development. We also found that Mdm-miR160 can move from the scion to the rootstock in apple and tomato (Solanum lycopersicum), thereby improving root development and drought tolerance of the rootstock. Our study revealed the mechanisms by which the positive feedback loop of Mdm-miR160-MdARF17-MdHYL1 influences apple drought tolerance.


Subject(s)
Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Droughts , Indoleacetic Acids/metabolism , Malus/genetics , Malus/metabolism , MicroRNAs/drug effects , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Dehydration/genetics , Dehydration/physiopathology , Gene Expression Regulation, Plant , Plant Leaves/metabolism , Plants, Genetically Modified
12.
PLoS Biol ; 18(12): e3000987, 2020 12.
Article in English | MEDLINE | ID: mdl-33332354

ABSTRACT

The antimicrobial resistance crisis has persisted despite broad attempts at intervention. It has been proposed that an important driver of resistance is selection imposed on bacterial populations that are not the intended target of antimicrobial therapy. But to date, there has been limited quantitative measure of the mean and variance of resistance following antibiotic exposure. Here we focus on the important nosocomial pathogen Enterococcus faecium in a hospital system where resistance to daptomycin is evolving despite standard interventions. We hypothesized that the intravenous use of daptomycin generates off-target selection for resistance in transmissible gastrointestinal (carriage) populations of E. faecium. We performed a cohort study in which the daptomycin resistance of E. faecium isolated from rectal swabs from daptomycin-exposed patients was compared to a control group of patients exposed to linezolid, a drug with similar indications. In the daptomycin-exposed group, daptomycin resistance of E. faecium from the off-target population was on average 50% higher than resistance in the control group (n = 428 clones from 22 patients). There was also greater phenotypic diversity in daptomycin resistance within daptomycin-exposed patients. In patients where multiple samples over time were available, a wide variability in temporal dynamics were observed, from long-term maintenance of resistance to rapid return to sensitivity after daptomycin treatment stopped. Sequencing of isolates from a subset of patients supports the argument that selection occurs within patients. Our results demonstrate that off-target gastrointestinal populations rapidly respond to intravenous antibiotic exposure. Focusing on the off-target evolutionary dynamics may offer novel avenues to slow the spread of antibiotic resistance.


Subject(s)
Daptomycin/pharmacology , Drug Resistance, Bacterial/drug effects , Vancomycin-Resistant Enterococci/drug effects , Adaptation, Physiological/drug effects , Adaptation, Physiological/physiology , Adult , Anti-Bacterial Agents/therapeutic use , Cohort Studies , Enterococcus faecium/drug effects , Enterococcus faecium/metabolism , Female , Humans , Male , Microbial Sensitivity Tests , Phylogeny , Vancomycin/pharmacology , Vancomycin-Resistant Enterococci/metabolism
13.
J Biol Chem ; 296: 100566, 2021.
Article in English | MEDLINE | ID: mdl-33745971

ABSTRACT

Trypanosoma brucei is a species of unicellular parasite that can cause severe diseases in livestock and humans, including African trypanosomiasis and Chagas disease. Adaptation to diverse environments and changes in nutritional conditions is essential for T. brucei to establish an infection when changing hosts or during invasion of different host tissues. One such adaptation is the ability of T. brucei to rapidly switch its energy metabolism from glucose metabolism in the mammalian blood to proline catabolism in the insect stages and vice versa. However, the mechanisms that support the parasite's response to nutrient availability remain unclear. Using RNAseq and qRT-PCR, we investigated the response of T. brucei to amino acid or glucose starvation and found increased mRNA levels of several amino acid transporters, including all genes of the amino acid transporter AAT7-B subgroup. Functional characterization revealed that AAT7-B members are plasma membrane-localized in T. brucei and when expressed in Saccharomyces cerevisiae supported the uptake of proline, alanine, and cysteine, while other amino acids were poorly recognized. All AAT7-B members showed a preference for proline, which is transported with high or low affinity. RNAi-mediated AAT7-B downregulation resulted in a reduction of intracellular proline concentrations and growth arrest under low proline availability in cultured procyclic form parasites. Taken together, these results suggest a role of AAT7-B transporters in the response of T. brucei to proline starvation and proline catabolism.


Subject(s)
Alanine/metabolism , Amino Acid Transport Systems, Neutral/metabolism , Nutrients/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/metabolism , Adaptation, Physiological/drug effects , Biological Transport/drug effects , Energy Metabolism/drug effects , Trypanosoma brucei brucei/physiology
14.
PLoS Pathog ; 16(5): e1008431, 2020 05.
Article in English | MEDLINE | ID: mdl-32379814

ABSTRACT

Bacteria are well known for their extremely high adaptability in stressful environments. The clinical relevance of this property is clearly illustrated by the ever-decreasing efficacy of antibiotic therapies. Frequent exposures to antibiotics favor bacterial strains that have acquired mechanisms to overcome drug inhibition and lethality. Many strains, including life-threatening pathogens, exhibit increased antibiotic resistance or tolerance, which considerably complicates clinical practice. Alarmingly, recent studies show that in addition to resistance, tolerance levels of bacterial populations are extremely flexible in an evolutionary context. Here, we summarize laboratory studies providing insight in the evolution of resistance and tolerance and shed light on how the treatment conditions could affect the direction of bacterial evolution under antibiotic stress.


Subject(s)
Adaptation, Biological/drug effects , Bacteria/drug effects , Drug Resistance, Bacterial/drug effects , Adaptation, Biological/genetics , Adaptation, Physiological/drug effects , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Drug Resistance, Microbial/drug effects , Evolution, Molecular
15.
PLoS Pathog ; 16(7): e1008700, 2020 07.
Article in English | MEDLINE | ID: mdl-32687537

ABSTRACT

With antibiotic resistance rates on the rise, it is critical to understand how microbial species interactions influence the evolution of resistance. In obligate mutualisms, the survival of any one species (regardless of its intrinsic resistance) is contingent on the resistance of its cross-feeding partners. This sets the community antibiotic sensitivity at that of the 'weakest link' species. In this study, we tested the hypothesis that weakest link dynamics in an obligate cross-feeding relationship would limit the extent and mechanisms of antibiotic resistance evolution. We experimentally evolved an obligate co-culture and monoculture controls along gradients of two different antibiotics. We measured the rate at which each treatment increased antibiotic resistance, and sequenced terminal populations to question whether mutations differed between mono- and co-cultures. In both rifampicin and ampicillin treatments, we observed that resistance evolved more slowly in obligate co-cultures of E. coli and S. enterica than in monocultures. While we observed similar mechanisms of resistance arising under rifampicin selection, under ampicillin selection different resistance mechanisms arose in co-cultures and monocultures. In particular, mutations in an essential cell division protein, ftsI, arose in S. enterica only in co-culture. A simple mathematical model demonstrated that reliance on a partner is sufficient to slow the rate of adaptation, and can change the distribution of adaptive mutations that are acquired. Our results demonstrate that cooperative metabolic interactions can be an important modulator of resistance evolution in microbial communities.


Subject(s)
Adaptation, Physiological/drug effects , Drug Resistance, Microbial/physiology , Escherichia coli/physiology , Microbial Interactions/physiology , Salmonella enterica/physiology , Adaptation, Physiological/genetics , Ampicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Coculture Techniques , Escherichia coli/drug effects , Microbial Interactions/drug effects , Models, Theoretical , Mutation , Rifampin/pharmacology , Salmonella enterica/drug effects
16.
Plant Physiol ; 187(4): 1985-2004, 2021 12 04.
Article in English | MEDLINE | ID: mdl-33905517

ABSTRACT

Recent insights about the transport mechanisms involved in the in and out of calcium ions in plant organelles, and their role in the regulation of cytosolic calcium homeostasis in different signaling pathways.


Subject(s)
Adaptation, Physiological/drug effects , Biological Transport/drug effects , Calcium Signaling/drug effects , Calcium/metabolism , Organelles/metabolism , Plant Cells/metabolism , Signal Transduction/drug effects , Cytosol/metabolism , Metabolic Networks and Pathways
17.
Plant Physiol ; 187(4): 1856-1875, 2021 12 04.
Article in English | MEDLINE | ID: mdl-35235671

ABSTRACT

Plant plasma membrane H+-ATPases and Ca2+-ATPases maintain low cytoplasmic concentrations of H+ and Ca2+, respectively, and are essential for plant growth and development. These low concentrations allow plasma membrane H+-ATPases to function as electrogenic voltage stats, and Ca2+-ATPases as "off" mechanisms in Ca2+-based signal transduction. Although these pumps are autoregulated by cytoplasmic concentrations of H+ and Ca2+, respectively, they are also subject to exquisite regulation in response to biotic and abiotic events in the environment. A common paradigm for both types of pumps is the presence of terminal regulatory (R) domains that function as autoinhibitors that can be neutralized by multiple means, including phosphorylation. A picture is emerging in which some of the phosphosites in these R domains appear to be highly, nearly constantly phosphorylated, whereas others seem to be subject to dynamic phosphorylation. Thus, some sites might function as major switches, whereas others might simply reduce activity. Here, we provide an overview of the relevant transport systems and discuss recent advances that address their relation to external stimuli and physiological adaptations.


Subject(s)
Adaptation, Physiological/drug effects , Calcium-Transporting ATPases/metabolism , Calcium/metabolism , Ion Pumps/metabolism , Plant Physiological Phenomena/drug effects , Protein Transport/drug effects , Proton-Translocating ATPases/metabolism , Signal Transduction/drug effects , Cell Membrane/metabolism
18.
Mol Cell Proteomics ; 19(4): 589-607, 2020 04.
Article in English | MEDLINE | ID: mdl-32024770

ABSTRACT

Bacteria secrete siderophores to access iron, a key nutrient poorly bioavailable and the source of strong competition between microorganisms in most biotopes. Many bacteria also use siderophores produced by other microorganisms (exosiderophores) in a piracy strategy. Pseudomonas aeruginosa, an opportunistic pathogen, produces two siderophores, pyoverdine and pyochelin, and is also able to use a panel of exosiderophores. We first investigated expression of the various iron-uptake pathways of P. aeruginosa in three different growth media using proteomic and RT-qPCR approaches and observed three different phenotypic patterns, indicating complex phenotypic plasticity in the expression of the various iron-uptake pathways. We then investigated the phenotypic plasticity of iron-uptake pathway expression in the presence of various exosiderophores (present individually or as a mixture) under planktonic growth conditions, as well as in an epithelial cell infection assay. In all growth conditions tested, catechol-type exosiderophores were clearly more efficient in inducing the expression of their corresponding transporters than the others, showing that bacteria opt for the use of catechol siderophores to access iron when they are present in the environment. In parallel, expression of the proteins of the pyochelin pathway was significantly repressed under most conditions tested, as well as that of proteins of the pyoverdine pathway, but to a lesser extent. There was no effect on the expression of the heme and ferrous uptake pathways. Overall, these data provide precise insights on how P. aeruginosa adjusts the expression of its various iron-uptake pathways (phenotypic plasticity and switching) to match varying levels of iron and competition.


Subject(s)
Adaptation, Physiological , Pseudomonas aeruginosa/physiology , Siderophores/metabolism , A549 Cells , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Bacterial Proteins/metabolism , Biological Transport/drug effects , Catechols/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Gene Expression Regulation, Bacterial/drug effects , Humans , Iron/metabolism , Iron Chelating Agents/pharmacology , Pseudomonas aeruginosa/cytology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Siderophores/chemistry , Transcription, Genetic/drug effects , Virulence Factors/metabolism
19.
Int J Mol Sci ; 23(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35054782

ABSTRACT

Drought has become one of the environmental threats to agriculture and food security. Applications of melatonin (MT) serve as an effective way to alleviate drought stress, but the underlying mechanism remains poorly understood. Here, we found that foliar spray of 100-µM MT greatly mitigated the severe drought stress-induced damages in rice seedlings, including improved survival rates, enhanced antioxidant system, and adjusted osmotic balance. However, mutation of the suppressor of the G2 allele of skp1 (OsSGT1) and ABSCISIC ACID INSENSITIVE 5 (OsABI5) abolished the effects of MT. Furthermore, the upregulated expression of OsABI5 was detected in wild type (WT) under drought stress, irrespective of MT treatment, whereas OsABI5 was significantly downregulated in sgt1 and sgt1abi5 mutants. In contrast, no change of the OsSGT1 expression level was detected in abi5. Moreover, mutation of OsSGT1 and OsABI5 significantly suppressed the expression of genes associated with the antioxidant system. These results suggested that the functions of OsSGT1 in the MT-mediated alleviation of drought stress were associated with the ABI5-mediated signals. Collectively, we demonstrated that OsSGT1 was involved in the drought response of rice and that melatonin promoted SGT1-involved signals to ameliorate drought stress adaption.


Subject(s)
Adaptation, Physiological , Droughts , Melatonin/pharmacology , Oryza/physiology , Plant Proteins/metabolism , Signal Transduction , Stress, Physiological , Abscisic Acid/metabolism , Adaptation, Physiological/drug effects , Antioxidants/pharmacology , Cyclopentanes/metabolism , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Mutation/genetics , Oryza/drug effects , Oryza/genetics , Oxidative Stress/drug effects , Oxylipins/metabolism , Plant Proteins/genetics , Salicylic Acid/metabolism , Seedlings , Signal Transduction/drug effects , Stress, Physiological/drug effects
20.
Int J Mol Sci ; 23(1)2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35008903

ABSTRACT

Aluminum (Al) toxicity is the main factor limiting plant growth and the yield of cereal crops in acidic soils. Al-induced oxidative stress could lead to the excessive accumulation of reactive oxygen species (ROS) and aldehydes in plants. Aldehyde dehydrogenase (ALDH) genes, which play an important role in detoxification of aldehydes when exposed to abiotic stress, have been identified in most species. However, little is known about the function of this gene family in the response to Al stress. Here, we identified an ALDH gene in maize, ZmALDH, involved in protection against Al-induced oxidative stress. Al stress up-regulated ZmALDH expression in both the roots and leaves. The expression of ZmALDH only responded to Al toxicity but not to other stresses including low pH and other metals. The heterologous overexpression of ZmALDH in Arabidopsis increased Al tolerance by promoting the ascorbate-glutathione cycle, increasing the transcript levels of antioxidant enzyme genes as well as the activities of their products, reducing MDA, and increasing free proline synthesis. The overexpression of ZmALDH also reduced Al accumulation in roots. Taken together, these findings suggest that ZmALDH participates in Al-induced oxidative stress and Al accumulation in roots, conferring Al tolerance in transgenic Arabidopsis.


Subject(s)
Adaptation, Physiological/genetics , Aldehyde Dehydrogenase/genetics , Aluminum/toxicity , Arabidopsis/genetics , Arabidopsis/physiology , Genes, Plant , Zea mays/genetics , Adaptation, Physiological/drug effects , Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/metabolism , Amino Acid Sequence , Antioxidants/metabolism , Arabidopsis/drug effects , Ascorbate Peroxidases/metabolism , Ascorbic Acid/metabolism , Cloning, Molecular , Gene Expression Regulation, Plant/drug effects , Glutathione/metabolism , Glutathione Reductase/metabolism , Hydrogen Peroxide/metabolism , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Phylogeny , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plants, Genetically Modified , Proline/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Subcellular Fractions/metabolism , Superoxides/metabolism , Nicotiana/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL