Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 219
Filter
1.
EMBO Rep ; 24(8): e57127, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37278158

ABSTRACT

The mitochondrial ADP/ATP carrier (SLC25A4), also called the adenine nucleotide translocase, imports ADP into the mitochondrial matrix and exports ATP, which are key steps in oxidative phosphorylation. Historically, the carrier was thought to form a homodimer and to operate by a sequential kinetic mechanism, which involves the formation of a ternary complex with the two exchanged substrates bound simultaneously. However, recent structural and functional data have demonstrated that the mitochondrial ADP/ATP carrier works as a monomer and has a single substrate binding site, which cannot be reconciled with a sequential kinetic mechanism. Here, we study the kinetic properties of the human mitochondrial ADP/ATP carrier by using proteoliposomes and transport robotics. We show that the Km/Vmax ratio is constant for all of the measured internal concentrations. Thus, in contrast to earlier claims, we conclude that the carrier operates with a ping-pong kinetic mechanism in which substrate exchange across the membrane occurs consecutively rather than simultaneously. These data unite the kinetic and structural models, showing that the carrier operates with an alternating access mechanism.


Subject(s)
Mitochondria , Mitochondrial ADP, ATP Translocases , Humans , Mitochondrial ADP, ATP Translocases/chemistry , Mitochondrial ADP, ATP Translocases/metabolism , Mitochondria/metabolism , Adenosine Triphosphate/metabolism , Adenosine Diphosphate/metabolism , Kinetics , Adenine Nucleotide Translocator 1/metabolism
2.
Mol Cell ; 67(3): 471-483.e7, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28712724

ABSTRACT

Mutations in mitochondrial acylglycerol kinase (AGK) cause Sengers syndrome, which is characterized by cataracts, hypertrophic cardiomyopathy, and skeletal myopathy. AGK generates phosphatidic acid and lysophosphatidic acid, bioactive phospholipids involved in lipid signaling and the regulation of tumor progression. However, the molecular mechanisms of the mitochondrial pathology remain enigmatic. Determining its mitochondrial interactome, we have identified AGK as a constituent of the TIM22 complex in the mitochondrial inner membrane. AGK assembles with TIMM22 and TIMM29 and supports the import of a subset of multi-spanning membrane proteins. The function of AGK as a subunit of the TIM22 complex does not depend on its kinase activity. However, enzymatically active AGK is required to maintain mitochondrial cristae morphogenesis and the apoptotic resistance of cells. The dual function of AGK as lipid kinase and constituent of the TIM22 complex reveals that disturbances in both phospholipid metabolism and mitochondrial protein biogenesis contribute to the pathogenesis of Sengers syndrome.


Subject(s)
Cardiomyopathies/enzymology , Cataract/enzymology , Mitochondria/enzymology , Mitochondrial Membrane Transport Proteins/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Adenine Nucleotide Translocator 1/metabolism , Antiporters/metabolism , Apoptosis , Calcium-Binding Proteins/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Cataract/genetics , Cataract/pathology , Genetic Predisposition to Disease , HEK293 Cells , HeLa Cells , Humans , Mitochondria/pathology , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proteins/metabolism , Multiprotein Complexes , Mutation , Phenotype , Phospholipids/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Transport , Time Factors , Transfection
3.
Proc Natl Acad Sci U S A ; 117(35): 21747-21756, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32817425

ABSTRACT

Arabidopsis AINTEGUMENTA (ANT), an AP2 transcription factor, is known to control plant growth and floral organogenesis. In this study, our transcriptome analysis and in situ hybridization assays of maize embryonic leaves suggested that maize ANT1 (ZmANT1) regulates vascular development. To better understand ANT1 functions, we determined the binding motif of ZmANT1 and then showed that ZmANT1 binds the promoters of millet SCR1, GNC, and AN3, which are key regulators of Kranz anatomy, chloroplast development, and plant growth, respectively. We generated a mutant with a single-codon deletion and two frameshift mutants of the ANT1 ortholog in the C4 millet Setaria viridis by the CRISPR/Cas9 technique. The two frameshift mutants displayed reduced photosynthesis efficiency and growth rate, smaller leaves, and lower grain yields than wild-type (WT) plants. Moreover, their leaves sporadically exhibited distorted Kranz anatomy and vein spacing. Conducting transcriptomic analysis of developing leaves in the WT and the three mutants we identified differentially expressed genes (DEGs) in the two frameshift mutant lines and found many down-regulated DEGs enriched in photosynthesis, heme, tetrapyrrole binding, and antioxidant activity. In addition, we predicted many target genes of ZmANT1 and chose 13 of them to confirm binding of ZmANT1 to their promoters. Based on the above observations, we proposed a model for ANT1 regulation of cell proliferation and leaf growth, vascular and vein development, chloroplast development, and photosynthesis through its target genes. Our study revealed biological roles of ANT1 in several developmental processes beyond its known roles in plant growth and floral organogenesis.


