Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
J Biol Chem ; 300(9): 107649, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39122011

ABSTRACT

Amaryllidaceae alkaloids are a diverse group of alkaloids exclusively reported from the Amaryllidaceae plant family. In planta, their biosynthesis is still not fully characterized; however, a labeling study established 4'-O-methylnorbelladine as the key intermediate compound of the pathway. Previous reports have characterized O-methyltransferases from several Amaryllidaceae species. Nevertheless, the formation of the different O-methylnorbelladine derivatives (3'-O-methylnorbelladine, 4'-O-methylnorbelladine, and 3'4'-O-dimethylnorbelladine), the role, and the preferred substrates of O-methyltransferases are not clearly understood. In this study, we performed the biochemical characterization of an O-methyltransferase candidate from Narcissus papyraceus (NpOMT) in vitro and in vivo, following biotransformation of norbelladine in Nicotiana benthamiana having transient expression of NpOMT. Docking analysis was further used to investigate substrate preferences, as well as key interacting residues of NpOMT. Our study shows that NpOMT methylates norbelladine preferentially at the 4'-OH position in vitro and in planta. Interestingly, NpOMT also catalyzed the synthesis of 3',4'-O-dimethylnorbelladine from norbelladine and 4'-O-methylnorbelladine during in vitro enzymatic assay. Furthermore, we show that NpOMT methylates 3,4-dihydroxybenzylaldehyde and caffeic acid in a nonregiospecific manner to produce meta/para monomethylated products. This study reveals a novel catalytic potential of an Amaryllidaceae O-methyltransferase and its ability to regioselectively methylate norbelladine in the heterologous host N. benthamiana.


Subject(s)
Methyltransferases , Plant Proteins , Methyltransferases/metabolism , Methyltransferases/chemistry , Methyltransferases/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Kinetics , Amaryllidaceae Alkaloids/metabolism , Amaryllidaceae Alkaloids/chemistry , Nicotiana/metabolism , Nicotiana/genetics , Narcissus/metabolism , Narcissus/chemistry , Narcissus/enzymology , Substrate Specificity , Molecular Docking Simulation
2.
Nat Prod Rep ; 41(5): 721-747, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38131392

ABSTRACT

Covering: 2017 to 2023 (now)Amaryllidaceae alkaloids (AAs) are a unique class of specialized metabolites containing heterocyclic nitrogen bridging that play a distinct role in higher plants. Irrespective of their diverse structures, most AAs are biosynthesized via intramolecular oxidative coupling. The complex organization of biosynthetic pathways is constantly enlightened by new insights owing to the advancement of natural product chemistry, synthetic organic chemistry, biochemistry, systems and synthetic biology tools and applications. These promote novel compound identification, trace-level metabolite quantification, synthesis, and characterization of enzymes engaged in AA catalysis, enabling the recognition of biosynthetic pathways. A complete understanding of the pathway benefits biotechnological applications in the long run. This review emphasizes the structural diversity of the AA specialized metabolites involved in biogenesis although the process is not entirely defined yet. Moreover, this work underscores the pivotal role of synthetic and enantioselective studies in justifying biosynthetic conclusions. Their prospective candidacy as lead constituents for antiviral drug discovery has also been established. However, a complete understanding of the pathway requires further interdisciplinary efforts in which antiviral studies address the structure-activity relationship. This review presents current knowledge on the topic.


Subject(s)
Amaryllidaceae Alkaloids , Antiviral Agents , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Amaryllidaceae Alkaloids/pharmacology , Amaryllidaceae Alkaloids/chemistry , Amaryllidaceae Alkaloids/metabolism , Biosynthetic Pathways , Molecular Structure , Structure-Activity Relationship
3.
New Phytol ; 241(5): 2258-2274, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38105545

ABSTRACT

Alkaloids are a large group of plant secondary metabolites with various structures and activities. It is important to understand their functions in the interplay between plants and the beneficial and pathogenic microbiota. Amaryllidaceae alkaloids (AAs) are unique secondary metabolites in Amaryllidaceae plants. Here, we studied the interplay between AAs and the bacteriome in Lycoris radiata, a traditional Chinese medicinal plant containing high amounts of AAs. The relationship between AAs and bacterial composition in different tissues of L. radiata was studied. In vitro experiments revealed that AAs have varying levels of antimicrobial activity against endophytic bacteria and pathogenic fungi, indicating the importance of AA synthesis in maintaining a balance between plants and beneficial/pathogenic microbiota. Using bacterial synthetic communities with different compositions, we observed a positive feedback loop between bacteria insensitive to AAs and their ability to increase accumulation of AAs in L. radiata, especially in leaves. This may allow insensitive bacteria to outcompete sensitive ones for plant resources. Moreover, the accumulation of AAs enhanced by insensitive bacteria could benefit plants when challenged with fungal pathogens. This study highlights the functions of alkaloids in plant-microbe interactions, opening new avenues for designing plant microbiomes that could contribute to sustainable agriculture.


Subject(s)
Alkaloids , Amaryllidaceae Alkaloids , Lycoris , Amaryllidaceae Alkaloids/pharmacology , Amaryllidaceae Alkaloids/chemistry , Amaryllidaceae Alkaloids/metabolism , Lycoris/chemistry , Lycoris/metabolism , Alkaloids/metabolism , Plant Extracts/chemistry
4.
Int J Mol Sci ; 24(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36901927

ABSTRACT

Alkaloids are a class of nitrogen-containing alkaline organic compounds found in nature, with significant biological activity, and are also important active ingredients in Chinese herbal medicine. Amaryllidaceae plants are rich in alkaloids, among which galanthamine, lycorine, and lycoramine are representative. Since the difficulty and high cost of synthesizing alkaloids have been the major obstacles in industrial production, particularly the molecular mechanism underlying alkaloid biosynthesis is largely unknown. Here, we determined the alkaloid content in Lycoris longituba, Lycoris incarnata, and Lycoris sprengeri, and performed a SWATH-MS (sequential window acquisition of all theoretical mass spectra)-based quantitative approach to detect proteome changes in the three Lycoris. A total of 2193 proteins were quantified, of which 720 proteins showed a difference in abundance between Ll and Ls, and 463 proteins showed a difference in abundance between Li and Ls. KEGG enrichment analysis revealed that differentially expressed proteins are distributed in specific biological processes including amino acid metabolism, starch, and sucrose metabolism, implicating a supportive role for Amaryllidaceae alkaloids metabolism in Lycoris. Furthermore, several key genes collectively known as OMT and NMT were identified, which are probably responsible for galanthamine biosynthesis. Interestingly, RNA processing-related proteins were also abundantly detected in alkaloid-rich Ll, suggesting that posttranscriptional regulation such as alternative splicing may contribute to the biosynthesis of Amaryllidaceae alkaloids. Taken together, our SWATH-MS-based proteomic investigation may reveal the differences in alkaloid contents at the protein levels, providing a comprehensive proteome reference for the regulatory metabolism of Amaryllidaceae alkaloids.


Subject(s)
Alkaloids , Amaryllidaceae Alkaloids , Lycoris , Amaryllidaceae Alkaloids/metabolism , Galantamine/metabolism , Lycoris/metabolism , Proteome/metabolism , Proteomics , Alkaloids/chemistry
5.
Molecules ; 28(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36985570

ABSTRACT

Cripowellins from Crinum erubescens are known pesticidal and have potent antiplasmodial activity. To gain mechanistic insights to this class of natural products, studies to determine the timing of action of cripowellins within the asexual intraerythrocytic cycle of Plasmodium falciparum were performed and led to the observation that this class of natural products induced reversible cytostasis in the ring stage within the first 24 h of treatment. The transcriptional program necessary for P. falciparum to progress through the asexual intraerythrocytic life cycle is well characterized. Whole transcriptome abundance analysis showed that cripowellin B "pauses" the transcriptional program necessary to progress through the intraerythrocytic life cycle coinciding with the lack of morphological progression of drug treated parasites. In addition, cripowellin B-treated parasites re-enter transcriptional progression after treatment was removed. This study highlights the use of cripowellins as chemical probes to reveal new aspects of cell cycle progression of the asexual ring stage of P. falciparum which could be leveraged for the generation of future antimalarial therapeutics.


Subject(s)
Amaryllidaceae Alkaloids , Antimalarials , Malaria, Falciparum , Animals , Plasmodium falciparum , Antimalarials/pharmacology , Antimalarials/metabolism , Amaryllidaceae Alkaloids/metabolism , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Life Cycle Stages , Erythrocytes
6.
Int J Mol Sci ; 22(4)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578992

ABSTRACT

In this study, endophytic bacteria belonging to the Bacillus genus were isolated from in vitro bulblets of Leucojum aestivum and their ability to produce Amaryllidaceae alkaloids was studied. Proton Nuclear Magnetic Resonance (1H NMR)-based metabolomics combined with multivariate data analysis was chosen to compare the metabolism of this plant (in vivo bulbs, in vitro bulblets) with those of the endophytic bacteria community. Primary metabolites were quantified by quantitative 1H NMR (qNMR) method. The results showed that tyrosine, one precursor of the Amaryllidaceae alkaloid biosynthesis pathway, was higher in endophytic extract compared to plant extract. In total, 22 compounds were identified including five molecules common to plant and endophyte extracts (tyrosine, isoleucine, valine, fatty acids and tyramine). In addition, endophytic extracts were analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS) and Gas Chromatography-Mass Spectrometry (GC-MS) for the identification of compounds in very low concentrations. Five Amaryllidaceae alkaloids were detected in the extracts of endophytic bacteria. Lycorine, previously detected by 1H NMR, was confirmed with LC-MS analysis. Tazettine, pseudolycorine, acetylpseudolycorine, 1,2-dihydro-chlidanthine were also identified by LC-MS using the positive ionization mode or by GC-MS. In addition, 11 primary metabolites were identified in the endophytic extracts such as tyramine, which was obtained by decarboxylation of tyrosine. Thus, Bacillus sp. isolated from L. aestivum bulblets synthesized some primary and specialized metabolites in common with the L.aestivum plant. These endophytic bacteria are an interesting new approach for producing the Amaryllidaceae alkaloid such as lycorine.


Subject(s)
Amaryllidaceae Alkaloids/metabolism , Amaryllidaceae/microbiology , Bacillus/metabolism , Endophytes/metabolism , Amaryllidaceae Alkaloids/analysis , Bacillus/chemistry , Bacillus/isolation & purification , Chromatography, Liquid , Endophytes/chemistry , Endophytes/isolation & purification , Industrial Microbiology/methods , Magnetic Resonance Spectroscopy , Mass Spectrometry , Metabolomics
7.
Int J Mol Sci ; 22(21)2021 Oct 24.
Article in English | MEDLINE | ID: mdl-34768889

ABSTRACT

As a kind of Amaryllidaceae alkaloid which is accumulated in the species of Lycoris plants, lycorine has a range of physiological effects. The biosynthesis pathway of lycorine has been partly revealed, but the transport and accumulation mechanisms of lycorine have rarely been studied. In this study, an ATP-binding cassette (ABC) transporter from Lycoris aurea (L'Hér) Herb., namely LaABCB11, was cloned and functionally characterized. Heterologous expression showed that LaABCB11 transported lycorine in an outward direction, increased the tolerance of yeast cells to lycorine, and caused a lower lycorine accumulation in transformants than control or mutant in yeast. LaABCB11 is associated with the plasma membrane, and in situ hybridization indicated that LaABCB11 was mainly expressed in the phloem of leaves and bulbs, as well as in the cortical cells of roots. These findings suggest that LaABCB11 functions as a lycorine transport and it might be related to the translocation and accumulation of lycorine from the leaves and bulbs to the roots.


Subject(s)
ATP-Binding Cassette Transporters , Alkaloids/metabolism , Lycoris , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Amaryllidaceae Alkaloids/metabolism , Galantamine/metabolism , Gene Expression , Genes, Plant , Lycoris/chemistry , Lycoris/metabolism , Phenanthridines/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Recombinant Proteins/metabolism , Yeasts/genetics , Yeasts/metabolism
8.
Molecules ; 26(17)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34500673

ABSTRACT

Alzheimer's disease (AD) is a progressive age-related neurodegenerative disease recognized as the most common form of dementia among elderly people. Due to the fact that the exact pathogenesis of AD still remains to be fully elucidated, the treatment is only symptomatic and available drugs are not able to modify AD progression. Considering the increase in life expectancy worldwide, AD rates are predicted to increase enormously, and thus the search for new AD drugs is urgently needed. Due to their complex nitrogen-containing structures, alkaloids are considered to be promising candidates for use in the treatment of AD. Since the introduction of galanthamine as an antidementia drug in 2001, Amaryllidaceae alkaloids (AAs) and further isoquinoline alkaloids (IAs) have been one of the most studied groups of alkaloids. In the last few years, several compounds of new structure types have been isolated and evaluated for their biological activity connected with AD. The present review aims to comprehensively summarize recent progress on AAs and IAs since 2010 up to June 2021 as potential drugs for the treatment of AD.


Subject(s)
Amaryllidaceae Alkaloids/metabolism , Amaryllidaceae/chemistry , Alzheimer Disease/metabolism , Neurodegenerative Diseases/metabolism , Prolyl Oligopeptidases/metabolism
9.
Environ Microbiol ; 22(4): 1421-1434, 2020 04.
Article in English | MEDLINE | ID: mdl-32090436

ABSTRACT

Lycoris radiata is a main source of Amaryllidaceae alkaloids; however, the low content of these alkaloids in planta remains a limit to their pharmaceutical development and utilization. The accumulation of secondary metabolites can be enhanced in plants inoculated with fungal endophytes. In this study, we analysed the diversity of culturable fungal endophytes in different organs of L. radiata. Then, by analysing the correlation between the detectable rate of each fungal species and the content of each tested alkaloid, we proposed several fungal candidates implicated in the increase of alkaloid accumulation. This was verified by inoculating these candidates to L. radiata plants. Based on the results of two independent experiments conducted in May 2018 and October 2019, the individual inoculation of nine fungal endophytes significantly increased the total content of the tested alkaloids in the entire L. radiata plants. This is the first study in L. radiata to show that fungal endophytes are able to improve the accumulation of various alkaloids. Therefore, our results provide insights into a better understanding of interactions between plants and fungal endophytes and suggest an effective strategy for enhancing the alkaloid content in the cultivation of L. radiata.


Subject(s)
Amaryllidaceae Alkaloids/metabolism , Endophytes/metabolism , Fungi/metabolism , Lycoris/metabolism , Lycoris/microbiology
10.
Bioorg Chem ; 100: 103928, 2020 07.
Article in English | MEDLINE | ID: mdl-32450384

ABSTRACT

A novel series of aromatic esters (1a-1m) related to the Amaryllidaceae alkaloid (AA) haemanthamine were designed, synthesized and tested in vitro with particular emphasis on the treatment of neurodegenerative diseases. Some of the synthesized compounds revealed promising acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory profile. Significant human AChE (hAChE) inhibition was demonstrated by 11-O-(3-nitrobenzoyl)haemanthamine (1j) with IC50value of 4.0 ± 0.3 µM. The strongest human BuChE (hBuChE) inhibition generated 1-O-(2-methoxybenzoyl)haemanthamine (1g) with IC50 value 3.3 ± 0.4 µM. Moreover, 11-O-(2-chlorbenzoyl)haemanthamine (1m) was able to inhibit both enzymes in dose-dependent manner. The mode of hAChE and hBuChE inhibition was minutely inspected using enzyme kinetic analysis in tandem with in silico experiments, the latter elucidating crucial interaction in 1j-, 1m-hAChE and 1g-, 1m-hBuChE complexes. The blood-brain barrier (BBB) permeability was investigated applying the parallel artificial membrane permeation assay (PAMPA) to predict the CNS availability of the compounds.


Subject(s)
Amaryllidaceae Alkaloids/chemistry , Amaryllidaceae/chemistry , Esters/chemistry , Phenanthridines/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amaryllidaceae/metabolism , Amaryllidaceae Alkaloids/metabolism , Amaryllidaceae Alkaloids/therapeutic use , Binding Sites , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/therapeutic use , Humans , Kinetics , Molecular Docking Simulation , Phenanthridines/metabolism , Phenanthridines/therapeutic use , Structure-Activity Relationship
11.
Molecules ; 25(21)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33113950

ABSTRACT

Alkaloids are an important group of specialized nitrogen metabolites with a wide range of biochemical and pharmacological effects. Since the first publication on lycorine in 1877, more than 650 alkaloids have been extracted from Amaryllidaceae bulbous plants and clustered together as the Amaryllidaceae alkaloids (AAs) family. AAs are specifically remarkable for their diverse pharmaceutical properties, as exemplified by the success of galantamine used to treat the symptoms of Alzheimer's disease. This review addresses the isolation, biological, and structure activity of AAs discovered from January 2015 to August 2020, supporting their therapeutic interest.


Subject(s)
Amaryllidaceae Alkaloids/metabolism , Amaryllidaceae Alkaloids/pharmacology , Drug Discovery , Amaryllidaceae Alkaloids/chemistry , Animals , Humans
12.
Molecules ; 25(20)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066212

ABSTRACT

Plants belonging to the monocotyledonous Amaryllidaceae family include about 1100 species divided among 75 genera. They are well known as medicinal and ornamental plants, producing pharmaceutically important alkaloids, the most intensively investigated of which are galanthamine and lycorine. Amaryllidaceae alkaloids possess various biological activities, the most important one being their anti-acetylcholinesterase activity, used for the treatment of Alzheimer's disease. Due to increased demand for Amaryllidaceae alkaloids (mainly galanthamine) and the limited availability of plant sources, in vitro culture technology has attracted the attention of researchers as a prospective alternative for their sustainable production. Plant in vitro systems have been extensively used for continuous, sustainable, and economically viable production of bioactive plant secondary metabolites. Over the past two decades, a significant success has been demonstrated in the development of in vitro systems synthesizing Amaryllidaceae alkaloids. The present review discusses the state of the art of in vitro Amaryllidaceae alkaloids production, summarizing recently documented plant in vitro systems producing them, as well as the authors' point of view on the development of biotechnological production processes with a focus on the future prospects of in vitro culture technology for the commercial production of these valuable alkaloids.


Subject(s)
Amaryllidaceae Alkaloids/metabolism , Amaryllidaceae/metabolism , Biotechnology/methods , Amaryllidaceae/cytology , Amaryllidaceae Alkaloids/pharmacology , Humans , Metabolic Engineering/methods , Synthetic Biology/methods
13.
Med Sci Monit ; 25: 6015-6022, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31404056

ABSTRACT

BACKGROUND Worldwide, colorectal cancer is ranked as the third most prevalent cancer. The natural compound, pancratistatin, extracted from the spider lily, has previously been shown to target apoptosis in cancer cells lines. This study aimed to investigate the effects of pancratistatin in human colorectal cancer cells in vitro. MATERIAL AND METHODS Human colorectal cancer cell lines, including HTC-15 cells, were compared with a normal human colonic fibroblast cell line, CDD-18Co. Cells were treated with increasing doses of pancratistatin. The MTT assay was used to assess cell viability. Fluorescence microscopy using DAPI and Annexin-V/propidium iodide (PI) was used to detect cell apoptosis. Cell autophagy was detected by electron microscopy. Cell migration was evaluated using a wound healing assay, and Western blot determined the expression levels of cell cycle proteins. RESULTS Pancratistatin inhibited the growth of the colorectal cancer cells with an IC50 ranging from 15-25 µM, but had a limited effect in normal CCD-18Co cells, with an IC50 of >100 µM. Pancratistatin reduced HCT-15 cell migration. Growth inhibition due to pancratistatin was associated with morphological changes of HCT-15 cells and included autophagy and apoptosis, and increased expression the autophagic proteins, LC3II, beclin-1, and Bax. Pancratistatin induced arrest of HCT-15 cells at G2/M of the cell cycle and inhibited phosphorylation of cdc2/cyclin-dependent kinase 1 (CDK1) and Cdc25c and the expression of cyclin B1. CONCLUSIONS Pancratistatin inhibited the growth of colorectal cancer cells in vitro by inducing apoptosis, autophagy, and G2/M cell cycle arrest.


Subject(s)
Amaryllidaceae Alkaloids/pharmacology , Colorectal Neoplasms/drug therapy , Isoquinolines/pharmacology , Amaryllidaceae Alkaloids/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Cell Cycle/drug effects , Cell Cycle Checkpoints/drug effects , Cell Division , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Colonic Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Isoquinolines/metabolism
14.
Molecules ; 24(7)2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30987121

ABSTRACT

Twelve derivatives 1a-1m of the ß-crinane-type alkaloid haemanthamine were developed. All the semisynthetic derivatives were studied for their inhibitory potential against both acetylcholinesterase and butyrylcholinesterase. In addition, glycogen synthase kinase 3ß (GSK-3ß) inhibition potency was evaluated in the active derivatives. In order to reveal the availability of the drugs to the CNS, we elucidated the potential of selected derivatives to penetrate through the blood-brain barrier (BBB). Two compounds, namely 11-O-(2-methylbenzoyl)-haemanthamine (1j) and 11-O-(4-nitrobenzoyl)-haemanthamine (1m), revealed the most intriguing profile, both being acetylcholinesterase (hAChE) inhibitors on a micromolar scale, with GSK-3ß inhibition properties, and predicted permeation through the BBB. In vitro data were further corroborated by detailed inspection of the compounds' plausible binding modes in the active sites of hAChE and hBuChE, which led us to provide the structural determinants responsible for the activity towards these enzymes.


Subject(s)
Alzheimer Disease/metabolism , Amaryllidaceae Alkaloids/chemistry , Amaryllidaceae Alkaloids/metabolism , Amaryllidaceae/chemistry , Amaryllidaceae/metabolism , Phenanthridines/chemistry , Phenanthridines/metabolism , Blood-Brain Barrier/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Ligands , Models, Molecular , Molecular Conformation , Molecular Docking Simulation , Molecular Structure , Permeability , Structure-Activity Relationship
15.
BMC Plant Biol ; 18(1): 338, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30526483

ABSTRACT

BACKGROUND: Amaryllidaceae alkaloids (AAs) are a large group of plant-specialized metabolites displaying an array of biological and pharmacological properties. Previous investigations on AA biosynthesis have revealed that all AAs share a common precursor, norbelladine, presumably synthesized by an enzyme catalyzing a Mannich reaction involving the condensation of tyramine and 3,4-dihydroxybenzaldehyde. Similar reactions have been reported. Specifically, norcoclaurine synthase (NCS) which catalyzes the condensation of dopamine and 4-hydroxyphenylacetaldehyde as the first step in benzylisoquinoline alkaloid biosynthesis. RESULTS: With the availability of wild daffodil (Narcissus pseudonarcissus) database, a transcriptome-mining search was performed for NCS orthologs. A candidate gene sequence was identified and named norbelladine synthase (NBS). NpNBS encodes for a small protein of 19 kDa with an anticipated pI of 5.5. Phylogenetic analysis showed that NpNBS belongs to a unique clade of PR10/Bet v1 proteins and shared 41% amino acid identity to opium poppy NCS1. Expression of NpNBS cDNA in Escherichia coli produced a recombinant enzyme able to condense tyramine and 3,4-DHBA into norbelladine as determined by high-resolution tandem mass spectrometry. CONCLUSIONS: Here, we describe a novel enzyme catalyzing the first committed step of AA biosynthesis, which will facilitate the establishment of metabolic engineering and synthetic biology platforms for the production of AAs.


Subject(s)
Amaryllidaceae Alkaloids/metabolism , Amaryllidaceae/enzymology , Plant Proteins/metabolism , Tyramine/analogs & derivatives , Amaryllidaceae/genetics , Amaryllidaceae/metabolism , Amino Acid Sequence , Benzaldehydes/metabolism , Carbon-Nitrogen Ligases/genetics , Carbon-Nitrogen Ligases/metabolism , Catechols/metabolism , Cloning, Molecular , Phylogeny , Plant Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Tyramine/biosynthesis , Tyramine/metabolism
16.
Phytother Res ; 32(4): 625-630, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29226479

ABSTRACT

Scadoxus puniceus (Amaryllidaceae), a medicinal plant of high value in South Africa, is used as a component of a traditional herbal tonic prescribed to treat several ailments. Ultra-high performance liquid chromatography-tandem mass spectrometry quantified the phenolic compounds in different organs of S. puniceus. Gravity column chromatography was used to separate fractions and active compounds. The structure of these compounds was determined using 1D and 2D nuclear magnetic resonance and mass spectroscopic techniques. A microplate technique was used to determine the acetylcholinesterase inhibitory activity of the pure compounds. Metabolite profiling revealed a greater profusion of hydroxycinnamic acids (69.5%), as opposed to hydroxybenzoic acids (30.5%). Chlorogenic acid was the most abundant (49.6% of hydroxycinnamic acids) compound. In addition to chlorogenic acid, the study is the first to report the presence of sinapic, gallic, and m-hydroxybenzoic acids in the Amaryllidaceae. Chromatographic separation of S. puniceus led to the isolation of haemanthamine (1), haemanthidine (2), and a rare chlorinated amide, metolachlor (3), the natural occurrence of which is described for the first time. Haemanthamine, haemanthidine, and metolachlor displayed strong acetylcholinesterase inhibitory activity (IC50 ; 23.1, 23.7, and 11.5 µM, respectively). These results substantiate the frequent use of S. puniceus as a medicinal plant and hold much promise for further pharmaceutical development.


Subject(s)
Amaryllidaceae/chemistry , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Plants, Medicinal/chemistry , Acetamides/chemistry , Acetamides/isolation & purification , Acetamides/metabolism , Acetamides/pharmacology , Amaryllidaceae/metabolism , Amaryllidaceae Alkaloids/chemistry , Amaryllidaceae Alkaloids/isolation & purification , Amaryllidaceae Alkaloids/metabolism , Amaryllidaceae Alkaloids/pharmacology , Cholinesterase Inhibitors/isolation & purification , Chromatography, High Pressure Liquid , Coumaric Acids/isolation & purification , Coumaric Acids/metabolism , Phenanthridines/chemistry , Phenanthridines/isolation & purification , Phenanthridines/metabolism , Phenanthridines/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/metabolism , Plant Extracts/pharmacology , South Africa , Tandem Mass Spectrometry
17.
Int J Mol Sci ; 19(7)2018 06 29.
Article in English | MEDLINE | ID: mdl-29966257

ABSTRACT

O-methyltransferases (OMTs) have been demonstrated to play key roles in the biosynthesis of plant secondary metabolites, such as alkaloids, isoprenoids, and phenolic compounds. Here, we isolated and characterized an OMT gene from Lycoris aurea (namely LaOMT1), based on our previous transcriptome sequencing data. Sequence alignment and phylogenetic analysis showed that LaOMT1 belongs to the class I OMT, and shares high identity to other known plant OMTs. Also, LaOMT1 is highly identical in its amino acid sequence to NpN4OMT, a norbelladine 4'-OMT from Narcissus sp. aff. pseudonarcissus involved in the biosynthesis of Amaryllidaceae alkaloids. Biochemical analysis indicated that the recombinant LaOMT1 displayed both para and metaO-methylation activities with caffeic acid and 3,4-dihydroxybenzaldehyde, and showed a strong preference for the meta position. Besides, LaOMT1 also catalyzes the O-methylation of norbelladine to form 4'-O-methylnorbelladine, which has been demonstrated to be a universal precursor of all the primary Amaryllidaceae alkaloid skeletons. The results from quantitative real-time PCR assay indicated that LaOMT1 was ubiquitously expressed in different tissues of L. aurea, and its highest expression level was observed in the ovary. Meanwhile, the largest concentration of lycorine and galanthamine were found in the ovary, whereas the highest level of narciclasine was observed in the bulb. In addition, sodium chloride (NaCl), cold, polyethylene glycol (PEG), sodium nitroprusside (SNP), and methyl jasmonate (MeJA) treatments could significantly increase LaOMT1 transcripts, while abscisic acid (ABA) treatment dramatically decreased the expression level of LaOMT1. Subcellular localization showed that LaOMT1 is mainly localized in cytoplasm and endosome. Our results in this study indicate that LaOMT1 may play a multifunctional role, and lay the foundation for Amaryllidaceae alkaloid biosynthesis in L. aurea.


Subject(s)
Cloning, Molecular , Methyltransferases/metabolism , Plant Proteins/metabolism , Plants, Medicinal/metabolism , Amaryllidaceae Alkaloids/metabolism , Benzaldehydes/metabolism , Caffeic Acids/metabolism , Catechols/metabolism , Methyltransferases/genetics , Plant Proteins/genetics , Plants, Medicinal/genetics
18.
J Biol Chem ; 291(32): 16740-52, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27252378

ABSTRACT

Amaryllidaceae alkaloids are a large group of plant natural products with over 300 documented structures and diverse biological activities. Several groups of Amaryllidaceae alkaloids including the hemanthamine- and crinine-type alkaloids show promise as anticancer agents. Two reduction reactions are required for the production of these compounds: the reduction of norcraugsodine to norbelladine and the reduction of noroxomaritidine to normaritidine, with the enantiomer of noroxomaritidine dictating whether the derivatives will be the crinine-type or hemanthamine-type. It is also possible for the carbon-carbon double bond of noroxomaritidine to be reduced, forming the precursor for maritinamine or elwesine depending on the enantiomer reduced to an oxomaritinamine product. In this study, a short chain alcohol dehydrogenase/reductase that co-expresses with the previously discovered norbelladine 4'-O-methyltransferase from Narcissus sp. and Galanthus spp. was cloned and expressed in Escherichia coli Biochemical analyses and x-ray crystallography indicates that this protein functions as a noroxomaritidine reductase that forms oxomaritinamine from noroxomaritidine through a carbon-carbon double bond reduction. The enzyme also reduces norcraugsodine to norbelladine with a 400-fold lower specific activity. These studies identify a missing step in the biosynthesis of this pharmacologically important class of plant natural products.


Subject(s)
Amaryllidaceae Alkaloids/chemistry , Galanthus/enzymology , Narcissus/enzymology , Oxidoreductases/chemistry , Plant Proteins/chemistry , Amaryllidaceae Alkaloids/metabolism , Galanthus/genetics , Narcissus/genetics , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
19.
Med Sci Monit ; 23: 2035-2041, 2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28450693

ABSTRACT

BACKGROUND This study was designed to investigate the effect of lycorine (LY) on the AMPK-mTOR-S6K signaling pathway and to clarify its role in autophagy and apoptosis. MATERIAL AND METHODS Various concentrations of LY were used to treat non-small cell lung carcinoma A549 cells. The MTT assay was used to measure cell viability and acridine orange staining was used to detect cell morphology changes. Western blot analysis was used to test the effect of LY on the expression levels of LC3, caspase 3, and other proteins involved in the AMPK-mTOR-S6K signaling pathway. RESULTS The half maximal inhibitory concentration (IC50) of LY after 24-h treatment was 8.5 µM, with stronger inhibitory effect of 24-h LY treatment over 12-h LY treatment. Morphological observation showed that lower doses (4 µM and 8 µM) of LY treatment induced A549 cell death mainly caused by autophagy, whereas the higher dose (16 µM) of LY treatment induced A549 cell death, mainly caused by apoptosis. Furthermore, 8 µM LY caused the highest conversion of LC3-II from LC3-I. All LY treatments activated caspase-3. LY treatment also promoted AMPK phosphorylation (Thr172) and inhibited the phosphorylation of mTOR and S6K. CONCLUSIONS LY induced apoptosis of A549 cells by regulating the AMPK-mTOR-S6K signaling pathway. Lower levels (4~8 µM) of LY-induced autophagy contributed to LY-induced apoptosis.


Subject(s)
Amaryllidaceae Alkaloids/metabolism , Amaryllidaceae Alkaloids/pharmacology , Phenanthridines/metabolism , Phenanthridines/pharmacology , A549 Cells/drug effects , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Amaryllidaceae Alkaloids/chemistry , Apoptosis/drug effects , Autophagy/drug effects , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Lung Neoplasms/pathology , MAP Kinase Signaling System/drug effects , Microtubule-Associated Proteins/metabolism , Phenanthridines/chemistry , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/drug effects , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/drug effects , TOR Serine-Threonine Kinases/metabolism
20.
Plant Cell Rep ; 35(11): 2381-2401, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27562382

ABSTRACT

KEY MESSAGE: Histochemical staining and RNA-seq data demonstrated that the ROS- and plant hormone-regulated stress responses are the key early events of narciclasine signaling in Arabidopsis root cells. Narciclasine, an amaryllidaceae alkaloid isolated from Narcissus tazetta bulbs, employs a broad range of functions on plant development and growth. However, its molecular interactions that modulate these roles in plants are not fully understood. To elucidate the global responses of Arabidopsis roots to short-term narciclasine exposure, we first measured the accumulation of H2O2 and O2- with histochemical staining, and then profiled the gene expression pattern in Arabidopsis root tips treated with 0.5 µM narciclasine across different exposure times by RNA-seq. Physiological measurements showed a significant increase in H2O2 began at 30-60 min of narciclasine treatment and O2- accumulated by 120 min. Compared with controls, 236 genes were upregulated and 54 genes were downregulated with 2 h of narciclasine treatment, while 968 genes were upregulated and 835 genes were downregulated with 12 h of treatment. The Gene Ontology analysis revealed that the differentially expressed genes were highly enriched during oxidative stress, including those involved in the "regulation of transcription", "response to oxidative stress", "plant-pathogen interaction", "ribonucleotide binding", "plant cell wall organization", and "ribosome biogenesis". Moreover, Kyoto Encyclopedia of Genes and Genomes pathway enrichment statistics suggested that carbohydrate metabolism, amino acid metabolism, amino sugar and nucleotide sugar metabolism, and biosynthesis of phenylpropanoid and secondary metabolites were significantly inhibited by 12 h of narciclasine exposure. Hence, our results demonstrate that hormones and H2O2 are important regulators of narciclasine signaling and help to uncover the factors involved in the molecular interplay between narciclasine and phytohormones in Arabidopsis root cells.


Subject(s)
Amaryllidaceae Alkaloids/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Profiling/methods , Meristem/genetics , Phenanthridines/metabolism , Signal Transduction/genetics , Amaryllidaceae Alkaloids/pharmacology , Arabidopsis/drug effects , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Hydrogen Peroxide/metabolism , Meristem/cytology , Meristem/drug effects , Phenanthridines/pharmacology , Plant Cells/drug effects , Plant Cells/metabolism , Plant Growth Regulators/metabolism , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Respiratory Burst/drug effects , Sequence Analysis, RNA , Signal Transduction/drug effects , Stress, Physiological/drug effects , Stress, Physiological/genetics , Superoxides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL