Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 416
Filter
1.
Nucleic Acids Res ; 51(9): 4112-4125, 2023 05 22.
Article in English | MEDLINE | ID: mdl-36971129

ABSTRACT

The importance of non-canonical DNA structures such as G-quadruplexes (G4) and intercalating-motifs (iMs) in the fine regulation of a variety of cellular processes has been recently demonstrated. As the crucial roles of these structures are being unravelled, it is becoming more and more important to develop tools that allow targeting these structures with the highest possible specificity. While targeting methodologies have been reported for G4s, this is not the case for iMs, as evidenced by the limited number of specific ligands able to bind the latter and the total absence of selective alkylating agents for their covalent targeting. Furthermore, strategies for the sequence-specific covalent targeting of G4s and iMs have not been reported thus far. Herein, we describe a simple methodology to achieve sequence-specific covalent targeting of G4 and iM DNA structures based on the combination of (i) a peptide nucleic acid (PNA) recognizing a specific sequence of interest, (ii) a pro-reactive moiety enabling a controlled alkylation reaction, and (iii) a G4 or iM ligand orienting the alkylating warhead to the reactive residues. This multi-component system allows for the targeting of specific G4 or iM sequences of interest in the presence of competing DNA sequences and under biologically relevant conditions.


Subject(s)
Alkylating Agents , Alkylation , Color , DNA , G-Quadruplexes , Light , Alkylating Agents/chemistry , Alkylating Agents/radiation effects , Alkylation/drug effects , Alkylation/radiation effects , DNA/chemistry , DNA/drug effects , G-Quadruplexes/drug effects , Ligands
2.
Bioconjug Chem ; 33(11): 2097-2102, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36315583

ABSTRACT

Alkylating agents for nucleic acids have been widely used in cancer chemotherapy, as well as in chemical biology for strong inhibitors and tagging methods. We provide a series of reactive OFF-ON type alkylating agents which enable the reactivity modulation toward G-quadruplex (G4) DNA and RNA. Due to the protonation-accelerated process and equilibrium elimination method, the amine leaving groups show highly reactive and storable properties in an extensive investigation of vinyl quinazolinone (VQ) precursors with different leaving groups.


Subject(s)
Alkylating Agents , G-Quadruplexes , Alkylating Agents/chemistry , DNA/chemistry , RNA
3.
Chemistry ; 28(35): e202200734, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35441438

ABSTRACT

Combining the selectivity of G-quadruplex (G4) ligands with the spatial and temporal control of photochemistry is an emerging strategy to elucidate the biological relevance of these structures. In this work, we developed six novel V-shaped G4 ligands that can, upon irradiation, form stable covalent adducts with G4 structures via the reactive intermediate, quinone methide (QM). We thoroughly investigated the photochemical properties of the ligands and their ability to generate QMs. Subsequently, we analyzed their specificity for various topologies of G4 and discovered a preferential binding towards the human telomeric sequence. Finally, we tested the ligand ability to act as photochemical alkylating agents, identifying the covalent adducts with G4 structures. This work introduces a novel molecular tool in the chemical biology toolkit for G4s.


Subject(s)
G-Quadruplexes , Indolequinones , Alkylating Agents/chemistry , Humans , Ligands
4.
J Am Chem Soc ; 143(45): 18960-18976, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34726902

ABSTRACT

DNA interstrand cross-links (ICLs) are extremely deleterious and structurally diverse, driving the evolution of ICL repair pathways. Discovering ICL-inducing agents is, thus, crucial for the characterization of ICL repair pathways and Fanconi anemia, a genetic disease caused by mutations in ICL repair genes. Although several studies point to oxidative stress as a cause of ICLs, oxidative stress-induced cross-linking events remain poorly characterized. Also, polycyclic aromatic amines, potent environmental carcinogens, have been implicated in producing ICLs, but their identities and sequences are unknown. To close this knowledge gap, we tested whether ICLs arise by the oxidation of 8-arylamino-2'-deoxyadenosine (ArNHdA) lesions, adducts produced by arylamino carcinogens. Herein, we report that ArNHdA acts as a latent cross-linking agent to generate ICLs under oxidative conditions. The formation of an ICL from 8-aminoadenine, but not from 8-aminoguanine, highlights the specificity of 8-aminopurine-mediated ICL production. Under the influence of the reactive oxygen species (ROS) nitrosoperoxycarbonate, ArNHdA (Ar = biphenyl, fluorenyl) lesions were selectively oxidized to generate ICLs. The cross-linking reaction may occur between the C2-ArNHdA and N2-dG, presumably via oxidation of ArNHdA into a reactive diiminoadenine intermediate followed by the nucleophilic attack of the N2-dG on the diiminoadenine. Overall, ArNHdA-mediated ICLs represent rare examples of ROS-induced ICLs and polycyclic aromatic amine-mediated ICLs. These results reveal novel cross-linking chemistry and the genotoxic effects of arylamino carcinogens and support the hypothesis that C8-modified adenines with low redox potential can cause ICLs in oxidative stress.


Subject(s)
Alkylating Agents/chemistry , Aniline Compounds/chemistry , Cross-Linking Reagents/chemistry , DNA Damage/drug effects , DNA/chemistry , Deoxyadenosines/chemistry , Carbonates/chemistry , DNA Adducts/chemical synthesis , Nitrates/chemistry , Oxidation-Reduction
5.
Nature ; 525(7567): 87-90, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26308895

ABSTRACT

Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of 'spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.


Subject(s)
Alcohols/chemistry , Alkylating Agents/chemistry , Carbon/chemistry , Hydrogen/chemistry , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/chemistry , Alkylation , Catalysis , Milrinone/chemistry , Oxidation-Reduction , Oxygen/chemistry , Photochemical Processes , Substrate Specificity
6.
Nucleic Acids Res ; 47(13): 6578-6589, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31188442

ABSTRACT

Higher-ordered structure motifs of nucleic acids, such as the G-quadruplex (G-4), mismatched and bulge structures, are significant research targets because these structures are involved in genetic control and diseases. Selective alkylation of these higher-order structures is challenging due to the chemical instability of the alkylating agent and side-reactions with the single- or double-strand DNA and RNA. We now report the reactive OFF-ON type alkylating agents, vinyl-quinazolinone (VQ) precursors with a sulfoxide, thiophenyl or thiomethyl group for the OFF-ON control of the vinyl reactivity. The stable VQ precursors conjugated with aminoacridine, which bind to the G-4 DNA, selectively reacted with a T base on the G-4 DNA in contrast to the single- and double-strand DNA. Additionally, the VQ precursor reacted with the T or U base in the AP-site, G-4 RNA and T-T mismatch structures. These VQ precursors would be a new candidate for the T or U specific alkylation in the higher-ordered structures of nucleic acids.


Subject(s)
Alkylating Agents/pharmacology , DNA/drug effects , Nucleic Acid Conformation/drug effects , Alkylating Agents/chemical synthesis , Alkylating Agents/chemistry , Alkylation , Base Pairing , DNA/chemistry , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/drug effects , G-Quadruplexes/drug effects , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Purines/chemistry , Purines/pharmacology , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Structure-Activity Relationship , Triazines/chemistry , Triazines/pharmacology , Vinyl Compounds/chemistry , Vinyl Compounds/pharmacology
7.
Molecules ; 26(18)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34576931

ABSTRACT

Post-translational modifications (PTMs) are used by organisms to control protein structure and function after protein translation, but their study is complicated and their roles are not often well understood as PTMs are difficult to introduce onto proteins selectively. Designing reagents that are both good mimics of PTMs, but also only modify select amino acid residues in proteins is challenging. Frequently, both a chemical warhead and linker are used, creating a product that is a misrepresentation of the natural modification. We have previously shown that biotin-chloromethyl-triazole is an effective reagent for cysteine modification to give S-Lys derivatives where the triazole is a good mimic of natural lysine acylation. Here, we demonstrate both how the reactivity of the alkylating reagents can be increased and how the range of triazole PTM mimics can be expanded. These new iodomethyl-triazole reagents are able to modify a cysteine residue on a histone protein with excellent selectivity in 30 min to give PTM mimics of acylated lysine side-chains. Studies on the more complicated, folded protein SCP-2L showed promising reactivity, but also suggested the halomethyl-triazoles are potent alkylators of methionine residues.


Subject(s)
Proteins/chemistry , Proteins/metabolism , Triazoles/chemistry , Alkylating Agents/chemistry , Cysteine/chemistry , Glycosylation , Histones/chemistry , Methionine/chemistry , Protein Processing, Post-Translational , Triazoles/chemical synthesis
8.
Angew Chem Int Ed Engl ; 60(23): 12648-12658, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33264456

ABSTRACT

Biochemical systems accomplish many critical functions with by operating out-of-equilibrium using the energy of chemical fuels. The formation of a transient covalent bond is a simple but very effective tool in designing analogous reaction networks. This Minireview focuses on the fuel chemistries that have been used to generate transient bonds in recent demonstrations of abiotic nonequilibrium systems (i.e., systems that do not make use of biological components). Fuel reactions are divided into two fundamental classifications depending on whether the fuel contributes structural elements to the activated state, a distinction that dictates how they can be used. Reported systems are further categorized by overall fuel reaction (e.g., hydrolysis of alkylating agents, carbodiimide hydration) and illustrate how similar chemistry can be used to effect a wide range of nonequilibrium behavior, ranging from self-assembly to the operation of molecular machines.


Subject(s)
Alkylating Agents/chemistry , Carbodiimides/chemistry , Hydrolysis , Molecular Structure
9.
Chem Res Toxicol ; 33(9): 2219-2224, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32388971

ABSTRACT

The cellular outcomes of chemical exposure are as much about the cellular response to the chemical as it is an effect of the chemical. We are growing in our understanding of the genotoxic interaction between chemistry and biology. For example, recent data has revealed the biological basis for mutation induction curves for a methylating chemical, which has been shown to be dependent on the repair capacity of the cells. However, this is just one end point in the toxicity pathway from chemical exposure to cell death. Much remains to be known in order for us to predict how cells will respond to a certain dose. Methylating agents, a subset of alkylating agents, are of particular interest, because of the variety of adverse genetic end points that can result, not only at increasing doses, but also over time. For instance, methylating agents are mutagenic, their potency, for this end point, is determined by the cellular repair capacity of an enzyme called methylguanine DNA-methyltransferase (MGMT) and its ability to repair the induceed methyl adducts. However, methyl adducts can become clastogenic. Erroneous biological processing will convert mutagenic adducts to clastogenic events in the form of double strand breaks (DSBs). How the cell responds to DSBs is via a cascade of protein kinases, which is called the DNA damage response (DDR), which will determine if the damage is repaired effectively, via homologous recombination, or with errors, via nonhomologous end joining, or whether the cell dies via apoptosis or enters senescence. The fate of cells may be determined by the extent of damage and the resulting strength of DDR signaling. Therefore, thresholds of damage may exist that determine cell fate. Such thresholds would be dependent on each of the repair and response mechanisms that these methyl adducts stimulate. The molecular mechanism of how methyl adducts kill cells is still to be fully resolved. If we are able to quantify each of these thresholds of damage for a given cell, then we can ascertain, of the many adducts that are induced, what proportion of them are mutagenic, what proportion are clastogenic, and how many of these clastogenic events are toxic. This review examines the possibility of dose and damage thresholds for methylating agents, from the perspective of the underlying evolutionary mechanisms that may be accountable.


Subject(s)
Alkylating Agents/adverse effects , Enzyme Inhibitors/adverse effects , O(6)-Methylguanine-DNA Methyltransferase/antagonists & inhibitors , Alkylating Agents/chemistry , Animals , Enzyme Inhibitors/chemistry , Humans , Methylation/drug effects , O(6)-Methylguanine-DNA Methyltransferase/genetics , O(6)-Methylguanine-DNA Methyltransferase/metabolism
10.
Chem Res Toxicol ; 33(2): 625-633, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31841318

ABSTRACT

DNA methylating agents are abundant in the environment and are sometimes used in cancer chemotherapy. They react with DNA to form methyl-DNA adducts and byproduct lesions that can be both toxic and mutagenic. Foremost among the mutagenic lesions is O6-methylguanine (m6G), which base pairs with thymine during replication to cause GC → AT mutations. The gpt delta C57BL/6J mouse strain of Nohmi et al. (Mol. Mutagen 1996, 28, 465-70) reliably produces mutational spectra of many DNA damaging agents. In this work, mouse embryo fibroblasts (MEFs) were made from gpt delta C57BL/6J mice and evaluated as a screening tool to determine the qualitative and quantitative features of mutagenesis by N-methyl-N-nitrosourea (MNU), a direct-acting DNA alkylator that serves as a model for environmental N-nitrosamines, such as N-nitrosodimethylamine and therapeutic agents such as Temozolomide. The DNA repair protein MGMT (O6-methylguanine DNA methyltransferase) protects against environmental mutagenesis by DNA methylating agents and, by removing m6G, limits the therapeutic potential of Temozolomide in cancer therapy. The gpt delta MEFs were treated with MNU to establish dose-dependent toxicity. In parallel, MNU mutagenicity was determined in the presence and absence of the MGMT inhibitor AA-CW236 (4-(2-(5-(chloromethyl)-4-(4-(trifluoromethoxy)phenyl)-1H-1,2,3-triazol-1-yl)ethyl)-3,5-dimethylisoxazole). With and without the inhibitor, the principal mutagenic event of MNU was GC → AT, but more mutations were observed when the inhibitor was present. Evidence that the mutagenic lesion was m6G was based on mass spectral data collected using O6-methyl-d3-guanine as an internal standard; m6G levels were higher in AA-CW236 treated MEFs by an amount proportional to the higher mutation frequency seen in the same cells. This work establishes gpt delta MEFs as a versatile tool for probing mutagenesis by environmental and therapeutic agents and as a cell culture model in which chemical genetics can be used to determine the impact of DNA repair on biological responses to DNA damaging agents.


Subject(s)
Alkylating Agents/pharmacology , DNA Modification Methylases/antagonists & inhibitors , DNA Repair Enzymes/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Fibroblasts/drug effects , Methylnitrosourea/pharmacology , Mutagenesis/drug effects , Tumor Suppressor Proteins/antagonists & inhibitors , Alkylating Agents/chemistry , Animals , DNA Modification Methylases/metabolism , DNA Repair Enzymes/metabolism , Enzyme Inhibitors/chemistry , Fibroblasts/metabolism , Methylnitrosourea/chemistry , Mice , Mice, Inbred C57BL , Mice, Transgenic , Tumor Suppressor Proteins/metabolism
11.
Org Biomol Chem ; 18(8): 1671-1678, 2020 02 26.
Article in English | MEDLINE | ID: mdl-32051993

ABSTRACT

The dynamic nature of nucleic acid alkylation by simple ortho quinone methides (QM) and their conjugates has provided numerous opportunities ranging from sequence selective targeting to bipedal walking in duplex DNA. To enhance the diffusion rate of adduct migration, one of two sites for QM generation was deleted from a bisQM conjugate of acridine to remove the covalent anchor to DNA that persists during QM regeneration. This conversion of a bisfunctional cross-linking agent to a monofunctional alkylating agent allowed adduct diffusion to traverse an extrahelical -TT- bulge that previously acted as a barrier for its bisfunctional analog. An electron rich derivative of the monofunctional acridine conjugate was additionally prepared to accelerate the rates of DNA alkylation and QM regeneration. The resulting stabilization of this QM effectively enhanced the rate of its release from adducts attached at guanine N7 in competition with an alternative and detrimental deglycosylation pathway. Intercalation by the acridine component was not sufficient to hold the transient QM intermediates within duplex DNA and consequently these electrophiles diffused into solution and were subject to quenching by solvent and a model nucleophile, ß-mercaptoethanol.


Subject(s)
Acridines/chemistry , DNA/metabolism , Indolequinones/chemistry , Alkylating Agents/chemistry , Alkylation , DNA/chemistry , DNA Adducts/chemistry , Diffusion , Intercalating Agents/chemistry
12.
Bioorg Med Chem ; 28(11): 115507, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32327352

ABSTRACT

The DNA repair enzyme AAG has been shown in mice to promote tissue necrosis in response to ischaemic reperfusion or treatment with alkylating agents. A chemical probe inhibitor is required for investigations of the biological mechanism causing this phenomenon and as a lead for drugs that are potentially protective against tissue damage from organ failure and transplantation, and alkylative chemotherapy. Herein, we describe the rationale behind the choice of arylmethylpyrrolidines as appropriate aza-nucleoside mimics for an inhibitor followed by their synthesis and the first use of a microplate-based assay for quantification of their inhibition of AAG. We finally report the discovery of an imidazol-4-ylmethylpyrrolidine as a fragment-sized, weak inhibitor of AAG.


Subject(s)
Alkylating Agents/pharmacology , Aza Compounds/pharmacology , DNA Glycosylases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Nucleosides/pharmacology , Alkylating Agents/chemical synthesis , Alkylating Agents/chemistry , Animals , Aza Compounds/chemical synthesis , Aza Compounds/chemistry , Crystallography, X-Ray , DNA Glycosylases/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Mice , Models, Molecular , Molecular Structure , Nucleosides/chemical synthesis , Nucleosides/chemistry , Structure-Activity Relationship
13.
Molecules ; 26(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374613

ABSTRACT

A series of novel soluble nature-inspired flavin derivatives substituted with short butyl and bulky ethyl-adamantyl alkyl groups was prepared via simple and straightforward synthetic approach with moderate to good yields. The comprehensive characterization of the materials, to assess their application potential, has demonstrated that the modification of the conjugated flavin core enables delicate tuning of the absorption and emission properties, optical bandgap, frontier molecular orbital energies, melting points, and thermal stability. Moreover, the thin films prepared thereof exhibit smooth and homogeneous morphology with generally high stability over time.


Subject(s)
Alkylating Agents/chemistry , Riboflavin/chemistry , Semiconductors , Alkylation
14.
Molecules ; 25(23)2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33255815

ABSTRACT

Monofluoroalkenes are versatile fluorinated synthons in organic synthesis, medicinal chemistry and materials science. In light of the importance of alkyl-substituted monofluoroalkenes efficient synthesis of these moieties still represents a synthetic challenge. Herein, we described a mild and efficient methodology to obtain monofluoroalkenes through a stereospecific palladium-catalyzed alkylation of gem-bromofluoroalkenes with primary and strained secondary alkylboronic acids under mild conditions. This novel strategy gives access to a wide range of functionalized tri- and tetrasubstituted monofluoroalkenes in high yield, with good functional group tolerance, independently from the gem-bromofluoroalkenes geometry.


Subject(s)
Alkenes/chemistry , Alkylating Agents/chemistry , Boronic Acids/chemistry , Palladium/chemistry , Catalysis , Chemistry Techniques, Synthetic , Cross-Linking Reagents/chemistry , Molecular Structure
15.
Molecules ; 25(3)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31972970

ABSTRACT

For the convenient introduction of simple linear/branched alkyl groups into biologically important azaspirocyclohexadienones, a practical Fe-catalyzed decarbonylative cascade spiro-cyclization of N-aryl cinnamamides with aliphatic aldehydes to provide alkylated 1-azaspiro-cyclohexadienones was developed. Aliphatic aldehydes were oxidative decarbonylated into primary, secondary and tertiary alkyl radicals conveniently and allows for the subsequent cascade construction of dual C(sp3)-C(sp3) and C=O bonds via radical addition, spirocyclization and oxidation sequence.


Subject(s)
Alkylating Agents/chemistry , Aza Compounds/chemistry , Cinnamates/chemistry , Cyclohexenes/chemistry , Iron/chemistry , Spiro Compounds/chemistry , Aldehydes/chemistry , Alkylation , Catalysis , Cyclization
16.
Molecules ; 25(8)2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32331223

ABSTRACT

Alkyl moieties-open chain or cyclic, linear, or branched-are common in drug molecules. The hydrophobicity of alkyl moieties in drug molecules is modified by metabolic hydroxy functionalization via free-radical intermediates to give primary, secondary, or tertiary alcohols depending on the class of the substrate carbon. The hydroxymethyl groups resulting from the functionalization of methyl groups are mostly oxidized further to carboxyl groups to give carboxy metabolites. As observed from the surveyed cases in this review, hydroxy functionalization leads to loss, attenuation, or retention of pharmacologic activity with respect to the parent drug. On the other hand, carboxy functionalization leads to a loss of activity with the exception of only a few cases in which activity is retained. The exceptions are those groups in which the carboxy functionalization occurs at a position distant from a well-defined primary pharmacophore. Some hydroxy metabolites, which are equiactive with their parent drugs, have been developed into ester prodrugs while carboxy metabolites, which are equiactive to their parent drugs, have been developed into drugs as per se. In this review, we present and discuss the above state of affairs for a variety of drug classes, using selected drug members to show the effect on pharmacologic activity as well as dependence of the metabolic change on drug molecular structure. The review provides a basis for informed predictions of (i) structural features required for metabolic hydroxy and carboxy functionalization of alkyl moieties in existing or planned small drug molecules, and (ii) pharmacologic activity of the metabolites resulting from hydroxy and/or carboxy functionalization of alkyl moieties.


Subject(s)
Alkylating Agents/chemistry , Pharmaceutical Preparations/chemistry , Drug Development , Hydroxylation , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/chemistry , Metabolic Networks and Pathways , Molecular Structure , Pharmaceutical Preparations/classification , Structure-Activity Relationship , Sulfonylurea Compounds/administration & dosage , Sulfonylurea Compounds/chemistry
17.
J Am Chem Soc ; 141(10): 4257-4263, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30601664

ABSTRACT

The runt-related transcription factor (RUNX) family has been associated with cancer development. The binding of RUNX family members to specific DNA sequences is hypothesized to promote the expression of downstream genes and cause cancer proliferation. On the basis of this proposed mechanism of cancer growth, we developed conjugate 1, which inhibits the binding of RUNX to its target DNA. Conjugate 1 is a DNA-alkylating pyrrole-imidazole (PI) polyamide conjugate containing chlorambucil as an anticancer agent. Conjugate 1 was reported to have a marked anticancer effect in mouse models of acute myeloid leukemia. Although the effectiveness of 1 has been demonstrated in vivo, the detailed mechanism by which it alkylates DNA is unknown. Here, we chemically elucidated the molecular characteristics of conjugate 1 to confirm its potential as a RUNX-inhibiting drug. We also generated an alternative conjugate 2, which targets the same DNA sequence, by replacing one pyrrole with ß-alanine. Comparison of the characteristics of conjugates 1 and 2 suggested that reaction selectivity and binding affinity to the RUNX-binding sequence were improved by the introduction of ß-alanine. These findings indicate the possibility of DNA-alkylating PI polyamides as candidates for cancer chemotherapeutics.


Subject(s)
Alkylating Agents/pharmacology , Antineoplastic Agents/pharmacology , DNA/chemistry , Nylons/pharmacology , Transcription Factors/antagonists & inhibitors , Alkylating Agents/chemistry , Alkylation , Antineoplastic Agents/chemistry , Cell Line, Tumor , Chlorambucil/analogs & derivatives , Chlorambucil/pharmacology , DNA/metabolism , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Nylons/chemistry , Protein Binding/drug effects , Pyrroles/chemistry , Pyrroles/pharmacology , Transcription Factors/metabolism
18.
Cancer Sci ; 110(10): 3296-3305, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31348600

ABSTRACT

Tissue factor (TF) is known to be overexpressed in various cancers including pancreatic cancer. The upregulation of TF expression has been observed not only in tumor cells, but also in tumor stromal cells. Because of the potential of TF as a delivery target, several studies investigated the effectiveness of Ab-drug conjugates (ADCs) against TF for cancer therapy. However, it is still unclear whether anti-TF ADC can exert toxicity against both tumor cells and tumor stromal cells. Here, we prepared ADC using a rat anti-mouse TF mAb (clone.1157) and 2 types of in vivo murine pancreatic cancer models, one s.c. and other orthotopic with an abundant tumor stroma. We also compared the feasibility of bis-alkylating conjugation (bisAlk) with that of conventional maleimide-based conjugation (MC). In the s.c. models, anti-TF ADC showed greater antitumor effects than control ADC. The results also indicated that the bisAlk linker might be more suitable than the MC linker for cancer treatments. In the orthotopic model, anti-TF ADC showed greater in vivo efficacy and more extended survival time control ADC. Treatment with anti-TF ADC (20 mg/kg, three times a week) did not affect mouse body weight changes in any in vivo experiment. Furthermore, immunofluorescence staining indicated that anti-TF ADC delivered agents not only to TF-positive tumor cells, but also to TF-positive tumor vascular endothelial cells and other tumor stromal cells. We conclude that anti-TF ADC should be a selective and potent drug for pancreatic cancer therapy.


Subject(s)
Alkylating Agents/chemistry , Antineoplastic Agents, Immunological/administration & dosage , Immunoconjugates/administration & dosage , Maleimides/chemistry , Pancreatic Neoplasms/drug therapy , Thromboplastin/antagonists & inhibitors , Animals , Antineoplastic Agents, Immunological/chemistry , Antineoplastic Agents, Immunological/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Administration Schedule , Female , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacology , Mice , Mice, Transgenic , Pancreatic Neoplasms/metabolism , Rats , Stromal Cells/drug effects , Stromal Cells/metabolism , Stromal Cells/pathology , Xenograft Model Antitumor Assays
19.
Chem Res Toxicol ; 32(12): 2517-2525, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31726825

ABSTRACT

Nitrogen mustards have long been used in cancer chemotherapy, and their cytotoxicity has traditionally been attributed to the formation of DNA interstrand cross-links and DNA monoalkylation. Recent studies have shown that exposure to nitrogen mustards also induces the formation of DNA-protein cross-links (DPCs) via bridging between N7 of a deoxyguanosine residue in the DNA and the side chain of a Cys residue in the protein. However, the formation of nitrogen mustard-induced DNA-histone cross-links has never been observed. Herein, we demonstrate that treating reconstituted nucleosome core particles (NCPs) with the nitrogen mustard mechlorethamine results in the formation of DNA-histone cross-links in addition to DNA monoalkylation and interstrand cross-link formation. The yields of these three types of DNA lesions in the NCPs decreased in the following order: DNA monoalkylation ≫ DNA interstrand cross-links > DNA-histone cross-links. Mechanistic studies involving tailless histones and competitive inhibition by a polyamine demonstrated that Lys residues in the N- and C-terminal tails of the histones were the predominant sites involved in DNA-histone cross-link formation. Given that NCPs are the fundamental repeating units of chromatin in eukaryotes, our findings suggest that nitrogen mustard-induced formation of DNA-histone cross-links may occur in living cells and that DPC formation may contribute to the cytotoxicity of nitrogen mustards.


Subject(s)
Alkylating Agents/chemistry , Cross-Linking Reagents/chemistry , DNA/drug effects , Histones/drug effects , Mechlorethamine/chemistry , Nucleosomes/drug effects , Amino Acid Sequence , Animals , DNA/chemistry , Histones/chemistry , Male , Models, Chemical , Nucleosomes/chemistry , Salmon , Spermatozoa/chemistry
20.
Protein Expr Purif ; 164: 105459, 2019 12.
Article in English | MEDLINE | ID: mdl-31344475

ABSTRACT

When monoclonal antibodies (mAbs) are analysed by non-reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), method-induced artifacts are a frequent phenomenon. Previous studies suggested that incomplete denaturation and disulfide-bond scrambling are two main causes of artifact bands. Thus, in practice samples are normally heated and treated with alkylating agent iodoacetamide (IAM) before loading to promote denaturation and block free sulfhydryl groups, respectively. In this work, we further studied the major cause of artifact bands on non-reducing SDS-PAGE and ways of eliminating artifacts with two purified mAbs. In both cases, it was found that artifact bands on non-gradient Tris-glycine gels are mainly caused by incomplete denaturation under typical gel conditions. In general, heating minimizes artifact bands due to incomplete denaturation but it also generates some extra bands. Combining heating with IAM treatment achieved slightly better results than heating alone. As an alternative to heating, treating the samples with 8 M urea also allows close to complete denaturation of samples and thus minimizes artifact bands. In addition, we learned that untreated samples (samples that are not heated or treated with urea) may look different on Bis-Tris gel depending on gel composition (non-gradient vs. gradient) and the buffer used (MES vs. MOPS). In certain case, the apparent lack of artifact bands on gradient Bis-Tris gel may be in fact due to insufficient resolution. In conclusion, this study further confirmed that full-denaturation of sample is critical for minimizing/avoiding artifact bands on non-reducing SDS-PAGE.


Subject(s)
Antibodies, Monoclonal/analysis , Electrophoresis, Polyacrylamide Gel/methods , Alkylating Agents/chemistry , Hot Temperature , Iodoacetamide/chemistry , Oxidation-Reduction , Protein Denaturation , Urea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL