Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.057
Filter
1.
Hum Mol Genet ; 32(17): 2717-2734, 2023 08 26.
Article in English | MEDLINE | ID: mdl-37369025

ABSTRACT

Inherited disorders of mitochondrial metabolism, including isolated methylmalonic aciduria, present unique challenges to energetic homeostasis by disrupting energy-producing pathways. To better understand global responses to energy shortage, we investigated a hemizygous mouse model of methylmalonyl-CoA mutase (Mmut)-type methylmalonic aciduria. We found Mmut mutant mice to have reduced appetite, energy expenditure and body mass compared with littermate controls, along with a relative reduction in lean mass but increase in fat mass. Brown adipose tissue showed a process of whitening, in line with lower body surface temperature and lesser ability to cope with cold challenge. Mutant mice had dysregulated plasma glucose, delayed glucose clearance and a lesser ability to regulate energy sources when switching from the fed to fasted state, while liver investigations indicated metabolite accumulation and altered expression of peroxisome proliferator-activated receptor and Fgf21-controlled pathways. Together, these shed light on the mechanisms and adaptations behind energy imbalance in methylmalonic aciduria and provide insight into metabolic responses to chronic energy shortage, which may have important implications for disease understanding and patient management.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Mice , Animals , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Energy Metabolism/genetics , Liver/metabolism
2.
Glia ; 72(10): 1821-1839, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38899762

ABSTRACT

The neurometabolic disorder succinic semialdehyde dehydrogenase (SSADH) deficiency leads to great neurochemical imbalances and severe neurological manifestations. The cause of the disease is loss of function of the enzyme SSADH, leading to impaired metabolism of the principal inhibitory neurotransmitter GABA. Despite the known identity of the enzymatic deficit, the underlying pathology of SSADH deficiency remains unclear. To uncover new mechanisms of the disease, we performed an untargeted integrative analysis of cerebral protein expression, functional metabolism, and lipid composition in a genetic mouse model of SSADH deficiency (ALDH5A1 knockout mice). Our proteomic analysis revealed a clear regional vulnerability, as protein alterations primarily manifested in the hippocampus and cerebral cortex of the ALDH5A1 knockout mice. These regions displayed aberrant expression of proteins linked to amino acid homeostasis, mitochondria, glial function, and myelination. Stable isotope tracing in acutely isolated brain slices demonstrated an overall maintained oxidative metabolism of glucose, but a selective decrease in astrocyte metabolic activity in the cerebral cortex of ALDH5A1 knockout mice. In contrast, an elevated capacity of oxidative glutamine metabolism was observed in the ALDH5A1 knockout brain, which may serve as a neuronal compensation of impaired astrocyte glutamine provision. In addition to reduced expression of critical oligodendrocyte proteins, a severe depletion of myelin-enriched sphingolipids was found in the brains of ALDH5A1 knockout mice, suggesting degeneration of myelin. Altogether, our study highlights that impaired astrocyte and oligodendrocyte function is intimately linked to SSADH deficiency pathology, suggesting that selective targeting of glial cells may hold therapeutic potential in this disease.


Subject(s)
Astrocytes , Brain , Mice, Knockout , Oligodendroglia , Succinate-Semialdehyde Dehydrogenase , gamma-Aminobutyric Acid , Animals , Oligodendroglia/metabolism , Oligodendroglia/pathology , Astrocytes/metabolism , Astrocytes/pathology , Succinate-Semialdehyde Dehydrogenase/deficiency , Succinate-Semialdehyde Dehydrogenase/metabolism , Succinate-Semialdehyde Dehydrogenase/genetics , Mice , gamma-Aminobutyric Acid/metabolism , Brain/metabolism , Brain/pathology , Mice, Inbred C57BL , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/pathology , Amino Acid Metabolism, Inborn Errors/genetics , Developmental Disabilities
3.
Neurobiol Dis ; 190: 106386, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38110041

ABSTRACT

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a neurometabolic disorder caused by ALDH5A1 mutations presenting with autism and epilepsy. SSADHD leads to impaired GABA metabolism and results in accumulation of GABA and γ-hydroxybutyrate (GHB), which alter neurotransmission and are thought to lead to neurobehavioral symptoms. However, why increased inhibitory neurotransmitters lead to seizures remains unclear. We used induced pluripotent stem cells from SSADHD patients (one female and two male) and differentiated them into GABAergic and glutamatergic neurons. SSADHD iGABA neurons show altered GABA metabolism and concomitant changes in expression of genes associated with inhibitory neurotransmission. In contrast, glutamatergic neurons display increased spontaneous activity and upregulation of mitochondrial genes. CRISPR correction of the pathogenic variants or SSADHD mRNA expression rescue various metabolic and functional abnormalities in human neurons. Our findings uncover a previously unknown role for SSADHD in excitatory human neurons and provide unique insights into the cellular and molecular basis of SSADHD and potential therapeutic interventions.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Induced Pluripotent Stem Cells , Humans , Male , Female , Induced Pluripotent Stem Cells/metabolism , Amino Acid Metabolism, Inborn Errors/drug therapy , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Neurons/metabolism , gamma-Aminobutyric Acid/metabolism , Succinate-Semialdehyde Dehydrogenase/genetics
4.
Retina ; 44(6): 1052-1062, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38261977

ABSTRACT

PURPOSE: Serine (Ser) and glycine (Gly) levels were reported to differ between patients with macular telangiectasia type 2 (MacTel) compared with healthy controls. Because they are closely related to methylation metabolism, this report investigates methylation-associated metabolite levels in patients with MacTel and retinal changes in monogenetic methylation disorders. METHODS: Prospective, monocentric study on patients with MacTel and healthy controls underwent a standardized protocol including a blood draw. Methylation-associated metabolite levels in plasma were determined using targeted quantitative metabolomics. Furthermore, patient records of cystathionine beta-synthase, methylenetetrahydrofolate reductase, and methylmalonic aciduria and homocystinuria type C protein (MMACHC) deficiency were screened for reported retinal changes. RESULTS: In total, 29 patients with MacTel and 27 healthy controls were included. Patients with MacTel showed lower plasma Ser ( P = 0.02 and P = 0.01) and Gly ( P = 0.11 and P = 0.11) levels than controls. Principal component analyses revealed that methylation-associated metabolite, especially homocysteine, contributed to a distinct clustering of patients with MacTel. No retinal changes were seen in cystathionine beta-synthase (n = 1) and methylenetetrahydrofolate reductase (n = 2) deficiency, while two patients with MMACHC (n = 4) deficiency displayed extensive macular dystrophy. CONCLUSION: Patients with MacTel show distinct clustering of methylation-associated metabolite compared with controls. Of the three homocystinurias, only MMACHC resulted in macular dystrophy, possibly due to distinct compensatory pathways.


Subject(s)
Retinal Telangiectasis , Humans , Female , Male , Prospective Studies , Retinal Telangiectasis/diagnosis , Retinal Telangiectasis/metabolism , Retinal Telangiectasis/genetics , Middle Aged , Tomography, Optical Coherence , Adult , Aged , Methylation , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/complications , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/diagnosis , Fluorescein Angiography/methods , Glycine , Homocystinuria/genetics , Homocystinuria/complications , Homocystinuria/diagnosis
5.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791277

ABSTRACT

Succinic semialdehyde dehydrogenase (SSADH) is a mitochondrial enzyme involved in the catabolism of the neurotransmitter γ-amino butyric acid. Pathogenic variants in the gene encoding this enzyme cause SSADH deficiency, a developmental disease that manifests as hypotonia, autism, and epilepsy. SSADH deficiency patients usually have family-specific gene variants. Here, we describe a family exhibiting four different SSADH variants: Val90Ala, Cys93Phe, and His180Tyr/Asn255Asp (a double variant). We provide a structural and functional characterization of these variants and show that Cys93Phe and Asn255Asp are pathogenic variants that affect the stability of the SSADH protein. Due to the impairment of the cofactor NAD+ binding, these variants show a highly reduced enzyme activity. However, Val90Ala and His180Tyr exhibit normal activity and expression. The His180Tyr/Asn255Asp variant exhibits a highly reduced activity as a recombinant species, is inactive, and shows a very low expression in eukaryotic cells. A treatment with substances that support protein folding by either increasing chaperone protein expression or by chemical means did not increase the expression of the pathogenic variants of the SSADH deficiency patient. However, stabilization of the folding of pathogenic SSADH variants by other substances may provide a treatment option for this disease.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Developmental Disabilities , Succinate-Semialdehyde Dehydrogenase , Female , Humans , Male , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/pathology , Developmental Disabilities/genetics , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , Genetic Variation , Mutation , Pedigree , Protein Folding , Succinate-Semialdehyde Dehydrogenase/deficiency , Succinate-Semialdehyde Dehydrogenase/genetics , Succinate-Semialdehyde Dehydrogenase/chemistry , Succinate-Semialdehyde Dehydrogenase/metabolism
6.
Hum Genet ; 142(12): 1755-1776, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37962671

ABSTRACT

To investigate the genotype-to-protein-to-phenotype correlations of succinic semialdehyde dehydrogenase deficiency (SSADHD), an inherited metabolic disorder of γ-aminobutyric acid catabolism. Bioinformatics and in silico mutagenesis analyses of ALDH5A1 variants were performed to evaluate their impact on protein stability, active site and co-factor binding domains, splicing, and homotetramer formation. Protein abnormalities were then correlated with a validated disease-specific clinical severity score and neurological, neuropsychological, biochemical, neuroimaging, and neurophysiological metrics. A total of 58 individuals (1:1 male/female ratio) were affected by 32 ALDH5A1 pathogenic variants, eight of which were novel. Compared to individuals with single homotetrameric or multiple homo and heterotetrameric proteins, those predicted not to synthesize any functional enzyme protein had significantly lower expression of ALDH5A1 (p = 0.001), worse overall clinical outcomes (p = 0.008) and specifically more severe cognitive deficits (p = 0.01), epilepsy (p = 0.04) and psychiatric morbidity (p = 0.04). Compared to individuals with predictions of having no protein or a protein impaired in catalytic functions, subjects whose proteins were predicted to be impaired in stability, folding, or oligomerization had a better overall clinical outcome (p = 0.02) and adaptive skills (p = 0.04). The quantity and type of enzyme proteins (no protein, single homotetramers, or multiple homo and heterotetramers), as well as their structural and functional impairments (catalytic or stability, folding, or oligomerization), contribute to phenotype severity in SSADHD. These findings are valuable for assessment of disease prognosis and management, including patient selection for gene replacement therapy. Furthermore, they provide a roadmap to determine genotype-to-protein-to-phenotype relationships in other autosomal recessive disorders.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Child , Humans , Male , Female , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/pathology , Developmental Disabilities/genetics , Phenotype , Succinate-Semialdehyde Dehydrogenase/genetics , Succinate-Semialdehyde Dehydrogenase/metabolism
7.
Epilepsia ; 64(6): 1516-1526, 2023 06.
Article in English | MEDLINE | ID: mdl-36961285

ABSTRACT

OBJECTIVE: Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare inherited metabolic disorder caused by a defect of γ-aminobutyrate (GABA) catabolism. Despite the resultant hyper-GABAergic environment facilitated by the metabolic defect, individuals with this disorder have a paradoxically high prevalence of epilepsy. We aimed to study the characteristics of epilepsy in SSADHD and its concordance with GABA-related metabolites and neurophysiologic markers of cortical excitation. METHODS: Subjects in an international natural history study of SSADHD underwent clinical assessments, electroencephalography, transcranial magnetic stimulation (TMS), magnetic resonance spectroscopy for GABA/N-acetyl aspartate quantification, and plasma GABA-related metabolite measurements. RESULTS: A total of 61 subjects with SSADHD and 42 healthy controls were included in the study. Epilepsy was present in 49% of the SSADHD cohort. Over time, there was an increase in severity in 33% of the subjects with seizures. The presence of seizures was associated with increasing age (p = .001) and lower levels of GABA (p = .002), γ-hydroxybutyrate (GHB; p = .004), and γ-guanidinobutyrate (GBA; p = .003). Seizure severity was associated with increasing age and lower levels of GABA-related metabolites as well as lower TMS-derived resting motor thresholds (p = .04). The cutoff values with the highest discriminative ability to predict seizures were age > 9.2 years (p = .001), GABA < 2.57 µmol·L-1 (p = .002), GHB < 143.6 µmol·L-1 (p = .004), and GBA < .075 µmol·L-1 (p = .007). A prediction model for seizures in SSADHD was comprised of the additive effect of older age and lower plasma GABA, GHB, and GBA (area under the receiver operating characteristic curve of .798, p = .008). SIGNIFICANCE: Epilepsy is highly prevalent in SSADHD, and its onset and severity correlate with an age-related decline in GABA and GABA-related metabolite levels as well as TMS markers of reduced cortical inhibition. The reduction of GABAergic activity in this otherwise hyper-GABAergic disorder demonstrates a concordance between epileptogenesis and compensatory responses. These findings may furthermore inform the timing of molecular interventions for SSADHD.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Epilepsy , Sodium Oxybate , Humans , Child , Amino Acid Metabolism, Inborn Errors/complications , Amino Acid Metabolism, Inborn Errors/metabolism , Developmental Disabilities , Epilepsy/metabolism , gamma-Aminobutyric Acid/metabolism , Aminobutyrates , Seizures
8.
J Inherit Metab Dis ; 46(3): 371-390, 2023 05.
Article in English | MEDLINE | ID: mdl-37020324

ABSTRACT

Glutaric aciduria type 1 (GA1) is a rare neurometabolic disease caused by pathogenic variants in the gene encoding the enzyme glutaryl-CoA dehydrogenase (GCDH). We performed an extensive literature search to collect data on GA1 patients, together with unpublished cases, to provide an up-to-date genetic landscape of GCDH pathogenic variants and to investigate potential genotype-phenotype correlation, as this is still poorly understood. From this search, 421 different GCDH pathogenic variants have been identified, including four novel variants; c.179T>C (p.Leu60Pro), c.214C>T (p.Arg72Cys), c.309G>C (p.Leu103Phe), and c.665T>C (p.Phe222Ser).The variants are mostly distributed across the entire gene; although variant frequency in GA1 patients is relatively high in the regions encoding for active domains of GCDH. To investigate potential genotype-phenotype correlations, phenotypic descriptions of 532 patients have been combined and evaluated using novel combinatorial analyses. To do so, various clinical phenotypes were determined for each pathogenic variant by combining the information of all GA1 patients reported with this pathogenic variant, and subsequently mapped onto the 2D and 3D GCDH protein structure. In addition, the predicted pathogenicity of missense variants was analyzed using different in silico prediction score models. Both analyses showed an almost similar distribution of the highly pathogenic variants across the GCDH protein, although some hotspots, including the active domain, were observed. Moreover, it was demonstrated that highly pathogenic variants are significantly correlated with lower residual enzyme activity and the most accurate estimation was achieved by the REVEL score. A clear correlation of the genotype and the clinical phenotype however is still lacking.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Humans , Glutaryl-CoA Dehydrogenase/genetics , Glutaryl-CoA Dehydrogenase/metabolism , Brain Diseases, Metabolic/metabolism , Mutation, Missense , Amino Acid Metabolism, Inborn Errors/metabolism
9.
J Inherit Metab Dis ; 46(3): 520-535, 2023 05.
Article in English | MEDLINE | ID: mdl-36591944

ABSTRACT

Organic acidurias, such as glutaric aciduria type 1 (GA1), methylmalonic (MMA), and propionic aciduria (PA) are a prominent group of inherited metabolic diseases involving accumulation of eponymous metabolites causing endogenous intoxication. For all three conditions, guidelines for diagnosis and management have been developed and revised over the last years, resulting in three revisions for GA1 and one revision for MMA/PA. The process of clinical guideline development in rare metabolic disorders is challenged by the scarcity and limited quality of evidence available. The body of literature is often fragmentary and where information is present, it is usually derived from small sample sizes. Therefore, the development of guidelines for GA1 and MMA/PA was initially confronted with a poor evidence foundation that hindered formulation of concrete recommendations in certain contexts, triggering specific research projects and initiation of longitudinal, prospective observational studies using patient registries. Reversely, these observational studies contributed to evaluate the value of newborn screening, phenotypic diversities, and treatment effects, thus significantly improving the quality of evidence and directly influencing formulation and evidence levels of guideline recommendations. Here, we present insights into interactions between guideline development and (pre)clinical research for GA1 and MMA/PA, and demonstrate how guidelines gradually improved from revision to revision. We describe how clinical studies help to unravel the relative impact of therapeutic interventions on outcome and conclude that despite new and better quality of research data over the last decades, significant shortcomings of evidence regarding prognosis and treatment remain. It appears that development of clinical guidelines can directly help to guide research, and vice versa.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Metabolic Diseases , Propionic Acidemia , Infant, Newborn , Humans , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/metabolism , Brain Diseases, Metabolic/diagnosis , Propionic Acidemia/diagnosis
10.
J Inherit Metab Dis ; 46(3): 391-405, 2023 05.
Article in English | MEDLINE | ID: mdl-37078465

ABSTRACT

Glutaric aciduria type 1 (GA1) is caused by inherited deficiency of glutaryl-CoA dehydrogenase (GCDH). To further understand the unclear genotype-phenotype correlation, we transfected mutated GCDH into COS-7 cells resembling known biallelic GCDH variants of 47 individuals with GA1. In total, we modeled 36 genotypes with 32 missense variants. Spectrophotometry demonstrated an inverse correlation between residual enzyme activity and the urinary concentration of glutaric acid and 3-hydroxyglutaric acid, confirming previous studies (Pearson correlation, r = -0.34 and r = -0.49, p = 0.045 and p = 0.002, respectively). In silico modeling predicted high pathogenicity for all genotypes, which caused a low enzyme activity. Western blotting revealed a 2.6-times higher GCDH protein amount in patients with an acute encephalopathic crisis (t-test, p = 0.015), and high protein expression correlated with high in silico protein stability (Pearson correlation, r = -0.42, p = 0.011). The protein amount was not correlated with the enzyme activity (Pearson correlation, r = 0.09, p = 0.59). To further assess protein stability, proteolysis was performed, showing that the p.Arg88Cys variant stabilized a heterozygous less stable variant. We conclude that an integration of different data sources helps to predict the complex clinical phenotype in individuals with GA1.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Humans , Glutaryl-CoA Dehydrogenase , Brain Diseases, Metabolic/genetics , Brain Diseases, Metabolic/metabolism , Mutation, Missense , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Phenotype , Glutarates/metabolism
11.
Cell Mol Life Sci ; 79(6): 305, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35593933

ABSTRACT

Aromatic amino acid decarboxylase (AADC) deficiency is a rare monogenic disease, often fatal in the first decade, causing severe intellectual disability, movement disorders and autonomic dysfunction. It is due to mutations in the gene coding for the AADC enzyme responsible for the synthesis of dopamine and serotonin. Using whole exome sequencing, we have identified a novel homozygous c.989C > T (p.Pro330Leu) variant of AADC causing AADC deficiency. Pro330 is part of an essential structural and functional element: the flexible catalytic loop suggested to cover the active site as a lid and properly position the catalytic residues. Our investigations provide evidence that Pro330 concurs in the achievement of an optimal catalytic competence. Through a combination of bioinformatic approaches, dynamic light scattering measurements, limited proteolysis experiments, spectroscopic and in solution analyses, we demonstrate that the substitution of Pro330 with Leu, although not determining gross conformational changes, results in an enzymatic species that is highly affected in catalysis with a decarboxylase catalytic efficiency decreased by 674- and 194-fold for the two aromatic substrates. This defect does not lead to active site structural disassembling, nor to the inability to bind the pyridoxal 5'-phosphate (PLP) cofactor. The molecular basis for the pathogenic effect of this variant is rather due to a mispositioning of the catalytically competent external aldimine intermediate, as corroborated by spectroscopic analyses and pH dependence of the kinetic parameters. Altogether, we determined the structural basis for the severity of the manifestation of AADC deficiency in this patient and discussed the rationale for a precision therapy.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Aromatic-L-Amino-Acid Decarboxylases , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Aromatic-L-Amino-Acid Decarboxylases/genetics , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Catalysis , Dopamine/metabolism , Humans
12.
Trends Biochem Sci ; 43(10): 752-789, 2018 10.
Article in English | MEDLINE | ID: mdl-30177408

ABSTRACT

Amino acid transporters (AATs) are membrane-bound transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs have diverse functional roles ranging from neurotransmission to acid-base balance, intracellular energy metabolism, and anabolic and catabolic reactions. In cancer cells and diabetes, dysregulation of AATs leads to metabolic reprogramming, which changes intracellular amino acid levels, contributing to the pathogenesis of cancer, obesity and diabetes. Indeed, the neutral amino acid transporters (NATs) SLC7A5/LAT1 and SLC1A5/ASCT2 are likely involved in several human malignancies. However, a clinical therapy that directly targets AATs has not yet been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, their diverse physiological roles in different tissues and organs, their wide-ranging implications in human diseases and the emerging strategies and tools that will be necessary to target AATs therapeutically.


Subject(s)
Amino Acid Transport Systems/metabolism , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Transport Systems/chemistry , Amino Acids/metabolism , Disease/classification , Epithelial Cells/metabolism , Humans , Intestinal Mucosa/metabolism , Kidney/metabolism , Kidney Tubules, Proximal/metabolism , Longevity , Protein Conformation , Stress, Physiological
13.
Hum Mol Genet ; 29(7): 1168-1179, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32160276

ABSTRACT

Glutaric aciduria type 1 (GA1) is an inborn error of lysine degradation characterized by a specific encephalopathy that is caused by toxic accumulation of lysine degradation intermediates. Substrate reduction through inhibition of DHTKD1, an enzyme upstream of the defective glutaryl-CoA dehydrogenase, has been investigated as a potential therapy, but revealed the existence of an alternative enzymatic source of glutaryl-CoA. Here, we show that loss of DHTKD1 in glutaryl-CoA dehydrogenase-deficient HEK-293 cells leads to a 2-fold decrease in the established GA1 clinical biomarker glutarylcarnitine and demonstrate that oxoglutarate dehydrogenase (OGDH) is responsible for this remaining glutarylcarnitine production. We furthermore show that DHTKD1 interacts with OGDH, dihydrolipoyl succinyltransferase and dihydrolipoamide dehydrogenase to form a hybrid 2-oxoglutaric and 2-oxoadipic acid dehydrogenase complex. In summary, 2-oxoadipic acid is a substrate for DHTKD1, but also for OGDH in a cell model system. The classical 2-oxoglutaric dehydrogenase complex can exist as a previously undiscovered hybrid containing DHTKD1 displaying improved kinetics towards 2-oxoadipic acid.


Subject(s)
Acyl Coenzyme A/genetics , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/genetics , Glutaryl-CoA Dehydrogenase/deficiency , Ketoglutarate Dehydrogenase Complex/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/pathology , Brain Diseases, Metabolic/metabolism , Brain Diseases, Metabolic/pathology , Cells, Cultured , Glutaryl-CoA Dehydrogenase/genetics , Glutaryl-CoA Dehydrogenase/metabolism , HEK293 Cells , Humans , Ketone Oxidoreductases/genetics , Substrate Specificity/genetics
14.
Hum Genet ; 141(7): 1239-1251, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34652574

ABSTRACT

Inherited disorders of cobalamin (cbl) metabolism (cblA-J) result in accumulation of methylmalonic acid (MMA) and/or homocystinuria (HCU). Clinical presentation includes ophthalmological manifestations related to retina, optic nerve and posterior visual alterations, mainly reported in cblC and sporadically in other cbl inborn errors.We searched MEDLINE EMBASE and Cochrane Library, and analyzed articles reporting ocular manifestations in cbl inborn errors. Out of 166 studies a total of 52 studies reporting 163 cbl and 24 mut cases were included. Ocular manifestations were found in all cbl defects except for cblB and cblD-MMA; cblC was the most frequent disorder affecting 137 (84.0%) patients. The c.271dupA was the most common pathogenic variant, accounting for 70/105 (66.7%) cases. One hundred and thirty-seven out of 154 (88.9%) patients presented with early-onset disease (0-12 months). Nystagmus and strabismus were observed in all groups with the exception of MMA patients while maculopathy and peripheral retinal degeneration were almost exclusively found in MMA-HCU patients. Optic nerve damage ranging from mild temporal disc pallor to complete atrophy was prevalent in MMA-HCU.and MMA groups. Nystagmus was frequent in early-onset patients. Retinal and macular degeneration worsened despite early treatment and stabilized systemic function in these patients. The functional prognosis remains poor with final visual acuity < 20/200 in 55.6% (25/45) of cases. In conclusion, the spectrum of eye disease in Cbl patients depends on metabolic severity and age of onset. The development of visual manifestations over time despite early metabolic treatment point out the need for specific innovative therapies.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Homocystinuria , Macular Degeneration , Retinal Degeneration , Amino Acid Metabolism, Inborn Errors/complications , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Homocystinuria/complications , Homocystinuria/genetics , Humans , Methylmalonic Acid , Mutation , Retina/metabolism , Vitamin B 12/metabolism
15.
Mol Genet Metab ; 135(1): 42-46, 2022 01.
Article in English | MEDLINE | ID: mdl-34896003

ABSTRACT

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is an inherited inborn error of the γ-aminobutyric acid (GABA) metabolism pathway. It results from mutations in the ALDH5A1 gene leading to elevated GABA, γ-hydroxybutyric acid (GHB), succinic semialdehyde (SSA), decreased glutamine and alterations in several other metabolites. The phenotype includes developmental and cognitive delays, hypotonia, seizures, neuropsychiatric morbidity and other nervous system pathologies. The composition of the intestinal flora of patients with SSADHD has not been characterized, and dysbiosis of the gut microbiome may unveil novel treatment paradigms. We investigated the gut microbiome in SSADHD using 16S ribosomal DNA sequencing and unmasked evidence of dysbiosis in both aldh5a1-deficient mice and patients with SSADHD. In the murine model, there was a reduction in α-diversity measurements, and there were 4 phyla, 3 classes, 5 orders, 9 families, and 15 genera that differed, with a total of 17 predicted metabolic pathways altered. In patients, there were changes in Fusobacterium, 3 classes, 4 orders, 11 families, and a predicted alteration in genes associated with the digestive system. We believe this is the first evaluation of microbiome structure in an IEM with a neurometabolic phenotype that is not treated dietarily.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Dysbiosis , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Animals , Child , Developmental Disabilities/genetics , Developmental Disabilities/metabolism , Dysbiosis/genetics , Humans , Mice , Succinate-Semialdehyde Dehydrogenase/deficiency
16.
Mol Genet Metab ; 137(1-2): 1-8, 2022.
Article in English | MEDLINE | ID: mdl-35868241

ABSTRACT

Methylmalonic acidemia (MMA) is a rare and severe inherited metabolic disease typically caused by mutations of the methylmalonyl-CoA mutase (MMUT) gene. Despite medical management, patients with MMA experience frequent episodes of metabolic instability, severe morbidity, and early mortality. In several preclinical studies, systemic gene therapy has demonstrated impressive improvement in biochemical and clinical phenotypes of MMA murine models. One approach uses a promoterless adeno-associated viral (AAV) vector that relies upon homologous recombination to achieve site-specific in vivo gene addition of MMUT into the last coding exon of albumin (Alb), generating a fused Alb-MMUT transcript after successful editing. We have previously demonstrated that nuclease-free AAV mediated Alb editing could effectively treat MMA mice in the neonatal period and noted that hepatocytes had a growth advantage after correction. Here, we use a transgenic knock-out mouse model of MMA that recapitulates severe clinical and biochemical symptoms to assess the benefits of Alb editing in juvenile animals. As was first noted in the neonatal gene therapy studies, we observe that gene edited hepatocytes in the MMA mice treated as juveniles exhibit a growth advantage, which allows them to repopulate the liver slowly but dramatically by 8-10 months post treatment, and subsequently manifest a biochemical and enzymatic response. In conclusion, our results suggest that the benefit of AAV mediated nuclease-free gene editing of the Alb locus to treat MMA could potentially be therapeutic for older patients.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Methylmalonyl-CoA Mutase , Mice , Animals , Methylmalonyl-CoA Mutase/genetics , Methylmalonyl-CoA Mutase/metabolism , Gene Editing , Dependovirus/genetics , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/metabolism , Mice, Knockout , Liver/metabolism , Hepatocytes/metabolism , Albumins/genetics , Albumins/metabolism , Methylmalonic Acid/metabolism
17.
Hepatology ; 73(6): 2223-2237, 2021 06.
Article in English | MEDLINE | ID: mdl-32976669

ABSTRACT

BACKGROUND AND AIMS: Adeno-associated viral (AAV) gene therapy has shown great promise as an alternative treatment for metabolic disorders managed using liver transplantation, but remains limited by transgene loss and genotoxicity. Our study aims to test an AAV vector with a promoterless integrating cassette, designed to provide sustained hepatic transgene expression and reduced toxicity in comparison to canonical AAV therapy. APPROACH AND RESULTS: Our AAV vector was designed to insert a methylmalonyl-CoA mutase (MMUT) transgene into the 3' end of the albumin locus and tested in mouse models of methylmalonic acidemia (MMA). After neonatal delivery, we longitudinally evaluated hepatic transgene expression, plasma levels of methylmalonate, and the MMA biomarker, fibroblast growth factor 21 (Fgf21), as well as integration of MMUT in the albumin locus. At necropsy, we surveyed for AAV-related hepatocellular carcinoma (HCC) in all treated MMA mice and control littermates. AAV-mediated genome editing of MMUT into the albumin locus resulted in permanent hepatic correction in MMA mouse models, which was accompanied by decreased levels of methylmalonate and Fgf21, and improved survival without HCC. With time, levels of transgene expression increased and methylmalonate progressively decreased, whereas the number of albumin-MMUT integrations and corrected hepatocytes in MMA mice increased, but not in similarly treated wild-type animals. Additionally, expression of MMUT in the setting of MMA conferred a selective growth advantage upon edited cells, which potentiates the therapeutic response. CONCLUSIONS: In conclusion, our findings demonstrate that AAV-mediated, promoterless, nuclease-free genome editing at the albumin locus provides safe and durable therapeutic benefit in neonatally treated MMA mice.


Subject(s)
Amino Acid Metabolism, Inborn Errors/therapy , Dependovirus/genetics , Gene Editing/methods , Genetic Therapy/methods , Methylmalonyl-CoA Mutase/metabolism , Amino Acid Metabolism, Inborn Errors/metabolism , Animals , Animals, Newborn , Biomarkers/blood , Carcinoma, Hepatocellular/pathology , Disease Models, Animal , Fibroblast Growth Factors/blood , Hepatocytes , Liver Neoplasms/pathology , Liver Transplantation , Malonates/blood , Methylmalonyl-CoA Mutase/genetics , Mice , Mice, Inbred C57BL
18.
Amino Acids ; 54(5): 777-786, 2022 May.
Article in English | MEDLINE | ID: mdl-35098378

ABSTRACT

BACKGROUND: Propionic acidemia is an inborn error of metabolism caused by a deficiency in the mitochondrial enzyme propionyl-CoA carboxylase that converts the propionyl CoA to methyl malonyl CoA. This leads to profound changes in distinct metabolic pathways, including the urea cycle, with consequences in ammonia detoxification. The implication of the tricarboxylic acid cycle is less well known, but its repercussions could explain both some of the acute and long-term symptoms of this disease. MATERIALS AND METHODS: The present observational study investigates the amino acid profiles of patients with propionic acidemia being monitored at the Hospital Ramón y Cajal (Madrid, Spain), between January 2015 and September 2017, comparing periods of metabolic stability with those of decompensation with ketosis and/or hyperammonemia. RESULTS: The concentrations of 19 amino acids were determined in 188 samples provided by 10 patients. We identified 40 metabolic decompensation episodes (22 only with ketosis and 18 with hyperammonemia). Plasma glutamine and alanine levels were reduced during these metabolic crises, probably indicating deficiency of anaplerosis (p < 0.001 for both alanine and glutamine). Hypocitrulllinemia and hypoprolinemia were also detected during hyperammonemia (p < 0.001 and 0.03, respectively). CONCLUSIONS: The amino acid profile detected during decompensation episodes suggests deficient anaplerosis from propionyl-CoA and its precursors, with implications in other metabolic pathways like synthesis of urea cycle amino acids and ammonia detoxification.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Hyperammonemia , Ketosis , Propionic Acidemia , Alanine , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acids , Ammonia , Glutamine , Humans , Propionic Acidemia/metabolism , Propionic Acidemia/pathology , Urea
19.
J Inherit Metab Dis ; 45(3): 445-455, 2022 05.
Article in English | MEDLINE | ID: mdl-35174513

ABSTRACT

A deficiency of 3-hydroxyisobutyric acid dehydrogenase (HIBADH) has been recently identified as a cause of primary 3-hydroxyisobutyric aciduria in two siblings; the only previously recognized primary cause had been a deficiency of methylmalonic semialdehyde dehydrogenase, the enzyme that is immediately downstream of HIBADH in the valine catabolic pathway and is encoded by the ALDH6A1 gene. Here we report on three additional patients from two unrelated families who present with marked and persistent elevations of urine L-3-hydroxyisobutyric acid (L-3HIBA) and a range of clinical findings. Molecular genetic analyses revealed novel, homozygous variants in the HIBADH gene that are private within each family. Evidence for pathogenicity of the identified variants is presented, including enzymatic deficiency of HIBADH in patient fibroblasts. This report describes new variants in HIBADH as an underlying cause of primary 3-hydroxyisobutyric aciduria and expands the clinical spectrum of this recently identified inborn error of valine metabolism. Additionally, we describe a quantitative method for the measurement of D- and L-3HIBA in plasma and urine and present the results of a valine restriction therapy in one of the patients.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Tandem Mass Spectrometry , Amino Acid Metabolism, Inborn Errors/metabolism , Chromatography, Liquid , Humans , Hydroxybutyrates/urine , Oxidoreductases , Valine
20.
J Inherit Metab Dis ; 45(2): 353-365, 2022 03.
Article in English | MEDLINE | ID: mdl-34671987

ABSTRACT

Inborn errors of metabolism (IEMs) comprise a diverse group of individually rare monogenic disorders that affect metabolic pathways. Mutations lead to enzymatic deficiency or dysfunction, which results in intermediate metabolite accumulation or deficit leading to disease phenotypes. Currently, treatment options for many IEMs are insufficient. Rarity of individual IEMs hampers therapy development and phenotypic and genetic heterogeneity suggest beneficial effects of personalized approaches. Recently, cultures of patient-own liver-derived intrahepatic cholangiocyte organoids (ICOs) have been established. Since most metabolic genes are expressed in the liver, patient-derived ICOs represent exciting possibilities for in vitro modeling and personalized drug testing for IEMs. However, the exact application range of ICOs remains unclear. To address this, we examined which metabolic pathways can be studied with ICOs and what the potential and limitations of patient-derived ICOs are to model metabolic functions. We present functional assays in patient ICOs with defects in branched-chain amino acid metabolism (methylmalonic acidemia), copper metabolism (Wilson disease), and transporter defects (cystic fibrosis). We discuss the broad range of functional assays that can be applied to ICOs, but also address the limitations of these patient-specific cell models. In doing so, we aim to guide the selection of the appropriate cell model for studies of a specific disease or metabolic process.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Organoids , Amino Acid Metabolism, Inborn Errors/metabolism , Humans , Liver/metabolism , Membrane Transport Proteins/metabolism , Metabolic Networks and Pathways , Organoids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL