Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.655
Filter
1.
J Periodontal Res ; 59(3): 565-575, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38240289

ABSTRACT

BACKGROUND AND OBJECTIVE: Clinical studies found high levels of hepatocyte growth factor (HGF) expression in patients with periodontitis. Studies suggest that HGF plays an important role in periodontitis, is involved in inflammation, and modulates alveolar bone integrity in periodontitis. This study aims to investigate the effects and mechanisms of HGF in the progression of experimental periodontitis. METHODS: We used silk thread ligation to induce periodontitis in HGF-overexpressing transgenic (HGF-Tg) and wild-type C57BL/6J mice. The effects of HGF overexpression on alveolar bone destruction were assessed by microcomputed tomography imaging at baseline and on days 7, 14, 21, and 28. We analyzed the cytokines (IL-6 and TNF-α) and lymphocytes in periodontitis tissues by enzyme-linked immunosorbent assay and flow cytometry. The effects of HGF on alveolar bone destruction were further tested by quantifying the systemic bone metabolism markers CTXI and PINP and by RNA sequencing for the signaling pathways involved in bone destruction. Western blotting and immunohistochemistry were performed to further elucidate the involved signaling pathways. RESULTS: We found that experimental periodontitis increased HGF production in periodontitis tissues; however, the effects of HGF overexpression were inconsistent with disease progression. In the early stage of periodontitis, periodontal inflammation and alveolar bone destruction were significantly lower in HGF-Tg mice than in wild-type mice. In the late stage, HGF-Tg mice showed higher inflammatory responses and progressively aggravated bone destruction with continued stimulation of inflammation. We identified the IL-17/RANKL/TRAF6 pathway as a signaling pathway involved in the HGF effects on the progression of periodontitis. CONCLUSION: HGF plays divergent effects in the progression of experimental periodontitis and accelerates osteoclastic activity and bone destruction in the late stage of inflammation.


Subject(s)
Alveolar Bone Loss , Hepatocyte Growth Factor , Mice, Inbred C57BL , Mice, Transgenic , Periodontitis , X-Ray Microtomography , Animals , Hepatocyte Growth Factor/metabolism , Periodontitis/metabolism , Periodontitis/pathology , Mice , Alveolar Bone Loss/metabolism , Alveolar Bone Loss/diagnostic imaging , Alveolar Bone Loss/pathology , Disease Models, Animal , Disease Progression , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Signal Transduction , Male , Enzyme-Linked Immunosorbent Assay
2.
J Periodontal Res ; 59(3): 512-520, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38243688

ABSTRACT

BACKGROUND: Periodontitis is a chronic inflammatory disease defined by the pathologic loss of the periodontal ligament and alveolar bone in relation to aging. Although clinical cohort studies reported that periodontitis is significantly elevated in males compared to females, emerging evidence indicates that females with dementia are at a greater risk for periodontitis and decreased alveolar bone. OBJECTIVE: This study aimed to evaluate whether dementia is a potential sex-dependent risk factor for periodontal bone loss using an experimental model of periodontitis induced in the triple transgenic (3x-Tg) dementia-like mice and clinical samples collected from senior 65 plus age patients with diagnosed dementia. MATERIALS AND METHODS: We induced periodontitis in dementia-like triple-transgenic (3x-Tg) male and female mice and age-matched wild-type (WT) control mice by ligature placement. Then, alveolar bone loss and osteoclast activity were evaluated using micro-CT and in situ imaging assays. In addition, we performed dental examinations on patients with diagnosed dementia. Finally, dementia-associated Aß42 and p-Tau (T181) and osteoclastogenic receptor activator of nuclear factor kappa-Β ligand (RANKL) in gingival crevicular fluid (GCF) collected from mice and clinical samples were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: Alveolar bone loss and in situ osteoclast activity were significantly elevated in periodontal lesions of 3x-Tg females but not males, compared to wild-type control mice. In addition, we also observed that the probing pocket depth (PPD) was also significantly elevated in female patients with dementia. Using ELISA assay, we observed that females had elevated levels of osteoclastogenic RANKL and dementia-associated Aß42 and p-Tau (T181) in the GCF collected from experimental periodontitis lesions and clinical samples. CONCLUSION: Altogether, we demonstrate that females with dementia have an increased risk for periodontal bone loss compared to males.


Subject(s)
Alveolar Bone Loss , Dementia , Disease Models, Animal , Mice, Transgenic , Periodontitis , RANK Ligand , Animals , Female , Alveolar Bone Loss/pathology , Alveolar Bone Loss/diagnostic imaging , Alveolar Bone Loss/metabolism , Male , Mice , Dementia/etiology , Humans , Aged , RANK Ligand/analysis , RANK Ligand/metabolism , Sex Factors , Periodontitis/complications , Periodontitis/pathology , X-Ray Microtomography , Osteoclasts/pathology , Amyloid beta-Peptides/metabolism , Gingival Crevicular Fluid/chemistry , Peptide Fragments/analysis , Risk Factors
3.
J Clin Periodontol ; 51(3): 338-353, 2024 03.
Article in English | MEDLINE | ID: mdl-38110189

ABSTRACT

AIM: Recombinant bone matrix (RBM) is a newly conceived and engineered porous bone graft granule of average size 600 µm composed of purified recombinant collagen peptide. We sought to examine the behaviour with time of RBM that was grafted in the canine tooth extraction socket. MATERIALS AND METHODS: The canine tooth extraction socket of the hemisectioned mandibular third premolar distal root was grafted with RBM granules, whereas the opposite side extraction socket served as non-grafted control. The mandibular samples were harvested at 1, 3 and 6 months of healing and subjected to micro-CT imaging and decalcified paraffin-embedded histology. Separately, the effect of RBM was compared with that of deproteinized cancellous bovine bone (DCBB) and bovine atelocollagen plug (BACP) in the canine tooth extraction model at 3 months of healing. RESULTS: RBM maintained the grafted space in the socket and the gingival connective tissue until new bone was formed within its porous space. The regenerated bone was highly vascularized and continued to mature, while RBM was completely bioresorbed by 6 months. The buccal and lingual alveolar ridge heights of the RBM-grafted extraction socket was better preserved than those of non-grafted control sockets. The degree of socket preservation by RBM was equivalent to that by DCBB, although their healing mechanisms were different. CONCLUSIONS: This study demonstrated that RBM induced controlled active bone regeneration and preserved the extraction socket structure in a canine model. Bioresorbable RBM engineered without animal or human source materials presents a novel bone graft category with robust bone regenerative property.


Subject(s)
Alveolar Bone Loss , Alveolar Ridge Augmentation , Bone Substitutes , Humans , Animals , Cattle , Bone Matrix/transplantation , Tooth Socket/surgery , Tooth Socket/pathology , Bone Regeneration , Recombinant Proteins , Tooth Extraction , Alveolar Bone Loss/pathology , Alveolar Ridge Augmentation/methods
4.
Clin Oral Implants Res ; 35(4): 407-418, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38287504

ABSTRACT

OBJECTIVES: To study bone healing of two-wall bone defects after alveolar ridge preservation using mineralized dentin matrix. MATERIALS AND METHODS: After distal roots extraction of second and fourth premolars (P2, P4) on one lateral mandible in 12 beagles, two-wall bone defects (5 × 5 × 5 mm) were surgically created distally to the remaining mesial roots of P2 and P4. A total of 24 sites were randomly allocated to three groups (implant material- time of execution): mineralized dentin matrix (MDM)-3 m (MDM + collagen membrane; 3 months), MDM-6 m (MDM particles + collagen membrane; 6 months), and C-6 m (collagen membrane only; 6 months). Clinical, radiographic, digital, and histological examinations were performed 3 and 6 months after surgery. RESULTS: The bone healing in MDM groups were better compared to Control group (volume of bone regenerated in total: 25.12 mm3 vs. 13.30 mm3, p = .046; trabecular volume/total volume: 58.84% vs. 39.18%, p = .001; new bone formation rate: 44.13% vs. 31.88%, p = .047). Vertically, the radiological bone level of bone defect in MDM-6 m group was higher than that in C-6 m group (vertical height of bone defect: 1.55 mm vs. 2.74 mm, p = .018). Horizontally, no significant differences in buccolingual bone width were found between MDM and C groups at any time or at any level below the alveolar ridge. The percentages of remaining MDM were <1% in both MDM-3 m and MDM-6 m groups. CONCLUSIONS: MDM improved bone healing of two-wall bone defects and might be considered as a socket fill material used following tooth extraction.


Subject(s)
Alveolar Bone Loss , Alveolar Ridge Augmentation , Dogs , Animals , Tooth Socket/surgery , Tooth Socket/pathology , Alveolar Process/surgery , Alveolar Process/pathology , Collagen , Tooth Extraction , Dentin , Alveolar Bone Loss/prevention & control , Alveolar Bone Loss/surgery , Alveolar Bone Loss/pathology
5.
Clin Oral Implants Res ; 35(5): 467-486, 2024 May.
Article in English | MEDLINE | ID: mdl-38450852

ABSTRACT

OBJECTIVE: Pigs are emerging as a preferred experimental in vivo model for bone regeneration. The study objective was to answer the focused PEO question: in the pig model (P), what is the capacity of experimental alveolar bone defects (E) for spontaneous regeneration in terms of new bone formation (O)? METHODS: Following PRISMA guidelines, electronic databases were searched for studies reporting experimental bone defects or extraction socket healing in the maxillae or mandibles of pigs. The main inclusion criteria were the presence of a control group of untreated defects/sockets and the assessment of regeneration via 3D tomography [radiographic defect fill (RDF)] or 2D histomorphometry [new bone formation (NBF)]. Random effects meta-analyses were performed for the outcomes RDF and NBF. RESULTS: Overall, 45 studies were included reporting on alveolar bone defects or extraction sockets, most frequently in the mandibles of minipigs. Based on morphology, defects were broadly classified as 'box-defects' (BD) or 'cylinder-defects' (CD) with a wide range of healing times (10 days to 52 weeks). Meta-analyses revealed pooled estimates (with 95% confidence intervals) of 50% RDF (36.87%-63.15%) and 43.74% NBF (30.47%-57%) in BD, and 44% RDF (16.48%-71.61%) and 39.67% NBF (31.53%-47.81%) in CD, which were similar to estimates of socket-healing [48.74% RDF (40.35%-57.13%) and 38.73% NBF (28.57%-48.89%)]. Heterogeneity in the meta-analysis was high (I2 > 90%). CONCLUSION: A substantial body of literature revealed a high capacity for spontaneous regeneration in experimental alveolar bone defects of (mini)pigs, which should be considered in future studies of bone regeneration in this animal model.


Subject(s)
Alveolar Bone Loss , Bone Regeneration , Disease Models, Animal , Animals , Alveolar Bone Loss/diagnostic imaging , Alveolar Bone Loss/pathology , Swine , Tooth Socket/pathology , Tooth Socket/diagnostic imaging , Wound Healing/physiology
6.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791262

ABSTRACT

Orthodontic space closure following tooth extraction is often hindered by alveolar bone deficiency. This study investigates the therapeutic use of nuclear factor-kappa B (NF-κB) decoy oligodeoxynucleotides loaded with polylactic-co-glycolic acid nanospheres (PLGA-NfDs) to mitigate alveolar bone loss during orthodontic tooth movement (OTM) following the bilateral extraction of maxillary first molars in a controlled experiment involving forty rats of OTM model with ethics approved. The decreased tendency of the OTM distance and inclination angle with increased bone volume and improved trabecular bone structure indicated minimized alveolar bone destruction. Reverse transcription-quantitative polymerase chain reaction and histomorphometric analysis demonstrated the suppression of inflammation and bone resorption by downregulating the expression of tartrate-resistant acid phosphatase, tumor necrosis factor-α, interleukin-1ß, cathepsin K, NF-κB p65, and receptor activator of NF-κB ligand while provoking periodontal regeneration by upregulating the expression of alkaline phosphatase, transforming growth factor-ß1, osteopontin, and fibroblast growth factor-2. Importantly, relative gene expression over the maxillary second molar compression side in proximity to the alveolus highlighted the pharmacological effect of intra-socket PLGA-NfD administration, as evidenced by elevated osteocalcin expression, indicative of enhanced osteocytogenesis. These findings emphasize that locally administered PLGA-NfD serves as an effective inflammatory suppressor and yields periodontal regenerative responses following tooth extraction.


Subject(s)
Nanospheres , Oligodeoxyribonucleotides , Polylactic Acid-Polyglycolic Acid Copolymer , Tooth Movement Techniques , Tooth Socket , Animals , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Rats , Nanospheres/chemistry , Tooth Movement Techniques/methods , Oligodeoxyribonucleotides/pharmacology , Oligodeoxyribonucleotides/administration & dosage , Tooth Socket/drug effects , Tooth Socket/pathology , Male , NF-kappa B/metabolism , Wound Healing/drug effects , Alveolar Bone Loss/therapy , Alveolar Bone Loss/pathology , Alveolar Bone Loss/drug therapy , Alveolar Bone Loss/metabolism , Tooth Extraction
7.
BMC Oral Health ; 24(1): 735, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926720

ABSTRACT

BACKGROUND: The purpose of this study was to investigate the morphology of maxillary first premolar mesial root concavity and to analyse its relation to periodontal bone loss (BL) using cone beam computed tomography (CBCT) and panoramic radiographs. METHODS: The mesial root concavity of maxillary premolar teeth was analysed via CBCT. The sex and age of the patients, starting position and depth of the root concavity, apicocoronal length of the concavity on the crown or root starting from the cementoenamel junction (CEJ), total apicocoronal length of the concavity, amount of bone loss both in CBCT images and panoramic radiographs, location of the furcation, length of the buccal and palatinal roots, and buccopalatinal cervical root width were measured. RESULTS: A total of 610 patients' CBCT images were examined, and 100 were included in the study. The total number of upper premolar teeth was 200. The patients were aged between 18 and 65 years, with a mean age of 45.21 ± 13.13 years. All the teeth in the study presented mesial root concavity (100%, n = 200). The starting point of concavity was mostly on the cervical third of the root (58.5%). The mean depth and buccolingual length measurements were 0.96 mm and 4.32 mm, respectively. Depth was significantly related to the amount of alveolar bone loss (F = 5.834, p = 0.001). The highest average concavity depth was 1.29 mm in the group with 50% bone loss. The data indicated a significant relationship between the location of the furcation and bone loss (X2 = 25.215, p = 0.003). Bone loss exceeded 50% in 100% of patients in whom the furcation was in the cervical third and in only 9.5% of patients in whom the furcation was in the apical third (p = 0.003). CONCLUSIONS: According to the results of this study, the depth of the mesial root concavity and the coronal position of the furcation may increase the amount of alveolar bone loss. Clinicians should be aware of these anatomical factors to ensure accurate treatment planning and successful patient management.


Subject(s)
Alveolar Bone Loss , Bicuspid , Cone-Beam Computed Tomography , Maxilla , Radiography, Panoramic , Tooth Root , Humans , Bicuspid/diagnostic imaging , Male , Female , Alveolar Bone Loss/diagnostic imaging , Alveolar Bone Loss/pathology , Tooth Root/diagnostic imaging , Tooth Root/anatomy & histology , Tooth Root/pathology , Adult , Middle Aged , Adolescent , Maxilla/diagnostic imaging , Aged , Young Adult , Tooth Cervix/diagnostic imaging , Tooth Cervix/pathology
8.
J Periodontal Res ; 58(1): 155-164, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36451314

ABSTRACT

BACKGROUNDS: Periodontitis is an oral-bacteria-directed disease that occurs worldwide. Currently, periodontal pathogens are mostly determined using traditional culture techniques, next-generation sequencing, and microbiological screening system. In addition to the well-known and cultivatable periodontal bacteria, we aimed to discover a novel periodontal pathogen by using DNA sequencing and investigate its role in the progression of periodontitis. OBJECTIVE: This study identified pathogens from subgingival dental plaque in patients with periodontitis by using the Oxford Nanopore Technology (ONT) third-generation sequencing system and validated the impact of selected pathogen in periodontitis progression by ligature-implanted mice. METHODS: Twenty-five patients with periodontitis and 25 healthy controls were recruited in this study. Subgingival plaque samples were collected for metagenomic analysis. The ONT third-generation sequencing system was used to confirm the dominant bacteria. A mouse model with ligature implantation and bacterial injection verified the pathogenesis of periodontitis. Neutrophil infiltration and osteoclast activity were evaluated using immunohistochemistry and tartrate-resistant acid phosphatase assays in periodontal tissue. Gingival inflammation was evaluated using pro-inflammatory cytokines in gingival crevicular fluids. Alveolar bone destruction in the mice was evaluated using micro-computed tomography and hematoxylin and eosin staining. RESULTS: Scardovia wiggsiae (S. wiggsiae) was dominant in the subgingival plaque of the patients with periodontitis. S. wiggsiae significantly deteriorated ligature-induced neutrophil infiltration, osteoclast activation, alveolar bone destruction, and the secretion of interleukin-6, monocyte chemoattractant protein-1, and tumor necrosis factor-α in the mouse model. CONCLUSION: Our metagenome results suggested that S. wiggsiae is a dominant flora in patients with periodontitis. In mice, the induction of neutrophil infiltration, proinflammatory cytokine secretion, osteoclast activation, and alveolar bone destruction further verified the pathogenic role of S. wiggsiae in the progress of periodontitis. Future studies investigating the metabolic interactions between S. wiggsiae and other periodontopathic bacteria are warranted.


Subject(s)
Actinobacteria , Alveolar Bone Loss , Dental Plaque , Periodontitis , Mice , Animals , X-Ray Microtomography/adverse effects , Alveolar Bone Loss/pathology , Periodontitis/metabolism , Bacteria , Dental Plaque/complications
9.
J Periodontal Res ; 58(2): 392-402, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36710264

ABSTRACT

BACKGROUND AND OBJECTIVE: Leptin-deficient obesity is associated with various systemic diseases including diabetes and low bone mass phenotype. However, the periodontal status of leptin-deficient obese individuals is still unclear. In this study, we aimed to analyze the periodontal status, alveolar bone phenotype, and oral microbiome status in leptin-deficient obese mice (ob/ob mice). METHODS: This study used 12-week-old wild-type and ob/ob male mice. The alveolar bone phenotype and periodontal status in the maxilla were analyzed by micro-CT and histological analysis. Osteoclasts in alveolar bone were visualized by TRAP staining. Expressions of inflammatory markers (MMP-9, IL-1ß, and TGF-ß1) and osteoclastogenic markers (RANKL and OPG) in periodontium were analyzed by immunohistochemistry and RT-qPCR. The oral microbiome was analyzed by 16 S rDNA sequencing. RESULTS: CEJ-ABC distance in maxillary molars (M1-M3) of ob/ob mice was significantly higher compared with that of wild-type. The alveolar bone BV/TV ratio was reduced in ob/ob mice compared with wild-type. Higher numbers of osteoclasts were observed in ob/ob mice alveolar bone adjacent to the molar root. Epithelial hyperplasia in gingiva and disordered periodontal ligaments was observed in ob/ob mice. RANKL/OPG expression ratio was increased in ob/ob mice compared with wild-type. Expressions of inflammatory markers MMP-9, IL-1ß, and TGF-ß1 were increased in ob/ob mice compared with wild-type. Oral microbiome analysis showed that beneficial bacteria Akkermansia and Ruminococcaceae_UCG_014 were more abundant in the wild-type mice while the inflammation-related Flavobacterium was more abundant in ob/ob mice. CONCLUSION: In conclusion, ob/ob mice showed higher expressions of inflammatory factors, increased alveolar bone loss, lower abundance of the beneficial bacteria, and higher abundance of inflammatory bacteria in the oral cavity, suggesting leptin-deficient obesity as a risk factor for periodontitis development in ob/ob mice.


Subject(s)
Alveolar Bone Loss , Microbiota , Periodontitis , Mice , Male , Animals , Transforming Growth Factor beta1 , Matrix Metalloproteinase 9 , Leptin , Periodontitis/metabolism , Alveolar Bone Loss/pathology , Mice, Inbred Strains , Phenotype , Obesity/complications , Mice, Inbred C57BL
10.
J Periodontal Res ; 58(4): 841-851, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37243354

ABSTRACT

BACKGROUND AND OBJECTIVE: Periodontitis is a multifactorial inflammatory disease that leads to the destruction of supporting structures of the teeth. DNA damage-inducible transcript 3 (DDIT3) plays crucial roles in cell survival and differentiation. DDIT3 regulates bone mass and osteoclastogenesis in femur. However, the role of DDIT3 in periodontitis has not been elucidated. This research aimed to explore the role and mechanisms of DDIT3 in periodontitis. METHODS: DDIT3 gene knockout (KO) mice were generated using a CRISPR/Cas9 system. Experimental periodontitis models were established to explore the role of DDIT3 in periodontitis. The expression of DDIT3 in periodontal tissues was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). The alveolar bone phenotypes were observed by micro-CT and stereomicroscopy. The inflammation levels and osteoclast activity were examined by histological staining, immunostaining, and qRT-PCR. Bone marrow-derived macrophages (BMMs) were isolated to confirm the effects of DDIT3 on osteoclast formation and function in vitro. RESULTS: The increased expression of DDIT3 in murine inflamed periodontal tissues was detected. DDIT3 knockout aggravated alveolar bone loss and enhanced expression levels of inflammatory cytokines in murine periodontitis models. Increased osteoclast formation and higher expression levels of osteoclast-specific markers were observed in the inflamed periodontal tissues of KO mice. In vitro, DDIT3 deficiency promoted the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts and the bone resorption activity of mature osteoclasts. CONCLUSIONS: Our results demonstrate that DDIT3 deletion aggravated alveolar bone loss in experimental periodontitis through enhanced inflammatory reactions and osteoclastogenesis. The anti-inflammation and the inhibition of bone loss by DDIT3 in murine periodontitis provides a potential novel therapeutic strategy for periodontitis.


Subject(s)
Alveolar Bone Loss , Bone Resorption , Periodontitis , Animals , Mice , Alveolar Bone Loss/pathology , DNA Damage , Inflammation/pathology , Osteoclasts/metabolism , Periodontitis/drug therapy , RANK Ligand/metabolism
11.
J Periodontal Res ; 58(3): 655-667, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37051685

ABSTRACT

BACKGROUND AND OBJECTIVE: Periodontitis is immune inflammatory disease, atherosclerosis (AS) and chronic kidney disease (CKD) are two common systemic diseases. Periodontitis promotes AS and CKD, and CKD interacts with AS. The objective of this animal study was to evaluate the changes of kidney when periodontitis and atherosclerosis exist separately and the degenerative effects of periodontitis on the kidney in atherosclerotic mice. MATERIALS AND METHODS: A total of 40 male Apoe-/- mice were randomly divided into four groups: control (NC), periodontitis (PD), AS and AS with PD (AS + PD). AS was induced by high-fat diet feeding, and PD was induced by injection of Porphyromonas gingivalis-Lipopolysaccharide (P.g-LPS) (endotoxin suspension) into the buccal side of mouse maxillary molars. The right maxilla of mice was scanned with micro-CT to evaluate alveolar bone loss; aortic tissue was stained with HE and Oil-Red O to evaluate arterial plaque formation; serum was collected to detect the changes of blood lipids and serum renal function parameters (blood urea nitrogen [BUN], serum creatinine [Scr]); renal histopathological changes were evaluated by HE staining (glomerular and tubular damage scores), PAS staining (glomerular Mesangial matrix index) and Masson staining (percentage of renal fibrosis area); qRT-PCR and ELISA were used to evaluate the expression of renal inflammatory cytokines (tumor necrosis factor-α, Interleukin-1ß, neutrophil surface marker Ly6G). RESULTS: The amount of alveolar bone loss: PD group was significantly higher than NC group (p < .05); AS + PD group was higher than PD group, the difference was not statistically significant. Atherosclerotic plaque formation and serum lipid changes: AS group were significantly worse than NC group (p < .05), and AS + PD group were worse than AS group. The results of the corresponding qualitative and quantitative analyses of kidney tissue in experimental animals gradually deteriorated in the NC group, PD group, AS group and AS + PD group and worsened sequentially. Renal function parameters: the content of BUN in AS group was higher than that in PD group, the difference was not statistically significant; Scr in AS group was significantly higher than that in PD group (p < .05); the contents of BUN and Scr in AS + PD group were higher than those in AS group, the difference was not statistically significant. Glomerular and tubular damage scores: AS group were higher than PD group, the difference was not statistically significant; AS + PD group were significantly higher than AS group (p < .001). The ratio of glomerular mesangial matrix to glomerular area and the percentage of renal fibrosis area: AS group were significantly higher than PD group (p < .001), and AS + PD group were significantly higher than AS group (p < .001). Expression of inflammatory cytokines: AS group was higher than PD group, the difference was not statistically significant; AS + PD group was significantly higher than AS group (p < .05). CONCLUSION: Both PD and AS can aggravate the inflammatory stress of kidney tissue and cause the damage of kidney tissue, and the inflammatory increase and damage effect of AS is stronger; PD can promote kidney damage of atherosclerotic mice by aggravating the renal inflammation in atherosclerotic mice; renal function parameters were not completely synchronized with the changes of renal inflammation and histopathology in each group of mice; PD can promote AS, periodontal inflammation in mice with AS is more severe, and the special changes of blood lipids in mice with AS are closely related to the above results.


Subject(s)
Alveolar Bone Loss , Atherosclerosis , Periodontitis , Renal Insufficiency, Chronic , Mice , Male , Animals , Alveolar Bone Loss/etiology , Alveolar Bone Loss/pathology , Mice, Knockout, ApoE , Periodontitis/metabolism , Inflammation , Cytokines/metabolism , Fibrosis
12.
J Periodontal Res ; 58(3): 544-552, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37002616

ABSTRACT

BACKGROUND AND OBJECTIVE: Protease-activated receptor-2 (PAR2 ), a pro-inflammatory G-protein coupled receptor, has been associated with pathogenesis of periodontitis and the resulting bone loss caused by oral pathogens, including the keystone pathogen Porphyromonas gingivalis (P. gingivalis). We hypothesised that administration of a PAR2 antagonist, GB88, might prevent inflammation and subsequent alveolar bone resorption in a mouse model of periodontal disease. METHODS: Periodontitis was induced in mice by oral inoculations with P. gingivalis for a total of eight times over 24 days. The infected mice were treated with either GB88 or vehicle for the duration of the trial. Following euthanasia on day 56, serum was collected and used for the detection of mast cell tryptase. The right maxillae were defleshed and stained with methylene blue to measure the exposed cementum in molar teeth. The left maxillae were prepared for cryosections followed by staining for tartrate-resistant acid phosphatase to identify osteoclasts or with toluidine blue to identify mast cells. Reverse transcription quantitative PCR (RT-qPCR) was used to quantify the expression of inflammatory cytokines in the gingival tissue. Supernatants of T-lymphocyte cultures isolated from the regional lymph nodes were assayed using a cytometric bead array to measure the Th1/Th2/Th17 cytokine levels. RESULTS: Measurement of the exposed cementum showed that GB88 reduced P. gingivalis-induced alveolar bone loss by up to 69%. GB88 also prevented the increase in osteoclast numbers observed in the infected mice. Serum tryptase levels were significantly elevated in both the infected groups, and not altered by treatment. RT-qPCR showed that GB88 prevented the upregulation of Il1b, Il6, Ifng and Cd11b. In T-lymphocyte supernatants, only IFNγ and IL-17A levels were increased in response to infection, but this was prevented by GB88 treatment. CONCLUSIONS: GB88 significantly reduced osteoclastic alveolar bone loss in mice infected with P. gingivalis, seemingly by preventing the upregulation of several inflammatory cytokines. PAR2 antagonism may be an effective treatment strategy for periodontal disease.


Subject(s)
Alveolar Bone Loss , Periodontal Diseases , Periodontitis , Mice , Animals , Alveolar Bone Loss/pathology , Receptor, PAR-2 , Periodontal Diseases/complications , Periodontitis/drug therapy , Periodontitis/prevention & control , Periodontitis/complications , Porphyromonas gingivalis , Cytokines/analysis , Inflammation , Disease Models, Animal
13.
J Periodontal Res ; 58(2): 360-368, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36617525

ABSTRACT

BACKGROUND & OBJECTIVE: Notch signaling pathway has been linked to bone loss in periodontitis and peri-implantitis. This research aimed to determine the Notch signaling molecules expression levels (Notch1, Notch2, Jagged1, Hes1, and Hey1), along with bone remodeling mediators (RANKL and OPG) and proinflammatory cytokines (TNF-α, IL-17, IL-1ß, and IL-6) in patients with peri-implant diseases. The aforementioned markers' expression was evaluated in patients with different RANKL/OPG ratios. METHODS: Fifty patients with peri-implantitis (PI group) and 45 patients with peri-implant mucositis (PM group) were enrolled. Relative gene expression levels of investigated molecules were determined by reverse transcriptase-real-time polymerase chain reaction. On the basis of RANKL/OPG ratio, all peri-implant lesions were divided into subgroups: RANKL-predominant (RANKL > OPG) and OPG-predominant (RANKL < OPG). Clinical periodontal parameters (probing depth-PD, bleeding on probing-BOP, clinical attachment level-CAL and plaque index-PLI), were recorded for each patient around every tooth, and around placed implants (PDi, BOPi, CALi, PLIi). RESULTS: RANKL-predominant PM patients exhibited higher expression levels of Notch2 (p = .044) and Hey1 (p = .005) compared to OPG-predominant lesions. In all RANKL-predominant cases, Hey1 (p = .001), IL-1ß (p = .005), IL-6 (p = .002) were overexpressed in PI comparing to PM, accompanied with significantly higher PDi, CALi and PLIi in PI than PM (p = .001, p = .001 and p = .009). CONCLUSIONS: Notch2 upregulation in RANKL-predominant PM lesions could be an important contributor to alveolar bone resorption and represent a predictor of PM to PI transition. Similarly, the overexpression of IL-1ß and IL-6 might provide an osteoclastogenic environment in PI RANKL-predominant lesions.


Subject(s)
Alveolar Bone Loss , Peri-Implantitis , Receptors, Notch , Signal Transduction , Humans , Alveolar Bone Loss/metabolism , Alveolar Bone Loss/pathology , Cytokines/metabolism , Dental Implants/adverse effects , Interleukin-6 , Peri-Implantitis/metabolism , Receptors, Notch/metabolism , RANK Ligand/metabolism , Osteoprotegerin/metabolism
14.
J Periodontal Res ; 58(1): 97-108, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36380567

ABSTRACT

OBJECTIVE: This research aimed to explore the effect of periodontitis on renal tissues injury in rats and the role of Sirtuin3 (Sirt3) and its regulation of autophagy in this progression. MATERIAL AND METHODS: Thirty Wistar rats were assigned into three groups: control, periodontitis (P), and periodontitis with gavage administration of Sirt3 activator resveratrol (P + RSV). To induce periodontitis, the wire ligature was placed around the cervical region of the rat maxillary first molar. After 8 weeks, micro-computed tomography (Micro-CT) and hematoxylin and eosin (HE) were used to evaluate the alveolar bone resorption and periodontal inflammation. Serum and urine biochemical indicators were measured to assess renal function. The pathological changes of the kidney were observed via HE and periodic acid Schiff (PAS) staining. Autophagosome was viewed by transmission electron microscopy (TEM). Real-time PCR and western blot were used to test expressions of Sirt3 and autophagy indicators in renal and periodontal tissues, including mammalian target of rapamycin (mTOR), phosphor-mTOR (p-mTOR), BECN1 (Beclin-1), and microtubule-associated protein 1 light chain 3 (LC3). RESULTS: Alveolar bone destruction, resorption, and periodontal inflammation were observed in the P group (compared with the control group), and the above indexes were significantly improved after RSV intervention; the obvious changes in renal tissue structure in the P group were partially recovered after RSV intervention, while renal functional status was not affected (among the three groups); in addition, the levels of Sirt3 and autophagy in kidney and periodontal tissues of P group were inhibited, manifested as a decrease in the number of autophagosomes (renal tissue) and expressions of autophagy marker Beclin-1 and LC3 conversion rate and an increase in the expression of p-mTOR. After Sirt3 activation (RSV), the above indicators were significantly improved. CONCLUSION: Periodontitis causes renal structural damage in rats, which may be connected to the effect of Sirt3-induced autophagy.


Subject(s)
Alveolar Bone Loss , Periodontitis , Sirtuin 3 , Animals , Rats , Alveolar Bone Loss/pathology , Autophagy , Beclin-1/metabolism , Beclin-1/pharmacology , Inflammation , Kidney/metabolism , Kidney/pathology , Periodontitis/pathology , Rats, Wistar , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/pharmacology , X-Ray Microtomography
15.
J Periodontal Res ; 58(1): 22-28, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36321414

ABSTRACT

BACKGROUND: There is scarce information about the relationship between periodontal disease and osteoarthritis. This study investigated the effect of surgically induced osteoarthritis on alveolar bone loss in experimental periodontitis in rats. METHODS: 12 rats were divided into test and control groups. On day 1, the animals were anaesthetized, and silk ligatures were ligated around 6 maxillary posterior teeth in each animal from both groups. Surgical induction of osteoarthritis was performed on the left knees in the test group. No knee surgeries were performed in the control group. The ligatures were kept in place for 30 days, at which time the animals were euthanatized, and the maxillae and knee joints were harvested and processed for histological analysis. The alveolar bone loss was assessed using a zoom stereomicroscope. RESULTS: The knee joint histologic sections of the control group showed normal joint features, whereas in the test group there were substantial changes typical of osteoarthritis, including wide joint spaces, prominent monocytic infiltration of the synovium, invasion of periarticular bone, and decreased chondrocyte density. Comparison of the bone height between the groups showed a significantly higher bone loss in the test than in the control group The marginal mean bone height, adjusted for covariates and the intraclass correlation between sites, was 1.19 and 0.78 mm in the test and control groups, respectively (p < .0001). CONCLUSIONS: Surgically induced osteoarthritis leads to greater alveolar bone loss in the experimental periodontitis model in rats.


Subject(s)
Alveolar Bone Loss , Osteoarthritis , Periodontitis , Rats , Animals , Alveolar Bone Loss/diagnostic imaging , Alveolar Bone Loss/pathology , Periodontitis/complications , Periodontitis/diagnostic imaging , Periodontitis/pathology , Osteoarthritis/complications , Osteoarthritis/diagnostic imaging , Disease Models, Animal
16.
J Periodontal Res ; 58(3): 575-587, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36807310

ABSTRACT

BACKGROUND AND OBJECTIVE: G protein-coupled receptor 40 (GPR40) is a receptor for medium- and long-chain free fatty acids (FFAs). GPR40 activation improves type 2 diabetes mellitus (T2DM), metabolic syndrome (MetS), and the complications of T2DM and MetS. Periodontitis, a common oral inflammatory disease initiated by periodontal pathogens, is another complication of T2DM and MetS. Since FFAs play a key role in the pathogenesis of MetS which exacerbates periodontal inflammation and GPR40 is a FFA receptor with anti-inflammatory properties, it is important to define the role of GPR40 in MetS-associated periodontitis. MATERIALS AND METHODS: We induced MetS and periodontitis by high-fat diet and periodontal injection of lipopolysaccharide (LPS), respectively, in wild-type and GPR40-deficient mice and determined alveolar bone loss and periodontal inflammation using micro-computed tomography, histology, and osteoclast staining. We also performed in vitro study to determine the role of GPR40 in the expression of proinflammatory genes. RESULTS: The primary outcome of the study is that GPR40 deficiency increased alveolar bone loss and enhanced osteoclastogenesis in control mice and the mice with both MetS and periodontitis. GPR40 deficiency also augmented periodontal inflammation in control mice and the mice with both MetS and periodontitis. Furthermore, GPR40 deficiency led to increased plasma lipids and insulin resistance in control mice but had no effect on the metabolic parameters in mice with MetS alone. For mice with both MetS and periodontitis, GPR40 deficiency increased insulin resistance. Finally, in vitro studies with macrophages showed that deficiency or inhibition of GPR40 upregulated proinflammatory genes while activation of GPR40 downregulated proinflammatory gene expression stimulated synergistically by LPS and palmitic acid. CONCLUSION: GPR40 deficiency worsens alveolar bone loss and periodontal inflammation in mice with both periodontitis and MetS, suggesting that GPR40 plays a favorable role in MetS-associated periodontitis. Furthermore, GPR40 deficiency or inhibition in macrophages further upregulated proinflammatory and pro-osteoclastogenic genes induced by LPS and palmitic acid, suggesting that GPR40 has anti-inflammatory and anti-osteoclastogenic properties.


Subject(s)
Alveolar Bone Loss , Diabetes Mellitus, Type 2 , Insulin Resistance , Metabolic Syndrome , Periodontitis , Mice , Animals , Metabolic Syndrome/complications , Metabolic Syndrome/metabolism , Alveolar Bone Loss/pathology , Diabetes Mellitus, Type 2/complications , Lipopolysaccharides/adverse effects , X-Ray Microtomography , Periodontitis/metabolism , Inflammation , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Anti-Inflammatory Agents , Fatty Acids, Nonesterified , Palmitic Acids/adverse effects
17.
J Clin Periodontol ; 50(2): 183-199, 2023 02.
Article in English | MEDLINE | ID: mdl-36089906

ABSTRACT

AIM: The regulation of osteoclasts (OCs) by inhibitory immunoreceptors maintains bone homeostasis and is considered an important determinant of the extent of periodontal pathology. The aim of this study was to investigate the role of the inhibitory immunoreceptor CD300lf and its ligand ceramide in osteoclastogenesis in periodontitis. MATERIALS AND METHODS: The expression of CD300lf was measured in vitro and in a ligature-induced periodontitis model. The effect of CD300lf ablation on osteoclastogenesis was examined in ligature-retained and ligature removal periodontitis models. The effect of ceramide, the ligand of CD300lf, was examined in osteoclastogenesis in vitro and in vivo by smearing 20 µg of ceramide dissolved in carboxymethylcellulose on teeth and gingiva every other day in an experimental periodontitis model and ligature removal model. RESULTS: CD300lf expression was downregulated during osteoclastogenesis. Ablation of CD300lf in the ligature-induced periodontitis model increased the number of OCs and exacerbated bone damage. Bone resorption caused by CD300lf ablation was reversible following ligature removal. CD300lf-ceramide binding suppressed osteoclastogenesis in vitro and inhibited alveolar bone loss in a mouse periodontitis model. CONCLUSIONS: Our findings reveal that CD300lf-ceramide binding plays a critical negative role in alveolar bone loss in periodontitis by inhibiting OCs differentiation.


Subject(s)
Alveolar Bone Loss , Periodontitis , Animals , Mice , Alveolar Bone Loss/prevention & control , Alveolar Bone Loss/pathology , Ligands , Osteoclasts , Osteogenesis , Periodontitis/metabolism , RANK Ligand/metabolism , Ceramides/metabolism
18.
J Clin Periodontol ; 50(8): 1075-1088, 2023 08.
Article in English | MEDLINE | ID: mdl-37353986

ABSTRACT

AIM: Periodontitis is an inflammatory, infectious disease of polymicrobial origin that can damage tooth-supporting bone and tissue. Tree shrews, evolutionarily closer to humans than commonly used rodent models, have been increasingly used as biomedical models. However, a tree shrew periodontitis model has not yet been established. MATERIALS AND METHODS: Periodontitis was induced in male tree shrews/Sprague-Dawley rats by nylon thread ligature placement around the lower first molars. Thereafter, morphometric and histological analyses were performed. The distance from the cemento-enamel junction to the alveolar bone crest was measured using micro-computed tomography. Periodontal pathological tissue damage, inflammation and osteoclastogenesis were assessed using haematoxylin and eosin staining and quantitative immunohistochemistry, respectively. RESULTS: Post-operatively, gingival swelling, redness and spontaneous bleeding were observed in tree shrews but not in rats. After peaking, bone resorption decreased gradually until plateauing in tree shrews. Contrastingly, rapid and near-complete bone loss was observed in rats. Inflammatory infiltrates were observed 1 week post operation in both models. However, only the tree shrew model transitioned from acute to chronic inflammation. CONCLUSIONS: Our study revealed that a ligature-induced tree shrew model of periodontitis partly reproduced the pathological features of human periodontitis and provided theoretical support for using tree shrews as a potential model for human periodontitis.


Subject(s)
Alveolar Bone Loss , Periodontitis , Rats , Humans , Animals , Tupaia , Tupaiidae , Rats, Sprague-Dawley , X-Ray Microtomography , Alveolar Bone Loss/diagnostic imaging , Alveolar Bone Loss/pathology , Disease Models, Animal , Periodontitis/diagnostic imaging , Periodontitis/pathology , Inflammation
19.
J Clin Periodontol ; 50(12): 1658-1669, 2023 12.
Article in English | MEDLINE | ID: mdl-37855275

ABSTRACT

AIM: To determine the effects of RVX-208, a selective bromodomain and extra-terminal domain (BET) inhibitor targeting bromodomain 2 (BD2), on periodontal inflammation and bone loss. MATERIALS AND METHODS: Macrophage-like cells (RAW264.7) and human gingival epithelial cells were challenged by Porphyromonas gingivalis (Pg) with or without RVX-208. Inflammatory gene expression and cytokine production were measured by reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. RAW264.7 cells were induced to osteoclast differentiation. After RVX-208 treatment, osteoclast differentiation was evaluated by histology, tartrate-resistant-acid-phosphatase (TRAP) activity and the expression of osteoclast-specific genes. The effect of RVX-208 on osteoclast transcriptome was studied by RNA sequencing. Periodontitis was induced in rats by ligature and local RVX-208 treatment was administered every other day. Alveolar bone loss was measured by micro-computed tomography. RESULTS: RVX-208 inhibited inflammatory gene expression and cytokine production in Pg-infected cells. Osteoclast differentiation was inhibited by RVX-208, as evidenced by reduced osteoclast number, TRAP activity and osteoclast-specific gene expression. RVX-208 displayed a more selective and less profound suppressive impact on transcriptome compared with pan-BET inhibitor, JQ1. RVX-208 administration prevented the alveolar bone loss in vivo. CONCLUSIONS: RVX-208 regulated both upstream (inflammatory cytokine production) and downstream (osteoclast differentiation) events that lead to periodontal tissue destruction, suggesting that it may be a promising 'epi-drug' for the prevention of periodontitis.


Subject(s)
Alveolar Bone Loss , Periodontitis , Rats , Humans , Animals , Alveolar Bone Loss/drug therapy , Alveolar Bone Loss/prevention & control , Alveolar Bone Loss/pathology , X-Ray Microtomography , Inflammation/drug therapy , Periodontitis/drug therapy , Periodontitis/prevention & control , Periodontitis/pathology , Osteoclasts , Cytokines
20.
J Endocrinol Invest ; 46(10): 2031-2053, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36892740

ABSTRACT

PURPOSE: Both cardiovascular disease and periodontitis are complications of diabetes that have a great impact on human life and health. Our previous research found that artesunate can effectively improve cardiovascular disease in diabetes and has an inhibitory effect on periodontal disease. Therefore, the present study aimed to explore the potential therapeutic possibility of artesunate in the protection against cardiovascular complications in periodontitis with type I diabetes rats and to elucidate the possible underlying mechanisms. METHODS: Sprague‒Dawley rats were randomly divided into the healthy, diabetic, periodontitis, diabetic with periodontitis, and artesunate treatment groups (10, 30, and 60 mg/kg, i.g.). After artesunate treatment, oral swabs were collected and used to determine changes in the oral flora. Micro-CT was performed to observe changes in alveolar bone. Blood samples were processed to measure various parameters, while cardiovascular tissues were evaluated by haematoxylin-eosin, Masson, Sirius red, and TUNEL staining to observe fibrosis and apoptosis. The protein and mRNA expression levels in the alveolar bone and cardiovascular tissues were detected using immunohistochemistry and RT‒PCR. RESULTS: Diabetic rats with periodontitis and cardiovascular complications maintained heart and body weight but exhibited reduced blood glucose levels, and they were able to regulate blood lipid indicators at normal levels after artesunate treatment. The staining assays suggested that treatment with 60 mg/kg artesunate has a significant therapeutic effect on myocardial apoptotic fibrosis. The high expression of NF-κB, TLR4, VEGF, ICAM-1, p38 MAPK, TGF-ß, Smad2, and MMP9 in the alveolar bone and cardiovascular tissue in the type I diabetes and type I diabetes with periodontitis rat models was reduced after treatment with artesunate in a concentration-dependent manner. Micro-CT showed that treatment with 60 mg/kg artesunate effectively alleviated alveolar bone resorption and density reduction. The sequencing results suggested that each model group of rats had vascular and oral flora dysbiosis, but artesunate treatment could correct the dysbacteriosis. CONCLUSIONS: Periodontitis-related pathogenic bacteria cause dysbiosis of the oral and intravascular flora in type I diabetes and aggravate cardiovascular complications. The mechanism by which periodontitis aggravates cardiovascular complications involves the NF-κB pathway, which induces myocardial apoptosis, fibrosis, and vascular inflammation.


Subject(s)
Alveolar Bone Loss , Cardiovascular Diseases , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Periodontitis , Rats , Humans , Animals , Artesunate/therapeutic use , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , NF-kappa B , Cardiovascular Diseases/complications , Dysbiosis , Rats, Sprague-Dawley , Periodontitis/complications , Periodontitis/drug therapy , Diabetes Mellitus, Type 1/complications , Alveolar Bone Loss/complications , Alveolar Bone Loss/drug therapy , Alveolar Bone Loss/pathology
SELECTION OF CITATIONS
SEARCH DETAIL