Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.716
Filter
1.
Nature ; 628(8006): 104-109, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38350601

ABSTRACT

The development of bimolecular homolytic substitution (SH2) catalysis has expanded cross-coupling chemistries by enabling the selective combination of any primary radical with any secondary or tertiary radical through a radical sorting mechanism1-8. Biomimetic9,10 SH2 catalysis can be used to merge common feedstock chemicals-such as alcohols, acids and halides-in various permutations for the construction of a single C(sp3)-C(sp3) bond. The ability to sort these two distinct radicals across commercially available alkenes in a three-component manner would enable the simultaneous construction of two C(sp3)-C(sp3) bonds, greatly accelerating access to complex molecules and drug-like chemical space11. However, the simultaneous in situ formation of electrophilic and primary nucleophilic radicals in the presence of unactivated alkenes is problematic, typically leading to statistical radical recombination, hydrogen atom transfer, disproportionation and other deleterious pathways12,13. Here we report the use of bimolecular homolytic substitution catalysis to sort an electrophilic radical and a nucleophilic radical across an unactivated alkene. This reaction involves the in situ formation of three distinct radical species, which are then differentiated by size and electronics, allowing for regioselective formation of the desired dialkylated products. This work accelerates access to pharmaceutically relevant C(sp3)-rich molecules and defines a distinct mechanistic approach for alkene dialkylation.


Subject(s)
Alkenes , Catalysis , Hydrogen , Acids/chemistry , Alcohols/chemistry , Alkenes/chemistry , Biomimetics , Hydrogen/chemistry , Pharmaceutical Preparations/chemical synthesis , Pharmaceutical Preparations/chemistry
2.
Nature ; 634(8033): 352-358, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39208846

ABSTRACT

Amino acids are essential building blocks in biology and chemistry. Whereas nature relies on a small number of amino acid structures, chemists desire access to a vast range of structurally diverse analogues1-3. The selective modification of amino acid side-chain residues represents an efficient strategy to access non-canonical derivatives of value in chemistry and biology. While semisynthetic methods leveraging the functional groups found in polar and aromatic amino acids have been extensively explored, highly selective and general approaches to transform unactivated C-H bonds in aliphatic amino acids remain less developed4,5. Here we disclose a stepwise dehydrogenative method to convert aliphatic amino acids into structurally diverse analogues. The key to the success of this approach lies in the development of a selective catalytic acceptorless dehydrogenation method driven by photochemical irradiation, which provides access to terminal alkene intermediates for downstream functionalization. Overall, this strategy enables the rapid synthesis of new amino acid building blocks and suggests possibilities for the late-stage modification of more complex oligopeptides.


Subject(s)
Amino Acids , Amino Acids/chemistry , Amino Acids/chemical synthesis , Hydrogenation , Catalysis , Chemistry Techniques, Synthetic/methods , Alkenes/chemistry , Alkenes/chemical synthesis , Oligopeptides/chemistry , Oligopeptides/chemical synthesis , Photochemical Processes
3.
Nature ; 596(7870): 74-79, 2021 08.
Article in English | MEDLINE | ID: mdl-34157720

ABSTRACT

Aziridines-three-membered nitrogen-containing cyclic molecules-are important synthetic targets. Their substantial ring strain and resultant proclivity towards ring-opening reactions makes them versatile precursors of diverse amine products1-3, and, in some cases, the aziridine functional group itself imbues important biological (for example, anti-tumour) activity4-6. Transformation of ubiquitous alkenes into aziridines is an attractive synthetic strategy, but is typically accomplished using electrophilic nitrogen sources rather than widely available amine nucleophiles. Here we show that unactivated alkenes can be electrochemically transformed into a metastable, dicationic intermediate that undergoes aziridination with primary amines under basic conditions. This new approach expands the scope of readily accessible N-alkyl aziridine products relative to those obtained through existing state-of-the-art methods. A key strategic advantage of this approach is that oxidative alkene activation is decoupled from the aziridination step, enabling a wide range of commercially available but oxidatively sensitive7 amines to act as coupling partners for this strain-inducing transformation. More broadly, our work lays the foundations for a diverse array of difunctionalization reactions using this dication pool approach.


Subject(s)
Alkenes/chemistry , Amines/chemistry , Aziridines/chemical synthesis , Chemistry Techniques, Synthetic/methods , Electrochemistry/methods , Alkenes/chemical synthesis , Amines/chemical synthesis , Aziridines/chemistry , Oxidation-Reduction , Thermodynamics
4.
Chem Rev ; 124(6): 3284-3330, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38498932

ABSTRACT

It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.


Subject(s)
Lipid Bilayers , Membrane Lipids , Membrane Lipids/chemistry , Lipid Bilayers/chemistry , Cell Membrane/metabolism , Membranes/metabolism , Phospholipids/metabolism , Alkenes/metabolism
5.
Nature ; 584(7819): 69-74, 2020 08.
Article in English | MEDLINE | ID: mdl-32512577

ABSTRACT

Enzymes are increasingly explored for use in asymmetric synthesis1-3, but their applications are generally limited by the reactions available to naturally occurring enzymes. Recently, interest in photocatalysis4 has spurred the discovery of novel reactivity from known enzymes5. However, so far photoinduced enzymatic catalysis6 has not been used for the cross-coupling of two molecules. For example, the intermolecular coupling of alkenes with α-halo carbonyl compounds through a visible-light-induced radical hydroalkylation, which could provide access to important γ-chiral carbonyl compounds, has not yet been achieved by enzymes. The major challenges are the inherent poor photoreactivity of enzymes and the difficulty in achieving stereochemical control of the remote prochiral radical intermediate7. Here we report a visible-light-induced intermolecular radical hydroalkylation of terminal alkenes that does not occur naturally, catalysed by an 'ene' reductase using readily available α-halo carbonyl compounds as reactants. This method provides an efficient approach to the synthesis of various carbonyl compounds bearing a γ-stereocentre with excellent yields and enantioselectivities (up to 99 per cent yield with 99 per cent enantiomeric excess), which otherwise are difficult to access using chemocatalysis. Mechanistic studies suggest that the formation of the complex of the substrates (α-halo carbonyl compounds) and the 'ene' reductase triggers the enantioselective photoinduced radical reaction. Our work further expands the reactivity repertoire of biocatalytic, synthetically useful asymmetric transformations by the merger of photocatalysis and enzyme catalysis.


Subject(s)
Alkenes/chemistry , Alkenes/metabolism , Hydrogen/chemistry , Hydrogen/metabolism , Light , Oxidoreductases/metabolism , Photochemical Processes/radiation effects , Alcohols/chemistry , Alcohols/metabolism , Alkylation/radiation effects , Biocatalysis/radiation effects , Biomass , Carboxy-Lyases/metabolism , Flavins/metabolism , Models, Chemical , Models, Molecular , Stereoisomerism
6.
Nature ; 583(7817): 548-553, 2020 07.
Article in English | MEDLINE | ID: mdl-32480398

ABSTRACT

Tertiary stereogenic centres containing one fluorine atom are valuable for medicinal chemistry because they mimic common tertiary stereogenic centres containing one hydrogen atom, but they possess distinct charge distribution, lipophilicity, conformation and metabolic stability1-3. Although tertiary stereogenic centres containing one hydrogen atom are often set by enantioselective desymmetrization reactions at one of the two carbon-hydrogen (C-H) bonds of a methylene group, tertiary stereocentres containing fluorine have not yet been constructed by the analogous desymmetrization reaction at one of the two carbon-fluorine (C-F) bonds of a difluoromethylene group3. Fluorine atoms are similar in size to hydrogen atoms but have distinct electronic properties, causing C-F bonds to be exceptionally strong and geminal C-F bonds to strengthen one another4. Thus, exhaustive defluorination typically dominates over the selective replacement of a single C-F bond, hindering the development of the enantioselective substitution of one fluorine atom to form a stereogenic centre5,6. Here we report the catalytic, enantioselective activation of a single C-F bond in an allylic difluoromethylene group to provide a broad range of products containing a monofluorinated tertiary stereogenic centre. By combining a tailored chiral iridium phosphoramidite catalyst, which controls regioselectivity, chemoselectivity and enantioselectivity, with a fluorophilic activator, which assists the oxidative addition of the C-F bond, these reactions occur in high yield and selectivity. The design principles proposed in this work extend to palladium-catalysed benzylic substitution, demonstrating the generality of the approach.


Subject(s)
Carbon/chemistry , Fluorine/chemistry , Alkenes/chemistry , Catalysis , Cations , Halogenation , Hydrogen/chemistry , Iridium/chemistry , Organophosphorus Compounds/chemistry , Oxidation-Reduction , Palladium/chemistry
7.
Nature ; 588(7837): 254-260, 2020 12.
Article in English | MEDLINE | ID: mdl-33142305

ABSTRACT

Hydroamination of alkenes, the addition of the N-H bond of an amine across an alkene, is a fundamental, yet challenging, organic transformation that creates an alkylamine from two abundant chemical feedstocks, alkenes and amines, with full atom economy1-3. The reaction is particularly important because amines, especially chiral amines, are prevalent substructures in a wide range of natural products and drugs. Although extensive efforts have been dedicated to developing catalysts for hydroamination, the vast majority of alkenes that undergo intermolecular hydroamination have been limited to conjugated, strained, or terminal alkenes2-4; only a few examples occur by the direct addition of the N-H bond of amines across unactivated internal alkenes5-7, including photocatalytic hydroamination8,9, and no asymmetric intermolecular additions to such alkenes are known. In fact, current examples of direct, enantioselective intermolecular hydroamination of any type of unactivated alkene lacking a directing group occur with only moderate enantioselectivity10-13. Here we report a cationic iridium system that catalyses intermolecular hydroamination of a range of unactivated, internal alkenes, including those in both acyclic and cyclic alkenes, to afford chiral amines with high enantioselectivity. The catalyst contains a phosphine ligand bearing trimethylsilyl-substituted aryl groups and a triflimide counteranion, and the reaction design includes 2-amino-6-methylpyridine as the amine to enhance the rates of multiple steps within the catalytic cycle while serving as an ammonia surrogate. These design principles point the way to the addition of N-H bonds of other reagents, as well as O-H and C-H bonds, across unactivated internal alkenes to streamline the synthesis of functional molecules from basic feedstocks.


Subject(s)
Alkenes/chemistry , Amines/chemistry , Chemistry Techniques, Synthetic , Hydrogen/chemistry , Nitrogen/chemistry , Amination , Aminopyridines/chemistry , Ammonia/chemistry , Catalysis , Indicators and Reagents/chemistry , Iridium/chemistry , Ligands , Phosphines/chemistry
8.
Proc Natl Acad Sci U S A ; 120(22): e2221483120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216508

ABSTRACT

The enzymatic decarboxylation of fatty acids (FAs) represents an advance toward the development of biological routes to produce drop-in hydrocarbons. The current mechanism for the P450-catalyzed decarboxylation has been largely established from the bacterial cytochrome P450 OleTJE. Herein, we describe OleTPRN, a poly-unsaturated alkene-producing decarboxylase that outrivals the functional properties of the model enzyme and exploits a distinct molecular mechanism for substrate binding and chemoselectivity. In addition to the high conversion rates into alkenes from a broad range of saturated FAs without dependence on high salt concentrations, OleTPRN can also efficiently produce alkenes from unsaturated (oleic and linoleic) acids, the most abundant FAs found in nature. OleTPRN performs carbon-carbon cleavage by a catalytic itinerary that involves hydrogen-atom transfer by the heme-ferryl intermediate Compound I and features a hydrophobic cradle at the distal region of the substrate-binding pocket, not found in OleTJE, which is proposed to play a role in the productive binding of long-chain FAs and favors the rapid release of products from the metabolism of short-chain FAs. Moreover, it is shown that the dimeric configuration of OleTPRN is involved in the stabilization of the A-A' helical motif, a second-coordination sphere of the substrate, which contributes to the proper accommodation of the aliphatic tail in the distal and medial active-site pocket. These findings provide an alternative molecular mechanism for alkene production by P450 peroxygenases, creating new opportunities for biological production of renewable hydrocarbons.


Subject(s)
Alkenes , Fatty Acids , Fatty Acids/metabolism , Alkenes/chemistry , Decarboxylation , Cytochrome P-450 Enzyme System/metabolism , Oxidation-Reduction
9.
Proc Natl Acad Sci U S A ; 120(49): e2307012120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38019866

ABSTRACT

The cuticle is a hydrophobic structure that seals plant aerial surfaces from the surrounding environment. To better understand how cuticular wax composition changes over development, we conducted an untargeted screen of leaf surface lipids from black cottonwood (Populus trichocarpa). We observed major shifts to the lipid profile across development, from a phenolic and terpene-dominated profile in young leaves to an aliphatic wax-dominated profile in mature leaves. Contrary to the general pattern, levels of aliphatic cis-9-alkenes decreased in older leaves following their accumulation. A thorough examination revealed that the decrease in cis-9-alkenes was accompanied by a concomitant increase in aldehydes, one of them being the volatile compound nonanal. By applying exogenous alkenes to P. trichocarpa leaves, we show that unsaturated waxes in the cuticle undergo spontaneous oxidative cleavage to generate aldehydes and that this process occurs similarly in other alkene-accumulating systems such as balsam poplar (Populus balsamifera) leaves and corn (Zea mays) silk. Moreover, we show that the production of cuticular wax-derived compounds can be extended to other wax components. In bread wheat (Triticum aestivum), 9-hydroxy-14,16-hentriacontanedione likely decomposes to generate 2-heptadecanone and 7-octyloxepan-2-one (a caprolactone). These findings highlight an unusual route to the production of plant volatiles that are structurally encoded within cuticular wax precursors. These processes could play a role in modulating ecological interactions and open the possibility for engineering bioactive volatile compounds into plant waxes.


Subject(s)
Aldehydes , Populus , Waxes/chemistry , Plant Leaves/chemistry , Triticum/chemistry , Alkenes , Zea mays , Plant Epidermis
10.
Nature ; 567(7748): 420-424, 2019 03.
Article in English | MEDLINE | ID: mdl-30867596

ABSTRACT

Living systems can generate an enormous range of cellular functions, from mechanical infrastructure and signalling networks to enzymatic catalysis and information storage, using a notably limited set of chemical functional groups. This observation is especially notable when compared to the breadth of functional groups used as the basis for similar functions in synthetically derived small molecules and materials. The relatively small cross-section between biological and synthetic reactivity space forms the foundation for the development of bioorthogonal chemistry, in which the absence of a pair of reactive functional groups within the cell allows for a selective in situ reaction1-4. However, biologically 'rare' functional groups, such as the fluoro5, chloro6,7, bromo7,8, phosphonate9, enediyne10,11, cyano12, diazo13, alkene14 and alkyne15-17 groups, continue to be discovered in natural products made by plants, fungi and microorganisms, which offers a potential route to genetically encode the endogenous biosynthesis of bioorthogonal reagents within living organisms. In particular, the terminal alkyne has found broad utility via the Cu(I)-catalysed azide-alkyne cycloaddition 'click' reaction18. Here we report the discovery and characterization of a unique pathway to produce a terminal alkyne-containing amino acid in the bacterium Streptomyces cattleya. We found that L-lysine undergoes an unexpected reaction sequence that includes halogenation, oxidative C-C bond cleavage and triple bond formation through a putative allene intermediate. This pathway offers the potential for de novo cellular production of halo-, alkene- and alkyne-labelled proteins and natural products from glucose for a variety of downstream applications.


Subject(s)
Alkynes/chemistry , Alkynes/metabolism , Amino Acids/biosynthesis , Amino Acids/chemistry , Biosynthetic Pathways , Streptomyces/metabolism , Alkadienes/chemistry , Alkadienes/metabolism , Alkenes/chemistry , Alkenes/metabolism , Bacterial Proteins/metabolism , Biosynthetic Pathways/genetics , Carbon/chemistry , Carbon/metabolism , Glucose/chemistry , Glucose/metabolism , Halogenation , Lysine/chemistry , Lysine/metabolism , Multigene Family/genetics , Serine/analogs & derivatives , Serine/biosynthesis , Serine/chemistry , Streptomyces/genetics
11.
Nature ; 574(7779): 516-521, 2019 10.
Article in English | MEDLINE | ID: mdl-31645723

ABSTRACT

Methods for selective C-H bond functionalization have provided chemists with versatile and powerful toolboxes for synthesis, such as the late-stage modification of a lead compound without the need for lengthy de novo synthesis1-5. Cleavage of an sp3 C-H bond via hydrogen atom transfer (HAT) is particularly useful, given the large number of available HAT acceptors and the diversity of reaction pathways available to the resulting radical intermediate6-17. Site-selectivity, however, remains a formidable challenge, especially among sp3 C-H bonds with comparable properties. If the intermediate radical could be further trapped enantioselectively, this should enable highly site- and enantioselective functionalization of C-H bonds. Here we report a copper (Cu)-catalysed site- and enantioselective allylic C-H cyanation of complex alkenes, in which a Cu(II)-bound nitrogen (N)-centred radical plays the key role in achieving precise site-specific HAT. This method is shown to be effective for a diverse collection of alkene-containing molecules, including sterically demanding structures and complex natural products and pharmaceuticals.


Subject(s)
Carbon/chemistry , Copper/chemistry , Hydrogen/chemistry , Alkenes/chemistry , Biological Products/chemistry , Catalysis , Density Functional Theory , Nitrogen/chemistry , Oxidation-Reduction , Pharmaceutical Preparations/chemistry , Substrate Specificity
12.
Chem Soc Rev ; 53(9): 4607-4647, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38525675

ABSTRACT

Alcohol is ubiquitous with unparalleled structural diversity and thus has wide applications as a native functional group in organic synthesis. It is highly prevalent among biomolecules and offers promising opportunities for the development of chemical libraries. Over the last decade, alcohol has been extensively used as an environmentally friendly chemical for numerous organic transformations. In this review, we collectively discuss the utilisation of alcohol from 2015 to 2023 in various organic transformations and their application toward intermediates of drugs, drug derivatives and natural product-like molecules. Notable features discussed are as follows: (i) sustainable approaches for C-X alkylation (X = C, N, or O) including O-phosphorylation of alcohols, (ii) newer strategies using methanol as a methylating reagent, (iii) allylation of alkenes and alkynes including allylic trifluoromethylations, (iv) alkenylation of N-heterocycles, ketones, sulfones, and ylides towards the synthesis of drug-like molecules, (v) cyclisation and annulation to pharmaceutically active molecules, and (vi) coupling of alcohols with aryl halides or triflates, aryl cyanide and olefins to access drug-like molecules. We summarise the synthesis of over 100 drugs via several approaches, where alcohol was used as one of the potential coupling partners. Additionally, a library of molecules consisting over 60 fatty acids or steroid motifs is documented for late-stage functionalisation including the challenges and opportunities for harnessing alcohols as renewable resources.


Subject(s)
Alcohols , Alcohols/chemistry , Alcohols/chemical synthesis , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/chemical synthesis , Biological Products/chemistry , Biological Products/chemical synthesis , Indicators and Reagents/chemistry , Alkylation , Molecular Structure , Alkenes/chemistry , Alkenes/chemical synthesis , Green Chemistry Technology
13.
J Am Chem Soc ; 146(11): 7191-7197, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38442365

ABSTRACT

Photoenzymatic intermolecular hydroalkylations of olefins are highly enantioselective for chiral centers formed during radical termination but poorly selective for centers set in the C-C bond-forming event. Here, we report the evolution of a flavin-dependent "ene"-reductase to catalyze the coupling of α,α-dichloroamides with alkenes to afford α-chloroamides in good yield with excellent chemo- and stereoselectivity. These products can serve as linchpins in the synthesis of pharmaceutically valuable motifs. Mechanistic studies indicate that radical formation occurs by exciting a charge-transfer complex templated by the protein. Precise control over the orientation of molecules within the charge-transfer complex potentially accounts for the observed stereoselectivity. The work expands the types of motifs that can be prepared using photoenzymatic catalysis.


Subject(s)
Alkenes , Catalysis
14.
J Am Chem Soc ; 146(3): 1819-1824, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38190322

ABSTRACT

Alkylidene cyclopropanes (ACPs) are valuable synthetic intermediates because of their constrained structure and opportunities for further diversification. Although routes to ACPs are known, preparations of ACPs with control of both the configuration of the cyclopropyl (R vs S) group and the geometry of the alkene (E vs Z) are unknown. We describe enzymatic cyclopropanation of allenes with ethyl diazoacetate (EDA) catalyzed by an iridium-containing cytochrome (Ir(Me)-CYP119) that controls both stereochemical elements. Two mutants of Ir(Me)-CYP119 identified by 6-codon (6c, VILAFG) saturation mutagenesis catalyze the formation of (E)-ACPs with -93% to >99% ee and >99:1 E/Z ratio with just three rounds of 96 mutants. By four additional rounds of mutagenesis, an enzyme variant was identified that forms (Z)-ACPs with up to 94% ee and a 28:72 E/Z ratio. Computational studies show that the orientation of the carbene unit dictated by the mutated positions accounts for the stereoselectivity.


Subject(s)
Alkadienes , Iridium , Catalysis , Alkenes/chemistry
15.
J Am Chem Soc ; 146(4): 2748-2756, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38214454

ABSTRACT

Controlling the enantioselectivity of hydrogen atom transfer (HAT) reactions has been a long-standing synthetic challenge. While recent advances on photoenzymatic catalysis have demonstrated the great potential of non-natural photoenzymes, all of the transformations are initiated by single-electron reduction of the substrate, with only one notable exception. Herein, we report an oxidation-initiated photoenzymatic enantioselective hydrosulfonylation of olefins using a novel mutant of gluconobacter ene-reductase (GluER-W100F-W342F). Compared to known photoenzymatic systems, our approach does not rely on the formation of an electron donor-acceptor complex between the substrates and enzyme cofactor and simplifies the reaction system by obviating the addition of a cofactor regeneration mixture. More importantly, the GluER variant exhibits high reactivity and enantioselectivity and a broad substrate scope. Mechanistic studies support the proposed oxidation-initiated mechanism and reveal that a tyrosine-mediated HAT process is involved.


Subject(s)
Alkenes , Electrons , Stereoisomerism , Oxidation-Reduction , Hydrogen , Catalysis
16.
J Am Chem Soc ; 146(3): 1977-1983, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38226594

ABSTRACT

Ethylene-forming enzyme (EFE) is an iron(II)-dependent dioxygenase that fragments 2-oxoglutarate (2OG) to ethylene (from C3 and C4) and 3 equivs of carbon dioxide (from C1, C2, and C5). This major ethylene-forming pathway requires l-arginine as the effector and competes with a minor pathway that merely decarboxylates 2OG to succinate as it oxidatively fragments l-arginine. We previously proposed that ethylene forms in a polar-concerted (Grob-like) fragmentation of a (2-carboxyethyl)carbonatoiron(II) intermediate, formed by the coupling of a C3-C5-derived propion-3-yl radical to a C1-derived carbonate coordinated to the Fe(III) cofactor. Replacement of one or both C4 hydrogens of 2OG by fluorine, methyl, or hydroxyl favored the elimination products 2-(F1-2/Me/OH)-3-hydroxypropionate and CO2 over the expected olefin or carbonyl products, implying strict stereoelectronic requirements in the final step, as is known for Grob fragmentations. Here, we substituted active-site residues expected to interact sterically with the proposed Grob intermediate, aiming to disrupt or enable the antiperiplanar disposition of the carboxylate electrofuge and carbonate nucleofuge required for concerted fragmentation. The bulk-increasing A198L substitution barely affects the first partition between the major and minor pathways but then, as intended, markedly diminishes ethylene production in favor of 3-hydroxypropionate. Conversely, the bulk-diminishing L206V substitution enables propylene formation from (4R)-methyl-2OG, presumably by allowing the otherwise sterically disfavored antiperiplanar conformation of the Grob intermediate bearing the extra methyl group. The results provide additional evidence for a polar-concerted ethylene-yielding step and thus for the proposed radical-polar crossover via substrate-radical coupling to the Fe(III)-coordinated carbonate.


Subject(s)
Alkenes , Ethylenes , Ferric Compounds , Lactic Acid/analogs & derivatives , Lyases , Ethylenes/chemistry , Arginine/metabolism , Catalytic Domain , Carbonates
17.
Environ Microbiol ; 26(2): e16567, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38233213

ABSTRACT

Soluble di-iron monooxygenase (SDIMO) enzymes enable insertion of oxygen into diverse substrates and play significant roles in biogeochemistry, bioremediation and biocatalysis. An unusual SDIMO was detected in an earlier study in the genome of the soil organism Solimonas soli, but was not characterized. Here, we show that the S. soli SDIMO is part of a new clade, which we define as 'Group 7'; these share a conserved gene organization with alkene monooxygenases but have only low amino acid identity. The S. soli genes (named zmoABCD) could be functionally expressed in Pseudomonas putida KT2440 but not in Escherichia coli TOP10. The recombinants made epoxides from C2 C8 alkenes, preferring small linear alkenes (e.g. propene), but also epoxidating branched, carboxylated and chlorinated substrates. Enzymatic epoxidation of acrylic acid was observed for the first time. ZmoABCD oxidised the organochlorine pollutants vinyl chloride (VC) and cis-1,2-dichloroethene (cDCE), with the release of inorganic chloride from VC but not cDCE. The original host bacterium S. soli could not grow on any alkenes tested but grew well on phenol and n-octane. Further work is needed to link ZmoABCD and the other Group 7 SDIMOs to specific physiological and ecological roles.


Subject(s)
Gammaproteobacteria , Pseudomonas putida , Vinyl Chloride , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Alkenes/metabolism , Gammaproteobacteria/metabolism , Biodegradation, Environmental , Pseudomonas putida/genetics , Pseudomonas putida/metabolism
18.
Chembiochem ; 25(10): e202400066, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38567500

ABSTRACT

P450 enzymes naturally perform selective hydroxylations and epoxidations of unfunctionalized hydrocarbon substrates, among other reactions. The adaptation of P450 enzymes to a particular oxidative reaction involving alkenes is of great interest for the design of new synthetically useful biocatalysts. However, the mechanism that these enzymes utilize to precisely modulate the chemoselectivity and distinguishing between competing alkene double bond epoxidations and allylic C-H hydroxylations is sometimes not clear, which hampers the rational design of specific biocatalysts. In a previous work, a P450 from Labrenzia aggregata (P450LA1) was engineered in the laboratory using directed evolution to catalyze the direct oxidation of trans-ß-methylstyrene to phenylacetone. The final variant, KS, was able to overcome the intrinsic preference for alkene epoxidation to directly generate a ketone product via the formation of a highly reactive carbocation intermediate. Here, additional library screening along this evolutionary lineage permitted to serendipitously detect a mutation that overcomes epoxidation and carbonyl formation by exhibiting a large selectivity of 94 % towards allylic C-H hydroxylation. A multiscalar computational methodology was applied to reveal the molecular basis towards this hydroxylation preference. Enzyme modelling suggests that introduction of a bulky substitution dramatically changes the accessible conformations of the substrate in the active site, thus modifying the enzymatic selectivity towards terminal hydroxylation and avoiding the competing epoxidation pathway, which is sterically hindered.


Subject(s)
Alkenes , Biocatalysis , Cytochrome P-450 Enzyme System , Oxidation-Reduction , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/chemistry , Alkenes/chemistry , Alkenes/metabolism , Substrate Specificity
19.
Plant Biotechnol J ; 22(6): 1536-1548, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38226779

ABSTRACT

Salvianolic acids (SA), such as rosmarinic acid (RA), danshensu (DSS), and their derivative salvianolic acid B (SAB), etc. widely existed in Lamiaceae and Boraginaceae families, are of interest due to medicinal properties in the pharmaceutical industries. Hundreds of studies in past decades described that 4-coumaroyl-CoA and 4-hydroxyphenyllactic acid (4-HPL) are common substrates to biosynthesize SA with participation of rosmarinic acid synthase (RAS) and cytochrome P450 98A (CYP98A) subfamily enzymes in different plants. However, in our recent study, several acyl donors and acceptors included DSS as well as their ester-forming products all were determined in SA-rich plants, which indicated that previous recognition to SA biosynthesis is insufficient. Here, we used Salvia miltiorrhiza, a representative important medicinal plant rich in SA, to elucidate the diversity of SA biosynthesis. Various acyl donors as well as acceptors are catalysed by SmRAS to form precursors of RA and two SmCYP98A family members, SmCYP98A14 and SmCYP98A75, are responsible for different positions' meta-hydroxylation of these precursors. SmCYP98A75 preferentially catalyses C-3' hydroxylation, and SmCYP98A14 preferentially catalyses C-3 hydroxylation in RA generation. In addition, relative to C-3' hydroxylation of the acyl acceptor moiety in RA biosynthesis, SmCYP98A75 has been verified as the first enzyme that participates in DSS formation. Furthermore, SmCYP98A enzymes knockout resulted in the decrease and overexpression leaded to dramatic increase of SA accumlation. Our study provides new insights into SA biosynthesis diversity in SA-abundant species and versatility of CYP98A enzymes catalytic preference in meta-hydroxylation reactions. Moreover, CYP98A enzymes are ideal metabolic engineering targets to elevate SA content.


Subject(s)
Cytochrome P-450 Enzyme System , Salvia miltiorrhiza , Hydroxylation , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Salvia miltiorrhiza/metabolism , Salvia miltiorrhiza/genetics , Salvia miltiorrhiza/enzymology , Polyphenols/metabolism , Polyphenols/biosynthesis , Plant Proteins/metabolism , Plant Proteins/genetics , Alkenes
20.
Plant Cell Environ ; 47(5): 1543-1555, 2024 May.
Article in English | MEDLINE | ID: mdl-38254306

ABSTRACT

Plant volatiles play an important role in intra- and interspecific plant communication, inducing direct and indirect defenses against insect pests. However, it remains unknown whether volatile interactions between undamaged cultivars alter host plant volatile emissions and their perception by insect pests. Here, we tested the effects of exposure of a spring barley, Hordeum vulgare L., cultivar, Salome, to volatiles from other cultivars: Fairytale and Anakin. We found that exposing Salome to Fairytale induced a significantly higher emission of trans-ß-ocimene and two unidentified compounds compared when exposed to Anakin. Aphids were repelled at a higher concentration of trans-ß-ocimene. Salome exposure to Fairytale had significant repulsive effects on aphid olfactory preference, yet not when Salome was exposed to Anakin. We demonstrate that volatile interactions between specific undamaged plants can induce changes in volatile emission by receiver plants enhancing certain compounds, which can disrupt aphid olfactory preferences. Our results highlight the significant roles of volatiles in plant-plant interactions, affecting plant-insect interactions in suppressing insect pests. This has important implications for crop protection and sustainable agriculture.


Subject(s)
Acyclic Monoterpenes , Aphids , Volatile Organic Compounds , Animals , Volatile Organic Compounds/pharmacology , Plants , Alkenes , Herbivory
SELECTION OF CITATIONS
SEARCH DETAIL