Subject(s)
Adenine Nucleotide Translocator 1/metabolism , Zea mays/growth & development , Zea mays/genetics , Adenine Nucleotide Translocator 1/physiology , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/metabolism , Chloroplasts/metabolism , Flowers/genetics , Flowers/growth & development , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Millets/genetics , Millets/metabolism , Organogenesis, Plant/genetics , Photosynthesis/genetics , Photosynthesis/physiology , Plant Development/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcriptome
4.
Neurochem Res ; 47(11): 3355-3368, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35962937

ABSTRACT

Protein glycosylation plays a crucial role in central nervous system, and abnormal glycosylation has major implications for human diseases. This study aims to evaluate an etiological implication of the variation in glycosylation for Parkinson's disease (PD), a neurodegenerative disorder. Based on a PD mouse model constructed by the intraperitoneal injection with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine, glycosylation variation was accessed using biotinylated lectin of dolichos biflorus agglutinin (DBA) specific for the exposed N-acetylgalactosamine linked to glycoprotein. Consequently, a glycoprotein with a significantly reduced N-acetylgalactosamination was identified as ADP/ATP translocase 1 (ANT1) by lectin affinity chromatography coupled with MALDI-TOF MS/MS (mass spectrometry), and confirmed by the analysis of dual co-immunofluorescence and Western blot. A tissue-specific distribution of de-N-acetylgalactosaminated ANT1 was found to be correlated with high risk of PD. At cellular level, an obvious co-aggregation between ANT1 and DBA was only found in the MPP+-induced PD-like cell model using dual co-immunofluorescence. Thus, we found that ANT1 was a potential glycoprotein with terminal N-acetylgalactosamine moiety, and the variation of glycosylation in ANT1 was associated with PD. This investigation provides an innovative insight in protein glycosylation with PD pathogenesis.


Subject(s)
Parkinson Disease , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Acetylgalactosamine , Adenine Nucleotide Translocator 1 , Adenosine Diphosphate/metabolism , Animals , Glycoproteins/metabolism , Mice , Mitochondrial ADP, ATP Translocases/metabolism , Parkinson Disease/metabolism , Tandem Mass Spectrometry
5.
Neurosciences (Riyadh) ; 27(2): 111-115, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35477912

ABSTRACT

Kearns-Sayre Syndrome (KSS) is a subtype of chronic progressive external ophthalmoplegia (CPEO). In this case, A 21-year-old man diagnosed with KSS, and presented with chronic progressive blepharoptosis (ptosis) and external ophthalmoplegia, diffuse depigmentation of the retinal pigment epithelium, and cerebellar ataxia, with a cerebrospinal fluid protein of 254 mg/dL, was reported. Genetic screening revealed a novel mutated gene in SLC25A4 in the patient as well as in his mother: NM_001151:c.170G>C in exon 2. Its imaging finding is a characteristic progressive atrophy of the right cerebellar hemisphere. In conclusion, we found a case of KSS with a novel mutated gene in SLC25A4: NM_001151:c.170G>C in exon 2 as the pathogenic mechanism, and found that KSS can be caused only when the proportion of mutations in the SLC25A4 gene reach a certain degree, and the patient with KSS showed a unique cranial imaging feature of unilateral progressive cerebellar atrophy.


Subject(s)
Kearns-Sayre Syndrome , Ophthalmoplegia, Chronic Progressive External , Adenine Nucleotide Translocator 1/genetics , Adult , Atrophy , Female , Humans , Kearns-Sayre Syndrome/diagnostic imaging , Kearns-Sayre Syndrome/genetics , Male , Mothers , Mutation/genetics , Ophthalmoplegia, Chronic Progressive External/diagnosis , Ophthalmoplegia, Chronic Progressive External/genetics , Young Adult
6.
Anal Biochem ; 630: 114319, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34332952

ABSTRACT

Evidence suggests acetylation of human adenine nucleotide translocase 1 (ANT1) at lysine 23 (Lys23) reduces binding of ADP. Lys23 contributes to the positive charge that facilitates this interaction. This study was undertaken to characterize ANT1 abundance and acetylation by a novel method using small amounts of human skeletal muscle biopsies. Lysates of whole muscle or mitochondria from the same tissue were prepared from needle biopsies of vastus lateralis muscle of healthy volunteers. Lysed proteins were resolved on gels, the section containing ANT1 (surrounding 30 Kd) was excised, digested with trypsin, spiked with labeled unacetylated and acetylated synthetic standard peptides and analyzed by mass spectrometry. Natural logarithm transformation of data linearized ion intensities over a 10-fold range of peptide mass. Coefficients of variation ranged from 7 to 30% for ANT1 abundance and Lys23 acetylation. In three volunteers, ANT1 content was 8.36 ± 0.33 nmol/g wet weight muscle and 0.64 ± 0.05 nmol/mg mitochondria, so mitochondrial content was 13.3 ± 2.4 mg mitochondria per gram muscle. Acetylation of Lys23 averaged 14.3 ± 4.2% and 4.87 ± 1.84% in whole muscle and mitochondria, respectively. This assay makes it possible to assess effects of acetylation on the function of ANT1 in human muscle.


Subject(s)
Adenine Nucleotide Translocator 1/metabolism , Lysine/metabolism , Muscle, Skeletal/metabolism , Acetylation , Adenine Nucleotide Translocator 1/analysis , Healthy Volunteers , Humans , Lysine/chemistry , Muscle, Skeletal/chemistry
7.
Int J Mol Sci ; 22(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801254

ABSTRACT

Adenine nucleotide translocase (ANT) is a well-known mitochondrial exchanger of ATP against ADP. In contrast, few studies have shown that ANT also mediates proton transport across the inner mitochondrial membrane. The results of these studies are controversial and lead to different hypotheses about molecular transport mechanisms. We hypothesized that the H+-transport mediated by ANT and uncoupling proteins (UCP) has a similar regulation pattern and can be explained by the fatty acid cycling concept. The reconstitution of purified recombinant ANT1 in the planar lipid bilayers allowed us to measure the membrane current after the direct application of transmembrane potential ΔΨ, which would correspond to the mitochondrial states III and IV. Experimental results reveal that ANT1 does not contribute to a basal proton leak. Instead, it mediates H+ transport only in the presence of long-chain fatty acids (FA), as already known for UCPs. It depends on FA chain length and saturation, implying that FA's transport is confined to the lipid-protein interface. Purine nucleotides with the preference for ATP and ADP inhibited H+ transport. Specific inhibitors of ATP/ADP transport, carboxyatractyloside or bongkrekic acid, also decreased proton transport. The H+ turnover number was calculated based on ANT1 concentration determined by fluorescence correlation spectroscopy and is equal to 14.6 ± 2.5 s-1. Molecular dynamic simulations revealed a large positively charged area at the protein/lipid interface that might facilitate FA anion's transport across the membrane. ANT's dual function-ADP/ATP and H+ transport in the presence of FA-may be important for the regulation of mitochondrial membrane potential and thus for potential-dependent processes in mitochondria. Moreover, the expansion of proton-transport modulating drug targets to ANT1 may improve the therapy of obesity, cancer, steatosis, cardiovascular and neurodegenerative diseases.


Subject(s)
Adenine Nucleotide Translocator 1/chemistry , Adenine Nucleotide Translocator 1/metabolism , Fatty Acids/metabolism , Mitochondria/metabolism , Protons , Animals , Ion Transport , Membrane Potential, Mitochondrial , Mice , Protein Conformation
8.
Int J Mol Sci ; 22(9)2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33923309

ABSTRACT

Mitochondrial diseases result from inherited or spontaneous mutations in mitochondrial or nuclear DNA, leading to an impairment of the oxidative phosphorylation responsible for the synthesis of ATP. To date, there are no effective pharmacological therapies for these pathologies. We performed a yeast-based screening to search for therapeutic drugs to be used for treating mitochondrial diseases associated with dominant mutations in the nuclear ANT1 gene, which encodes for the mitochondrial ADP/ATP carrier. Dominant ANT1 mutations are involved in several degenerative mitochondrial pathologies characterized by the presence of multiple deletions or depletion of mitochondrial DNA in tissues of affected patients. Thanks to the presence in yeast of the AAC2 gene, orthologue of human ANT1, a yeast mutant strain carrying the M114P substitution equivalent to adPEO-associated L98P mutation was created. Five molecules were identified for their ability to suppress the defective respiratory growth phenotype of the haploid aac2M114P. Furthermore, these molecules rescued the mtDNA mutability in the heteroallelic AAC2/aac2M114P strain, which mimics the human heterozygous condition of adPEO patients. The drugs were effective in reducing mtDNA instability also in the heteroallelic strain carrying the R96H mutation equivalent to the more severe de novo dominant missense mutation R80H, suggesting a general therapeutic effect on diseases associated with dominant ANT1 mutations.


Subject(s)
Adenine Nucleotide Translocator 1/genetics , High-Throughput Screening Assays/methods , Mitochondrial ADP, ATP Translocases/genetics , Mitochondrial Diseases/drug therapy , Mutation , Pharmaceutical Preparations/administration & dosage , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/growth & development , DNA, Mitochondrial/genetics , Genes, Dominant , Humans , Mitochondrial Diseases/genetics , Ophthalmoplegia/drug therapy , Ophthalmoplegia/genetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics
9.
Molecules ; 26(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34770872

ABSTRACT

The permeability transition (PT) is an increased permeation of the inner mitochondrial membrane due to the opening of the PT pore (PTP), a Ca2+-activated high conductance channel involved in Ca2+ homeostasis and cell death. Alterations of the PTP have been associated with many pathological conditions and its targeting represents an incessant challenge in the field. Although the modulation of the PTP has been extensively explored, the lack of a clear picture of its molecular nature increases the degree of complexity for any target-based approach. Recent advances suggest the existence of at least two mitochondrial permeability pathways mediated by the F-ATP synthase and the ANT, although the exact molecular mechanism leading to channel formation remains elusive for both. A full comprehension of this to-pore conversion will help to assist in drug design and to develop pharmacological treatments for a fine-tuned PT regulation. Here, we will focus on regulatory mechanisms that impinge on the PTP and discuss the relevant literature of PTP targeting compounds with particular attention to F-ATP synthase and ANT.


Subject(s)
Adenine Nucleotide Translocator 1/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Animals , Humans
10.
J Neurosci ; 39(18): 3561-3581, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30833507

ABSTRACT

Neurodevelopmental disorders offer insight into synaptic mechanisms. To unbiasedly uncover these mechanisms, we studied the 22q11.2 syndrome, a recurrent copy number variant, which is the highest schizophrenia genetic risk factor. We quantified the proteomes of 22q11.2 mutant human fibroblasts from both sexes and mouse brains carrying a 22q11.2-like defect, Df(16)A+/- Molecular ontologies defined mitochondrial compartments and pathways as some of top ranked categories. In particular, we identified perturbations in the SLC25A1-SLC25A4 mitochondrial transporter interactome as associated with the 22q11.2 genetic defect. Expression of SLC25A1-SLC25A4 interactome components was affected in neuronal cells from schizophrenia patients. Furthermore, hemideficiency of the Drosophila SLC25A1 or SLC25A4 orthologues, dSLC25A1-sea and dSLC25A4-sesB, affected synapse morphology, neurotransmission, plasticity, and sleep patterns. Our findings indicate that synapses are sensitive to partial loss of function of mitochondrial solute transporters. We propose that mitoproteomes regulate synapse development and function in normal and pathological conditions in a cell-specific manner.SIGNIFICANCE STATEMENT We address the central question of how to comprehensively define molecular mechanisms of the most prevalent and penetrant microdeletion associated with neurodevelopmental disorders, the 22q11.2 microdeletion syndrome. This complex mutation reduces gene dosage of ∼63 genes in humans. We describe a disruption of the mitoproteome in 22q11.2 patients and brains of a 22q11.2 mouse model. In particular, we identify a network of inner mitochondrial membrane transporters as a hub required for synapse function. Our findings suggest that mitochondrial composition and function modulate the risk of neurodevelopmental disorders, such as schizophrenia.


Subject(s)
22q11 Deletion Syndrome/metabolism , Brain/metabolism , Mitochondria/metabolism , Neurons/metabolism , Synapses/metabolism , Adenine Nucleotide Translocator 1/metabolism , Animals , Behavior, Animal , Cell Line , Chromosome Deletion , Chromosomes, Human, Pair 22/metabolism , Drosophila , Female , Fibroblasts/metabolism , Humans , Male , Mitochondrial Proteins/metabolism , Organic Anion Transporters/metabolism , Proteome , Schizophrenia/metabolism
11.
Biochem Biophys Res Commun ; 525(3): 733-739, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32143825

ABSTRACT

Cigarette smoke is one of major risk factors in the pathogenesis of chronic obstructive pulmonary disease (COPD). It is generally believed that cigarette smoke induces mitochondrial damage in the alveolar epithelial cells to contribute to COPD. However, the exact molecular mechanism remains unknown for the mitochondrial damage. In this study, cigarette smoke extract (CSE) was found to induce the mitochondrial membrane permeability (MMP), which promoted proton leakage leading to the reduction in mitochondrial potential and ATP production. ANT in the mitochondrial inner membrane was activated by CSE for the alteration of MMP. The activation was observed without an alteration in the protein level of ANT. Inhibition of the ANT activity with ADP or bongkrekic acid prevented the MMP alteration and potential drop upon CSE exposure. The ANT activation was observed with a rise in ROS production, inhibition of the mitochondrial respiration, decrease in the complex III protein and rise in mitophagy activity. The results suggest that ANT may mediate the toxic effect of cigarette smoke on mitochondria and control of ANT activity is a potential strategy in intervention of the toxicity.


Subject(s)
Adenine Nucleotide Translocator 1/metabolism , Cigarette Smoking/adverse effects , Epithelial Cells/metabolism , Lung/pathology , Mitochondrial Membranes/metabolism , A549 Cells , Adenosine Triphosphate/metabolism , Animals , Cell Respiration , Electron Transport Complex III/metabolism , Humans , Male , Membrane Potential, Mitochondrial , Mice, Inbred C57BL , Mitochondria/metabolism , Mitophagy , Models, Biological , Permeability , Pulmonary Disease, Chronic Obstructive/pathology
12.
Proc Natl Acad Sci U S A ; 114(10): 2705-2710, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28223503

ABSTRACT

Diabetes is associated with impaired glucose metabolism in the presence of excess insulin. Glucose and fatty acids provide reducing equivalents to mitochondria to generate energy, and studies have reported mitochondrial dysfunction in type II diabetes patients. If mitochondrial dysfunction can cause diabetes, then we hypothesized that increased mitochondrial metabolism should render animals resistant to diabetes. This was confirmed in mice in which the heart-muscle-brain adenine nucleotide translocator isoform 1 (ANT1) was inactivated. ANT1-deficient animals are insulin-hypersensitive, glucose-tolerant, and resistant to high fat diet (HFD)-induced toxicity. In ANT1-deficient skeletal muscle, mitochondrial gene expression is induced in association with the hyperproliferation of mitochondria. The ANT1-deficient muscle mitochondria produce excess reactive oxygen species (ROS) and are partially uncoupled. Hence, the muscle respiration under nonphosphorylating conditions is increased. Muscle transcriptome analysis revealed the induction of mitochondrial biogenesis, down-regulation of diabetes-related genes, and increased expression of the genes encoding the myokines FGF21 and GDF15. However, FGF21 was not elevated in serum, and FGF21 and UCP1 mRNAs were not induced in liver or brown adipose tissue (BAT). Hence, increased oxidation of dietary-reducing equivalents by elevated muscle mitochondrial respiration appears to be the mechanism by which ANT1-deficient mice prevent diabetes, demonstrating that the rate of mitochondrial oxidation of calories is important in the etiology of metabolic disease.


Subject(s)
Adenine Nucleotide Translocator 1/genetics , Diabetes Mellitus, Type 2/genetics , Fibroblast Growth Factors/genetics , Growth Differentiation Factor 15/genetics , Adenine Nucleotide Translocator 1/deficiency , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/pathology , Animals , Cell Proliferation/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diet, High-Fat/adverse effects , Energy Metabolism/genetics , Glucose/metabolism , Humans , Insulin Resistance/genetics , Mice , Mitochondria, Muscle/genetics , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/pathology , Muscle, Skeletal/metabolism , Reactive Oxygen Species/metabolism , Transcriptome/genetics , Uncoupling Protein 1/genetics
13.
Int J Mol Sci ; 21(17)2020 Aug 22.
Article in English | MEDLINE | ID: mdl-32842667

ABSTRACT

Mitochondrial carriers are a family of structurally related proteins responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. The in silico analysis of the Drosophila melanogaster genome has highlighted the presence of 48 genes encoding putative mitochondrial carriers, but only 20 have been functionally characterized. Despite most Drosophila mitochondrial carrier genes having human homologs and sharing with them 50% or higher sequence identity, D. melanogaster genes display peculiar differences from their human counterparts: (1) in the fruit fly, many genes encode more transcript isoforms or are duplicated, resulting in the presence of numerous subfamilies in the genome; (2) the expression of the energy-producing genes in D. melanogaster is coordinated from a motif known as Nuclear Respiratory Gene (NRG), a palindromic 8-bp sequence; (3) fruit-fly duplicated genes encoding mitochondrial carriers show a testis-biased expression pattern, probably in order to keep a duplicate copy in the genome. Here, we review the main features, biological activities and role in the metabolism of the D. melanogaster mitochondrial carriers characterized to date, highlighting similarities and differences with their human counterparts. Such knowledge is very important for obtaining an integrated view of mitochondrial function in D. melanogaster metabolism.


Subject(s)
Carrier Proteins/metabolism , Drosophila Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Adenine Nucleotide Translocator 1/chemistry , Adenine Nucleotide Translocator 1/genetics , Adenine Nucleotide Translocator 1/metabolism , Animals , Carrier Proteins/chemistry , Carrier Proteins/genetics , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Humans , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism
14.
Am J Hum Genet ; 99(4): 860-876, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27693233

ABSTRACT

Mutations in SLC25A4 encoding the mitochondrial ADP/ATP carrier AAC1 are well-recognized causes of mitochondrial disease. Several heterozygous SLC25A4 mutations cause adult-onset autosomal-dominant progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions, whereas recessive SLC25A4 mutations cause childhood-onset mitochondrial myopathy and cardiomyopathy. Here, we describe the identification by whole-exome sequencing of seven probands harboring dominant, de novo SLC25A4 mutations. All affected individuals presented at birth, were ventilator dependent and, where tested, revealed severe combined mitochondrial respiratory chain deficiencies associated with a marked loss of mitochondrial DNA copy number in skeletal muscle. Strikingly, an identical c.239G>A (p.Arg80His) mutation was present in four of the seven subjects, and the other three case subjects harbored the same c.703C>G (p.Arg235Gly) mutation. Analysis of skeletal muscle revealed a marked decrease of AAC1 protein levels and loss of respiratory chain complexes containing mitochondrial DNA-encoded subunits. We show that both recombinant AAC1 mutant proteins are severely impaired in ADP/ATP transport, affecting most likely the substrate binding and mechanics of the carrier, respectively. This highly reduced capacity for transport probably affects mitochondrial DNA maintenance and in turn respiration, causing a severe energy crisis. The confirmation of the pathogenicity of these de novo SLC25A4 mutations highlights a third distinct clinical phenotype associated with mutation of this gene and demonstrates that early-onset mitochondrial disease can be caused by recurrent de novo mutations, which has significant implications for the application and analysis of whole-exome sequencing data in mitochondrial disease.


Subject(s)
Adenine Nucleotide Translocator 1/genetics , DNA Copy Number Variations/genetics , DNA, Mitochondrial/genetics , Genes, Dominant/genetics , Mitochondrial Diseases/genetics , Mutation , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Age of Onset , Arylamine N-Acetyltransferase/genetics , Child , Child, Preschool , Electron Transport/genetics , Exome/genetics , Female , Humans , Infant , Infant, Newborn , Isoenzymes/genetics , Male , Mitochondrial Diseases/pathology , Muscle, Skeletal/metabolism
15.
Mol Psychiatry ; 23(10): 2039-2049, 2018 10.
Article in English | MEDLINE | ID: mdl-29892051

ABSTRACT

Although mitochondrial and serotonergic dysfunctions have been implicated in the etiology of bipolar disorder (BD), the relationship between these unrelated pathways has not been elucidated. A family of BD and chronic progressive external ophthalmoplegia (CPEO) caused by a mutation of the mitochondrial adenine nucleotide translocator 1 (ANT1, SLC25A4) implicated that ANT1 mutations confer a risk of BD. Here, we sequenced ANT1 in 324 probands of NIMH bipolar disorder pedigrees and identified two BD patients carrying heterozygous loss-of-function mutations. Behavioral analysis of brain specific Ant1 heterozygous conditional knockout (cKO) mice using lntelliCage showed a selective diminution in delay discounting. Delay discounting is the choice of smaller but immediate reward than larger but delayed reward and an index of impulsivity. Diminution of delay discounting suggests an increase in serotonergic activity. This finding was replicated by a 5-choice serial reaction time test. An anatomical screen showed accumulation of COX (cytochrome c oxidase) negative cells in dorsal raphe. Dorsal raphe neurons in the heterozygous cKO showed hyperexcitability, along with enhanced serotonin turnover in the nucleus accumbens and upregulation of Maob in dorsal raphe. These findings altogether suggest that mitochondrial dysfunction as the genetic risk of BD may cause vulnerability to BD by altering serotonergic neurotransmission.


Subject(s)
Adenine Nucleotide Translocator 1/genetics , Adenine Nucleotide Translocator 1/metabolism , Bipolar Disorder/genetics , Animals , Bipolar Disorder/metabolism , Delay Discounting/physiology , Dorsal Raphe Nucleus/metabolism , Female , Humans , Impulsive Behavior , Male , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Ophthalmoplegia, Chronic Progressive External/metabolism , Reward , Serotonergic Neurons/metabolism , Serotonergic Neurons/physiology
16.
J Transl Med ; 16(1): 241, 2018 08 30.
Article in English | MEDLINE | ID: mdl-30165862

ABSTRACT

BACKGROUND: Cardiomyopathies are the most common clinical and genetic heterogeneity cardiac diseases, and genetic contribution in particular plays a major role in patients with primary cardiomyopathies. The aim of this study is to investigate cases of inherited cardiomyopathy (IC) for potential disease-causing mutations in 64 genes reported to be associated with IC. METHODS: A total of 110 independent cases or families diagnosed with various primary cardiomyopathies, including hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, left ventricular non-compaction, and undefined cardiomyopathy, were collected after informed consent. A custom designed panel, including 64 genes, was screened using next generation sequencing on the Ion Torrent PGM platform. The best candidate disease-causing variants were verified by Sanger sequencing. RESULTS: A total of 78 variants in 73 patients were identified. After excluding the variants predicted to be benign and VUS, 26 pathogenic or likely pathogenic variants were verified in 26 probands (23.6%), including a homozygous variant in the SLC25A4 gene. Of these variants, 15 have been reported in the Human Gene Mutation Database or ClinVar database, while 11 are novel. The majority of variants were observed in the MYH7 (8/26) and MYBPC3 (6/26) gene. Titin (TTN) truncating mutations account for 13% in our dilated cardiomyopathy cases (3/23). CONCLUSIONS: This study provides an overview of the genetic aberrations in this cohort of Chinese IC patients and demonstrates the power of next generation sequencing in IC. Genetic results can provide precise clinical diagnosis and guidance regarding medical care for some individuals.


Subject(s)
Cardiomyopathies/genetics , Cardiomyopathies/physiopathology , High-Throughput Nucleotide Sequencing/methods , Adenine Nucleotide Translocator 1/genetics , Adult , Arrhythmogenic Right Ventricular Dysplasia/genetics , Cardiac Myosins/genetics , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Restrictive/genetics , Carrier Proteins/genetics , Connectin/genetics , Female , Genetic Predisposition to Disease , Humans , Male , Mutation , Myosin Heavy Chains/genetics , Phenotype , Polymorphism, Single Nucleotide , Ventricular Dysfunction, Left/genetics , Young Adult
17.
Arch Biochem Biophys ; 647: 93-103, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29653079

ABSTRACT

The adenine nucleotide translocase (ANT) of the mitochondrial inner membrane exchanges ADP for ATP. Mitochondria were isolated from human vastus lateralis muscle (n = 9). Carboxyatractyloside titration of O2 consumption rate (Jo) at clamped [ADP] of 21 µM gave ANT abundance of 0.97 ±â€¯0.14 nmol ANT/mg and a flux control coefficient of 82% ±â€¯6%. Flux control fell to 1% ±â€¯1% at saturating (2 mM) [ADP]. The KmADP for Jo was 32.4 ±â€¯1.8 µM. In terms of the free (-3) ADP anion this KmADP was 12.0 ±â€¯0.7 µM. A novel luciferase-based assay for ATP production gave KmADP of 13.1 ±â€¯1.9 µM in the absence of ATP competition. The free anion KmADP in this case was 2.0 ±â€¯0.3 µM. Targeted proteomic analyses showed significant acetylation of ANT Lysine23 and that ANT1 was the most abundant isoform. Acetylation of Lysine23 correlated positively with KmADP, r = 0.74, P = 0.022. The findings underscore the central role played by ANT in the control of oxidative phosphorylation, particularly at the energy phosphate levels associated with low ATP demand. As predicted by molecular dynamic modeling, ANT Lysine23 acetylation decreased the apparent affinity of ADP for ANT binding.


Subject(s)
Adenine Nucleotide Translocator 1/metabolism , Energy Metabolism , Lysine/metabolism , Mitochondria, Muscle/metabolism , Acetylation , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Adult , Female , Humans , Male , Muscle, Skeletal/metabolism , Oxidative Phosphorylation , Oxygen Consumption
18.
Mov Disord ; 33(1): 146-155, 2018 01.
Article in English | MEDLINE | ID: mdl-28901595

ABSTRACT

BACKGROUND: Mitochondrial disease can present as a movement disorder. Data on this entity's epidemiology, genetics, and underlying pathophysiology, however, is scarce. OBJECTIVE: The objective of this study was to describe the clinical, genetic, and volumetric imaging data from patients with mitochondrial disease who presented with movement disorders. METHODS: In this retrospective analysis of all genetically confirmed mitochondrial disease cases from three centers (n = 50), the prevalence and clinical presentation of video-documented movement disorders was assessed. Voxel-based morphometry from high-resolution MRI was employed to compare cerebral and cerebellar gray matter volume between mitochondrial disease patients with and without movement disorders and healthy controls. RESULTS: Of the 50 (30%) patients with genetically confirmed mitochondrial disease, 15 presented with hypokinesia (parkinsonism 3/15), hyperkinesia (dystonia 5/15, myoclonus 3/15, chorea 2/15), and ataxia (3/15). In 3 patients, mitochondrial disease presented as adult-onset isolated dystonia. In comparison to healthy controls and mitochondrial disease patients without movement disorders, patients with hypo- and hyperkinetic movement disorders had significantly more cerebellar atrophy and an atrophy pattern predominantly involving cerebellar lobules VI and VII. CONCLUSION: This series provides clinical, genetic, volumetric imaging, and histologic data that indicate major involvement of the cerebellum in mitochondrial disease when it presents with hyper- and hypokinetic movement disorders. As a working hypothesis addressing the particular vulnerability of the cerebellum to energy deficiency, this adds substantially to the pathophysiological understanding of movement disorders in mitochondrial disease. Furthermore, it provides evidence that mitochondrial disease can present as adult-onset isolated dystonia. © 2017 International Parkinson and Movement Disorder Society.


Subject(s)
Cerebellum/pathology , Mitochondrial Diseases/complications , Mitochondrial Diseases/genetics , Movement Disorders/etiology , Movement Disorders/pathology , Adenine Nucleotide Translocator 1/genetics , Adult , Aged , Cerebellum/diagnostic imaging , DNA Polymerase gamma/genetics , Female , Gray Matter/pathology , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Movement Disorders/diagnostic imaging , Mutation/genetics , Retrospective Studies , Severity of Illness Index , Young Adult
19.
Cell Biol Int ; 42(6): 664-669, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29384231

ABSTRACT

The mitochondrial respiratory chain in vertebrates and arthropods is different from that of most other eukaryotes because they lack alternative enzymes that provide electron transfer pathways additional to the oxidative phosphorylation (OXPHOS) system. However, the use of diverse experimental models, such as human cells in culture, Drosophila melanogaster and the mouse, has demonstrated that the transgenic expression of these alternative enzymes can impact positively many phenotypes associated with human mitochondrial and other cellular dysfunction, including those typically presented in complex IV deficiencies, Parkinson's, and Alzheimer's. In addition, these enzymes have recently provided extremely valuable data on how, when, and where reactive oxygen species, considered by many as "by-products" of OXPHOS, can contribute to animal longevity. It has also been shown that the expression of the alternative enzymes is thermogenic in cultured cells, causes reproductive defects in flies, and enhances the deleterious phenotype of some mitochondrial disease models. Therefore, all the reported beneficial effects must be considered with caution, as these enzymes have been proposed to be deployed in putative gene therapies to treat human diseases. Here, we present a brief review of the scientific data accumulated over the past decade that show the benefits and the risks of introducing alternative branches of the electron transport into mammalian and insect mitochondria, and we provide a perspective on the future of this research field.


Subject(s)
Animals, Genetically Modified/metabolism , Electron Transport Chain Complex Proteins/metabolism , Mitochondria/metabolism , Adenine Nucleotide Translocator 1/genetics , Adenine Nucleotide Translocator 1/metabolism , Animals , Animals, Genetically Modified/growth & development , Electron Transport Chain Complex Proteins/genetics , Humans , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Oxidative Phosphorylation , Reactive Oxygen Species/metabolism
20.
Proc Natl Acad Sci U S A ; 112(48): E6614-23, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26627253

ABSTRACT

The experience of psychological stress triggers neuroendocrine, inflammatory, metabolic, and transcriptional perturbations that ultimately predispose to disease. However, the subcellular determinants of this integrated, multisystemic stress response have not been defined. Central to stress adaptation is cellular energetics, involving mitochondrial energy production and oxidative stress. We therefore hypothesized that abnormal mitochondrial functions would differentially modulate the organism's multisystemic response to psychological stress. By mutating or deleting mitochondrial genes encoded in the mtDNA [NADH dehydrogenase 6 (ND6) and cytochrome c oxidase subunit I (COI)] or nuclear DNA [adenine nucleotide translocator 1 (ANT1) and nicotinamide nucleotide transhydrogenase (NNT)], we selectively impaired mitochondrial respiratory chain function, energy exchange, and mitochondrial redox balance in mice. The resulting impact on physiological reactivity and recovery from restraint stress were then characterized. We show that mitochondrial dysfunctions altered the hypothalamic-pituitary-adrenal axis, sympathetic adrenal-medullary activation and catecholamine levels, the inflammatory cytokine IL-6, circulating metabolites, and hippocampal gene expression responses to stress. Each mitochondrial defect generated a distinct whole-body stress-response signature. These results demonstrate the role of mitochondrial energetics and redox balance as modulators of key pathophysiological perturbations previously linked to disease. This work establishes mitochondria as stress-response modulators, with implications for understanding the mechanisms of stress pathophysiology and mitochondrial diseases.


Subject(s)
Gene Expression Regulation , Inflammation/pathology , Mitochondria/physiology , Stress, Psychological , Adenine Nucleotide Translocator 1/genetics , Adrenocorticotropic Hormone/blood , Allostasis , Animals , Catecholamines/blood , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Genotype , Hippocampus/metabolism , Hippocampus/pathology , Interleukin-6/blood , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/pathology , Mitochondrial Proteins/genetics , Mutation , NADH Dehydrogenase/genetics , NADP Transhydrogenase, AB-Specific/genetics , Oxidative Stress , Signal Transduction , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL