Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.003
Filter
1.
Immunity ; 57(2): 303-318.e6, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38309273

ABSTRACT

Production of amphiregulin (Areg) by regulatory T (Treg) cells promotes repair after acute tissue injury. Here, we examined the function of Treg cells in non-alcoholic steatohepatitis (NASH), a setting of chronic liver injury. Areg-producing Treg cells were enriched in the livers of mice and humans with NASH. Deletion of Areg in Treg cells, but not in myeloid cells, reduced NASH-induced liver fibrosis. Chronic liver damage induced transcriptional changes associated with Treg cell activation. Mechanistically, Treg cell-derived Areg activated pro-fibrotic transcriptional programs in hepatic stellate cells via epidermal growth factor receptor (EGFR) signaling. Deletion of Areg in Treg cells protected mice from NASH-dependent glucose intolerance, which also was dependent on EGFR signaling on hepatic stellate cells. Areg from Treg cells promoted hepatocyte gluconeogenesis through hepatocyte detection of hepatic stellate cell-derived interleukin-6. Our findings reveal a maladaptive role for Treg cell-mediated tissue repair functions in chronic liver disease and link liver damage to NASH-dependent glucose intolerance.


Subject(s)
Glucose Intolerance , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Amphiregulin/genetics , Amphiregulin/metabolism , ErbB Receptors/metabolism , Glucose Intolerance/metabolism , Glucose Intolerance/pathology , Liver/metabolism , Liver Cirrhosis/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology , T-Lymphocytes, Regulatory/metabolism
2.
Immunity ; 56(1): 78-92.e6, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36630919

ABSTRACT

Tissue repair processes maintain proper organ function following mechanical or infection-related damage. In addition to antibacterial properties, mucosal associated invariant T (MAIT) cells express a tissue repair transcriptomic program and promote skin wound healing when expanded. Herein, we use a human-like mouse model of full-thickness skin excision to assess the underlying mechanisms of MAIT cell tissue repair function. Single-cell RNA sequencing analysis suggested that skin MAIT cells already express a repair program at steady state. Following skin excision, MAIT cells promoted keratinocyte proliferation, thereby accelerating healing. Using skin grafts, parabiosis, and adoptive transfer experiments, we show that MAIT cells migrated into the wound in a T cell receptor (TCR)-independent but CXCR6 chemokine receptor-dependent manner. Amphiregulin secreted by MAIT cells following excision promoted wound healing. Expression of the repair function was probably independent of sustained TCR stimulation. Overall, our study provides mechanistic insights into MAIT cell wound healing function in the skin.


Subject(s)
Amphiregulin , Histocompatibility Antigens Class I , Mucosal-Associated Invariant T Cells , Wound Healing , Animals , Humans , Mice , Amphiregulin/metabolism , Histocompatibility Antigens Class I/metabolism , Minor Histocompatibility Antigens , Mucosal-Associated Invariant T Cells/metabolism , Receptors, Antigen, T-Cell/metabolism
3.
Immunity ; 54(6): 1186-1199.e7, 2021 06 08.
Article in English | MEDLINE | ID: mdl-33915108

ABSTRACT

A cardinal feature of COVID-19 is lung inflammation and respiratory failure. In a prospective multi-country cohort of COVID-19 patients, we found that increased Notch4 expression on circulating regulatory T (Treg) cells was associated with disease severity, predicted mortality, and declined upon recovery. Deletion of Notch4 in Treg cells or therapy with anti-Notch4 antibodies in conventional and humanized mice normalized the dysregulated innate immunity and rescued disease morbidity and mortality induced by a synthetic analog of viral RNA or by influenza H1N1 virus. Mechanistically, Notch4 suppressed the induction by interleukin-18 of amphiregulin, a cytokine necessary for tissue repair. Protection by Notch4 inhibition was recapitulated by therapy with Amphiregulin and, reciprocally, abrogated by its antagonism. Amphiregulin declined in COVID-19 subjects as a function of disease severity and Notch4 expression. Thus, Notch4 expression on Treg cells dynamically restrains amphiregulin-dependent tissue repair to promote severe lung inflammation, with therapeutic implications for COVID-19 and related infections.


Subject(s)
Host-Pathogen Interactions , Immunity, Cellular , Pneumonia, Viral/etiology , Pneumonia, Viral/metabolism , Receptor, Notch4/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Amphiregulin/pharmacology , Animals , Biomarkers , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Host-Pathogen Interactions/immunology , Humans , Immunohistochemistry , Immunomodulation/drug effects , Inflammation Mediators/metabolism , Influenza A virus/physiology , Lung/immunology , Lung/metabolism , Lung/pathology , Lung/virology , Mice , Mice, Transgenic , Pneumonia, Viral/pathology , Receptor, Notch4/antagonists & inhibitors , Receptor, Notch4/genetics , Severity of Illness Index
4.
Cell ; 162(5): 1078-89, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26317471

ABSTRACT

Regulatory T (Treg) cells suppress immune responses to a broad range of non-microbial and microbial antigens and indirectly limit immune inflammation-inflicted tissue damage by employing multiple mechanisms of suppression. Here, we demonstrate that selective Treg cell deficiency in amphiregulin leads to severe acute lung damage and decreased blood oxygen concentration during influenza virus infection without any measureable alterations in Treg cell suppressor function, antiviral immune responses, or viral load. This tissue repair modality is mobilized in Treg cells in response to inflammatory mediator IL-18 or alarmin IL-33, but not by TCR signaling that is required for suppressor function. These results suggest that, during infectious lung injury, Treg cells have a major direct and non-redundant role in tissue repair and maintenance-distinct from their role in suppression of immune responses and inflammation-and that these two essential Treg cell functions are invoked by separable cues.


Subject(s)
Influenza, Human/immunology , Lung/cytology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Amphiregulin/genetics , Animals , Autoimmunity , Disease Models, Animal , Humans , Influenza, Human/pathology , Lung/immunology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Suppressor Factors, Immunologic/analysis , T-Lymphocytes, Regulatory/chemistry
5.
Immunity ; 50(3): 645-654.e6, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30770250

ABSTRACT

The epidermal growth factor receptor ligand Amphiregulin has a well-documented role in the restoration of tissue homeostasis after injury; however, the mechanism by which Amphiregulin contributes to wound repair remains unknown. Here we show that Amphiregulin functioned by releasing bioactive transforming growth factor beta (TGF-ß) from latent complexes via integrin-αV activation. Using acute injury models in two different tissues, we found that by inducing TGF-ß activation on mesenchymal stromal cells (pericytes), Amphiregulin induced their differentiation into myofibroblasts, thereby selectively contributing to the restoration of vascular barrier function within injured tissue. Furthermore, we identified macrophages as a critical source of Amphiregulin, revealing a direct effector mechanism by which these cells contribute to tissue restoration after acute injury. Combined, these observations expose a so far under-appreciated mechanism of how cells of the immune system selectively control the differentiation of tissue progenitor cells during tissue repair and inflammation.


Subject(s)
Amphiregulin/metabolism , Macrophages/metabolism , Pericytes/metabolism , Transforming Growth Factor beta/metabolism , Animals , Cell Differentiation/physiology , Female , Male , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Myofibroblasts/metabolism
6.
Cell ; 155(6): 1282-95, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24315098

ABSTRACT

Long recognized to be potent suppressors of immune responses, Foxp3(+)CD4(+) regulatory T (Treg) cells are being rediscovered as regulators of nonimmunological processes. We describe a phenotypically and functionally distinct population of Treg cells that rapidly accumulated in the acutely injured skeletal muscle of mice, just as invading myeloid-lineage cells switched from a proinflammatory to a proregenerative state. A Treg population of similar phenotype accumulated in muscles of genetically dystrophic mice. Punctual depletion of Treg cells during the repair process prolonged the proinflammatory infiltrate and impaired muscle repair, while treatments that increased or decreased Treg activities diminished or enhanced (respectively) muscle damage in a dystrophy model. Muscle Treg cells expressed the growth factor Amphiregulin, which acted directly on muscle satellite cells in vitro and improved muscle repair in vivo. Thus, Treg cells and their products may provide new therapeutic opportunities for wound repair and muscular dystrophies.


Subject(s)
Muscle, Skeletal/cytology , Muscle, Skeletal/physiology , Regeneration , T-Lymphocytes, Regulatory/physiology , Amphiregulin , Animals , EGF Family of Proteins , Glycoproteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Lymphoid Tissue/cytology , Mice , Mice, Inbred C57BL , Muscle, Skeletal/immunology , Muscle, Skeletal/injuries , Muscular Dystrophies/pathology , Muscular Dystrophies/physiopathology , Muscular Dystrophies/therapy , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Transcriptome
7.
Nature ; 611(7937): 787-793, 2022 11.
Article in English | MEDLINE | ID: mdl-36323781

ABSTRACT

Emerging studies indicate that cooperation between neurons and immune cells regulates antimicrobial immunity, inflammation and tissue homeostasis. For example, a neuronal rheostat provides excitatory or inhibitory signals that control the functions of tissue-resident group 2 innate lymphoid cells (ILC2s) at mucosal barrier surfaces1-4. ILC2s express NMUR1, a receptor for neuromedin U (NMU), which is a prominent cholinergic neuropeptide that promotes ILC2 responses5-7. However, many functions of ILC2s are shared with adaptive lymphocytes, including the production of type 2 cytokines8,9 and the release of tissue-protective amphiregulin (AREG)10-12. Consequently, there is controversy regarding whether innate lymphoid cells and adaptive lymphocytes perform redundant or non-redundant functions13-15. Here we generate a new genetic tool to target ILC2s for depletion or gene deletion in the presence of an intact adaptive immune system. Transgenic expression of iCre recombinase under the control of the mouse Nmur1 promoter enabled ILC2-specific deletion of AREG. This revealed that ILC2-derived AREG promotes non-redundant functions in the context of antiparasite immunity and tissue protection following intestinal damage and inflammation. Notably, NMU expression levels increased in inflamed intestinal tissues from both mice and humans, and NMU induced AREG production in mouse and human ILC2s. These results indicate that neuropeptide-mediated regulation of non-redundant functions of ILC2s is an evolutionarily conserved mechanism that integrates immunity and tissue protection.


Subject(s)
Immunity, Innate , Intestinal Mucosa , Lymphocytes , Neuropeptides , Animals , Humans , Mice , Cytokines/immunology , Cytokines/metabolism , Immunity, Innate/immunology , Inflammation/immunology , Inflammation/parasitology , Inflammation/pathology , Lymphocytes/immunology , Neuropeptides/metabolism , Neuropeptides/physiology , Amphiregulin , Intestinal Mucosa/immunology , Intestinal Mucosa/parasitology , Intestinal Mucosa/pathology
8.
Immunity ; 49(1): 134-150.e6, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29958800

ABSTRACT

Memory T cells provide long-lasting protective immunity, and distinct subpopulations of memory T cells drive chronic inflammatory diseases such as asthma. Asthma is a chronic allergic inflammatory disease with airway remodeling including fibrotic changes. The immunological mechanisms that induce airway fibrotic changes remain unknown. We found that interleukin-33 (IL-33) enhanced amphiregulin production by the IL-33 receptor, ST2hi memory T helper 2 (Th2) cells. Amphiregulin-epidermal growth factor receptor (EGFR)-mediated signaling directly reprogramed eosinophils to an inflammatory state with enhanced production of osteopontin, a key profibrotic immunomodulatory protein. IL-5-producing memory Th2 cells and amphiregulin-producing memory Th2 cells appeared to cooperate to establish lung fibrosis. The analysis of polyps from patients with eosinophilic chronic rhinosinusitis revealed fibrosis with accumulation of amphiregulin-producing CRTH2hiCD161hiCD45RO+CD4+ Th2 cells and osteopontin-producing eosinophils. Thus, the IL-33-amphiregulin-osteopontin axis directs fibrotic responses in eosinophilic airway inflammation and is a potential target for the treatment of fibrosis induced by chronic allergic disorders.


Subject(s)
Amphiregulin/immunology , Eosinophils/immunology , Osteopontin/metabolism , Pulmonary Fibrosis/immunology , Signal Transduction/immunology , Th2 Cells/immunology , Amphiregulin/biosynthesis , Amphiregulin/metabolism , Amphiregulin/pharmacology , Animals , Disease Models, Animal , ErbB Receptors/metabolism , Female , Immunologic Memory/immunology , Immunomodulation , Interleukin-33/metabolism , Mice , Rhinitis/immunology , Rhinitis/pathology , Sinusitis/immunology , Sinusitis/pathology , Transcription, Genetic/drug effects
9.
Immunity ; 49(3): 531-544.e6, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30170813

ABSTRACT

Compared to adults, infants suffer higher rates of hospitalization, severe clinical complications, and mortality due to influenza infection. We found that γδ T cells protected neonatal mice against mortality during influenza infection. γδ T cell deficiency did not alter viral clearance or interferon-γ production. Instead, neonatal influenza infection induced the accumulation of interleukin-17A (IL-17A)-producing γδ T cells, which was associated with IL-33 production by lung epithelial cells. Neonates lacking IL-17A-expressing γδ T cells or Il33 had higher mortality upon influenza infection. γδ T cells and IL-33 promoted lung infiltration of group 2 innate lymphoid cells and regulatory T cells, resulting in increased amphiregulin secretion and tissue repair. In influenza-infected children, IL-17A, IL-33, and amphiregulin expression were correlated, and increased IL-17A levels in nasal aspirates were associated with better clinical outcomes. Our results indicate that γδ T cells are required in influenza-infected neonates to initiate protective immunity and mediate lung homeostasis.


Subject(s)
Influenza A virus/physiology , Influenza, Human/immunology , Interleukin-17/metabolism , Lung/immunology , Orthomyxoviridae Infections/immunology , T-Lymphocytes/immunology , Th2 Cells/immunology , Adult , Amphiregulin/metabolism , Animals , Cells, Cultured , Child , Humans , Immunity , Infant, Newborn , Interleukin-33/metabolism , Mice , Prognosis , Receptors, Antigen, T-Cell, gamma-delta/metabolism
10.
EMBO J ; 41(18): e108206, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35996853

ABSTRACT

Adipose stem and precursor cells (ASPCs) give rise to adipocytes and determine the composition and plasticity of adipose tissue. Recently, several studies have demonstrated that ASPCs partition into at least three distinct cell subpopulations, including the enigmatic CD142+ cells. An outstanding challenge is to functionally characterise this population, as discrepant properties, from adipogenic to non- and anti-adipogenic, have been reported for these cells. To resolve these phenotypic ambiguities, we characterised mammalian subcutaneous CD142+ ASPCs across various experimental conditions, demonstrating that CD142+ ASPCs exhibit high molecular and phenotypic robustness. Specifically, we find these cells to be firmly non- and anti-adipogenic both in vitro and in vivo, with their inhibitory signals also impacting adipogenic human cells. However, these CD142+ ASPC-specific properties exhibit surprising temporal phenotypic alterations, and emerge only in an age-dependent manner. Finally, using multi-omic and functional assays, we show that the inhibitory nature of these adipogenesis-regulatory CD142+ ASPCs (Aregs) is driven by specifically expressed secretory factors that cooperate with the retinoic acid signalling pathway to transform the adipogenic state of CD142- ASPCs into a non-adipogenic, Areg-like state.


Subject(s)
Adipogenesis , Tretinoin , Adipocytes/metabolism , Adipose Tissue , Amphiregulin/metabolism , Animals , Cell Differentiation , Humans , Mammals , Signal Transduction , Tretinoin/pharmacology
11.
Immunity ; 47(4): 710-722.e6, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29045902

ABSTRACT

Gastro-intestinal helminth infections trigger the release of interleukin-33 (IL-33), which induces type-2 helper T cells (Th2 cells) at the site of infection to produce IL-13, thereby contributing to host resistance in a T cell receptor (TCR)-independent manner. Here, we show that, as a prerequisite for IL-33-induced IL-13 secretion, Th2 cells required the expression of the epidermal growth factor receptor (EGFR) and of its ligand, amphiregulin, for the formation of a signaling complex between T1/ST2 (the IL-33R) and EGFR. This shared signaling complex allowed IL-33 to induce the EGFR-mediated activation of the MAP-kinase signaling pathway and consequently the expression of IL-13. Lack of EGFR expression on T cells abrogated IL-13 expression in infected tissues and impaired host resistance. EGFR expression on Th2 cells was TCR-signaling dependent, and therefore, our data reveal a mechanism by which antigen presentation controls the innate effector function of Th2 cells at the site of inflammation.


Subject(s)
ErbB Receptors/immunology , Interleukin-13/immunology , Interleukin-33/immunology , Receptors, Antigen, T-Cell/immunology , Th2 Cells/immunology , Amphiregulin/immunology , Amphiregulin/metabolism , Animals , Cell Line , Cells, Cultured , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gene Expression/genetics , Gene Expression/immunology , Gene Expression Profiling/methods , HEK293 Cells , Humans , Interleukin-13/genetics , Interleukin-13/metabolism , Interleukin-33/genetics , Interleukin-33/metabolism , MAP Kinase Signaling System/immunology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nematospiroides dubius/immunology , Nematospiroides dubius/physiology , Nocardia/immunology , Nocardia/physiology , Nocardia Infections/immunology , Nocardia Infections/metabolism , Nocardia Infections/microbiology , Receptors, Antigen, T-Cell/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Strongylida Infections/immunology , Strongylida Infections/metabolism , Strongylida Infections/parasitology , Th2 Cells/metabolism
12.
Gastroenterology ; 167(3): 469-484, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38492892

ABSTRACT

BACKGROUND & AIMS: Isthmic progenitors, tissue-specific stem cells in the stomach corpus, maintain mucosal homeostasis by balancing between proliferation and differentiation to gastric epithelial lineages. The progenitor cells rapidly adopt an active state in response to mucosal injury. However, it remains unclear how the isthmic progenitor cell niche is controlled during the regeneration of damaged epithelium. METHODS: We recapitulated tissue recovery process after acute mucosal injury in the mouse stomach. Bromodeoxyuridine incorporation was used to trace newly generated cells during the injury and recovery phases. To define the epithelial lineage commitment process during recovery, we performed single-cell RNA-sequencing on epithelial cells from the mouse stomachs. We validated the effects of amphiregulin (AREG) on mucosal recovery, using recombinant AREG treatment or AREG-deficient mice. RESULTS: We determined that an epidermal growth factor receptor ligand, AREG, can control progenitor cell lineage commitment. Based on the identification of lineage-committed subpopulations in the corpus epithelium through single-cell RNA-sequencing and bromodeoxyuridine incorporation, we showed that isthmic progenitors mainly transition into short-lived surface cell lineages but are less frequently committed to long-lived parietal cell lineages in homeostasis. However, mucosal regeneration after damage directs the lineage commitment of isthmic progenitors towards parietal cell lineages. During recovery, AREG treatment promoted repopulation with parietal cells, while suppressing surface cell commitment of progenitors. In contrast, transforming growth factor-α did not alter parietal cell regeneration, but did induce expansion of surface cell populations. AREG deficiency impairs parietal cell regeneration but increases surface cell commitment. CONCLUSIONS: These data demonstrate that different epidermal growth factor receptor ligands can distinctly regulate isthmic progenitor-driven mucosal regeneration and lineage commitment.


Subject(s)
Amphiregulin , Cell Differentiation , Cell Lineage , Gastric Mucosa , Regeneration , Stem Cells , Amphiregulin/metabolism , Amphiregulin/genetics , Animals , Gastric Mucosa/cytology , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Stem Cells/metabolism , Mice , Cell Proliferation , Epithelial Cells/metabolism , ErbB Receptors/metabolism , ErbB Receptors/genetics , Mice, Knockout , Signal Transduction , Mice, Inbred C57BL , Disease Models, Animal , Single-Cell Analysis , Male
13.
Blood ; 142(18): 1529-1542, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37584437

ABSTRACT

The cross talk between extrinsic niche-derived and intrinsic hematopoietic stem cell (HSC) factors controlling HSC maintenance remains elusive. Here, we demonstrated that amphiregulin (AREG) from bone marrow (BM) leptin receptor (LepR+) niche cells is an important factor that mediates the cross talk between the BM niche and HSCs in stem cell maintenance. Mice deficient of the DNA repair gene Brca2, specifically in LepR+ cells (LepR-Cre;Brca2fl/fl), exhibited increased frequencies of total and myeloid-biased HSCs. Furthermore, HSCs from LepR-Cre;Brca2fl/fl mice showed compromised repopulation, increased expansion of donor-derived, myeloid-biased HSCs, and increased myeloid output. Brca2-deficient BM LepR+ cells exhibited persistent DNA damage-inducible overproduction of AREG. Ex vivo treatment of wild-type HSCs or systemic treatment of C57BL/6 mice with recombinant AREG impaired repopulation, leading to HSC exhaustion. Conversely, inhibition of AREG by an anti-AREG-neutralizing antibody or deletion of the Areg gene in LepR-Cre;Brca2fl/fl mice rescued HSC defects caused by AREG. Mechanistically, AREG activated the phosphoinositide 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, promoted HSC cycling, and compromised HSC quiescence. Finally, we demonstrated that BM LepR+ niche cells from other DNA repair-deficient and aged mice also showed persistent DNA damage-associated overexpression of AREG, which exerts similar negative effects on HSC maintenance. Therefore, we identified an important factor that regulates HSCs function under conditions of DNA repair deficiency and aging.


Subject(s)
DNA Repair-Deficiency Disorders , Receptors, Leptin , Mice , Animals , Amphiregulin/genetics , Amphiregulin/metabolism , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Mice, Inbred C57BL , Hematopoietic Stem Cells/metabolism , Aging/genetics , DNA Repair-Deficiency Disorders/metabolism , Stem Cell Niche/genetics , Mammals/metabolism
14.
Stem Cells ; 42(8): 763-776, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38733123

ABSTRACT

Endometrium fibrosis is the leading cause of uterine infertility. Macrophages participated in the occurrence and development of endometrial fibrosis. We previously reported that human umbilical cord multipotent stromal cells (hUC-MSCs) exerted their therapeutic effect in a macrophage-dependent manner in endometrial fibrosis. However precise mechanisms by which hUC-MSCs may influence macrophages in endometrial fibrosis remain largely unexplored. Here, we demonstrated that abnormal iron and lipid metabolism occurred in patients with intrauterine adhesions (IUA) and murine models. Ferroptosis has been proven to contribute to the progression of fibrotic diseases. Our results revealed that pharmacological activation of ferroptosis by Erastin aggravated endometrial fibrosis, while inhibition of ferroptosis by Ferrostatin-1 ameliorated endometrial fibrosis in vivo. Moreover, ferroptosis of macrophages was significantly upregulated in endometria of IUA murine models. Of note, transcriptome profiles revealed that CD36 gene expression was significantly increased in patients with IUA and immunofluorescence analysis showed CD36 protein was mainly located in macrophages. Silencing CD36 in macrophages could reverse cell ferroptosis. Dual luciferase reporter assay revealed that CD36 was the direct target of activation transcription factor 3 (ATF3). Furthermore, through establishing coculture system and IUA murine models, we found that hUC-MSCs had a protective role against macrophage ferroptosis and alleviated endometrial fibrosis related to decreased CD36 and ATF3. The effect of hUC-MSCs on macrophage ferroptosis was attributed to the upregulation of amphiregulin (AREG). Our data highlighted that macrophage ferroptosis occurred in endometrial fibrosis via the ATF3-CD36 pathway and hUC-MSCs protected against macrophage ferroptosis to alleviate endometrial fibrosis via secreting AREG. These findings provided a potential target for therapeutic implications of endometrial fibrosis.


Subject(s)
Amphiregulin , CD36 Antigens , Endometrium , Ferroptosis , Fibrosis , Macrophages , Umbilical Cord , Female , Humans , Umbilical Cord/cytology , Umbilical Cord/metabolism , Animals , Macrophages/metabolism , Mice , Amphiregulin/metabolism , Amphiregulin/genetics , Endometrium/metabolism , Endometrium/pathology , CD36 Antigens/metabolism , CD36 Antigens/genetics , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Multipotent Stem Cells/metabolism
15.
FASEB J ; 38(4): e23488, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38358359

ABSTRACT

Myocardial infarction (MI) is defined as sudden ischemic death of myocardial tissue. Amphiregulin (Areg) regulates cell survival and is crucial for the healing of tissues after damage. However, the functions and mechanisms of Areg after MI remain unclear. Here, we aimed to investigate Areg's impact on myocardial remodeling. Mice model of MI was constructed and Areg-/- mice were used. Expression of Areg was analyzed using western blotting, RT-qPCR, flow cytometry, and immunofluorescence staining. Echocardiographic analysis, Masson's trichrome, and triphenyltetrazolium chloride staining were used to assess cardiac function and structure. RNA sequencing was used for unbiased analysis. Apoptosis and autophagy were determined by western blotting, TUNEL staining, electron microscopy, and mRFP-GFP-LC3 lentivirus. Lysosomal acidity was determined by Lysotracker staining. Areg was elevated in the infarct border zone after MI. It was mostly secreted by macrophages. Areg deficiency aggravated adverse ventricular remodeling, as reflected by worsening cardiac function, a lower survival rate, increased scar size, and interstitial fibrosis. RNA sequencing analyses showed that Areg related to the epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase/protein kinase B (PI3K-Akt), mammalian target of rapamycin (mTOR) signaling pathways, V-ATPase and lysosome pathways. Mechanistically, Areg exerts beneficial effects via increasing lysosomal acidity to promote autophagosome clearance, and activating the EGFR/PI3K/Akt/mTOR signaling pathway, subsequently inhibiting excessive autophagosome formation and apoptosis in cardiomyocytes. This study provides a novel evidence for the role of Areg in inhibiting ventricular remodeling after MI by regulating autophagy and apoptosis and identifies Areg as a potential therapeutic target in ventricular remodeling after MI.


Subject(s)
Myocardial Infarction , Phosphatidylinositol 3-Kinases , Animals , Mice , Amphiregulin/genetics , Apoptosis , Autophagy , ErbB Receptors , Mammals , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Ventricular Remodeling
16.
J Allergy Clin Immunol ; 153(4): 1095-1112, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38092138

ABSTRACT

BACKGROUND: IgG4-related disease (IgG4-RD), an example of a type I immune disease, is an immune-mediated fibrotic disorder characterized by dysregulated resolution of severe inflammation and wound healing. However, truly dominant or pathognomonic autoantibodies related to IgG4-RD are not identified. OBJECTIVE: We sought to perform single-cell RNA sequencing and T-cell receptor and B-cell receptor sequencing to obtain a comprehensive, unbiased view of tissue-infiltrating T and B cells. METHODS: We performed unbiased single-cell RNA-sequencing analysis for the transcriptome and T-cell receptor sequencing and B-cell receptor sequencing on sorted CD3+ T or CD19+ B cells from affected tissues of patients with IgG4-RD. We also conducted quantitative analyses of CD3+ T-cell and CD19+ B-cell subsets in 68 patients with IgG4-RD and 30 patients with Sjögren syndrome. RESULTS: Almost all clonally expanded T cells in these lesions were either Granzyme K (GZMK)-expressing CD4+ cytotoxic T cells or GZMK+CD8+ T cells. These GZMK-expressing cytotoxic T cells also expressed amphiregulin and TGF-ß but did not express immune checkpoints, and the tissue-infiltrating CD8+ T cells were phenotypically heterogeneous. MKI67+ B cells and IgD-CD27-CD11c-CXCR5- double-negative 3 B cells were clonally expanded and infiltrated affected tissue lesions. GZMK+CD4+ cytotoxic T cells colocalized with MKI67+ B cells in the extrafollicular area from affected tissue sites. CONCLUSIONS: The above-mentioned cells likely participate in T-B collaborative events, suggesting possible avenues for targeted therapies. Our findings were validated using orthogonal approaches, including multicolor immunofluorescence and the use of comparator disease groups, to support the central role of cytotoxic CD4+ and CD8+ T cells expressing GZMK, amphiregulin, and TGF-ß in the pathogenesis of inflammatory fibrotic disorders.


Subject(s)
Immune System Diseases , Immunoglobulin G4-Related Disease , Humans , Amphiregulin/genetics , CD8-Positive T-Lymphocytes , Granzymes , Receptors, Antigen, B-Cell , Receptors, Antigen, T-Cell , T-Lymphocytes, Cytotoxic , Transforming Growth Factor beta
17.
Gastroenterology ; 164(1): 89-102, 2023 01.
Article in English | MEDLINE | ID: mdl-36113570

ABSTRACT

BACKGROUND & AIMS: Intestinal fibrosis is a significant complication of Crohn's disease (CD). Gut microbiota reactive Th17 cells are crucial in the pathogenesis of CD; however, how Th17 cells induce intestinal fibrosis is still not completely understood. METHODS: In this study, T-cell transfer model with wild-type (WT) and Areg-/- Th17 cells and dextran sulfate sodium (DSS)-induced chronic colitis model in WT and Areg-/- mice were used. CD4+ T-cell expression of AREG was determined by quantitative reverse-transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay. The effect of AREG on proliferation/migration/collagen expression in human intestinal myofibroblasts was determined. AREG expression was assessed in healthy controls and patients with CD with or without intestinal fibrosis. RESULTS: Although Th1 and Th17 cells induced intestinal inflammation at similar levels when transferred into Tcrßxδ-/- mice, Th17 cells induced more severe intestinal fibrosis. Th17 cells expressed higher levels of AREG than Th1 cells. Areg-/- mice developed less severe intestinal fibrosis compared with WT mice on DSS insults. Transfer of Areg-/- Th17 cells induced less severe fibrosis in Tcrßxδ-/- mice compared with WT Th17 cells. Interleukin (IL)6 and IL21 promoted AREG expression in Th17 cells by activating Stat3. Stat3 inhibitor suppressed Th17-induced intestinal fibrosis. AREG promoted human intestinal myofibroblast proliferation, motility, and collagen I expression, which was mediated by activating mammalian target of rapamycin and MEK. AREG expression was increased in intestinal CD4+ T cells in fibrotic sites compared with nonfibrotic sites from patients with CD. CONCLUSIONS: These findings reveal that Th17-derived AREG promotes intestinal fibrotic responses in experimental colitis and human patients with CD. Thereby, AREG might serve as a potential therapeutic target for fibrosis in CD.


Subject(s)
Colitis , Crohn Disease , Animals , Humans , Mice , Amphiregulin/genetics , Amphiregulin/metabolism , Colitis/metabolism , Collagen/metabolism , Crohn Disease/pathology , Dextran Sulfate/adverse effects , Fibrosis , Intestinal Mucosa/pathology , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase Kinases/metabolism , Myofibroblasts/pathology , Th17 Cells/metabolism , TOR Serine-Threonine Kinases/metabolism
18.
Hepatology ; 78(4): 1035-1049, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37078450

ABSTRACT

BACKGROUND AND AIMS: Although a dysregulated type 1 immune response is integral to the pathogenesis of biliary atresia, studies in both humans and mice have uncovered a type 2 response, primarily driven by type 2 innate lymphoid cells. In nonhepatic tissues, natural type 2 innate lymphoid cell (nILC2s) regulate epithelial proliferation and tissue repair, whereas inflammatory ILC2s (iIlC2s) drive tissue inflammation and injury. The aim of this study is to determine the mechanisms used by type 2 innate lymphoid cell (ILC2) subpopulations to regulate biliary epithelial response to an injury. APPROACH AND RESULTS: Using Spearman correlation analysis, nILC2 transcripts, but not those of iILC2s, are positively associated with cholangiocyte abundance in biliary atresia patients at the time of diagnosis. nILC2s are identified in the mouse liver through flow cytometry. They undergo expansion and increase amphiregulin production after IL-33 administration. This drives epithelial proliferation dependent on the IL-13/IL-4Rα/STAT6 pathway as determined by decreased nILC2s and reduced epithelial proliferation in knockout strains. The addition of IL-2 promotes inter-lineage plasticity towards a nILC2 phenotype. In experimental biliary atresia induced by rotavirus, this pathway promotes epithelial repair and tissue regeneration. The genetic loss or molecular inhibition of any part of this circuit switches nILC2s to inflammatory type 2 innate lymphoid cell-like, resulting in decreased amphiregulin production, decreased epithelial proliferation, and the full phenotype of experimental biliary atresia. CONCLUSIONS: These findings identify a key function of the IL-13/IL-4Rα/STAT6 pathway in ILC2 plasticity and an alternate circuit driven by IL-2 to promote nILC2 stability and amphiregulin expression. This pathway induces epithelial homeostasis and repair in experimental biliary atresia.


Subject(s)
Biliary Atresia , Humans , Animals , Mice , Biliary Atresia/pathology , Immunity, Innate , Interleukin-13/metabolism , Interleukin-2/metabolism , Lymphocytes , Amphiregulin/genetics , Amphiregulin/metabolism
19.
Rheumatology (Oxford) ; 63(3): 837-845, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37310903

ABSTRACT

OBJECTIVE: Multiple observations indicate a role for lymphocytes in driving autoimmunity in SSc. While T and NK cells have been studied in SSc whole blood and bronchoalveolar lavage fluid, their role remains unclear, partly because no studies have analysed these cell types in SSc-interstitial lung disease (ILD) lung tissue. This research aimed to identify and analyse the lymphoid subpopulations in SSc-ILD lung explants. METHODS: Lymphoid populations from 13 SSc-ILD and 6 healthy control (HC) lung explants were analysed using Seurat following single-cell RNA sequencing. Lymphoid clusters were identified by their differential gene expression. Absolute cell numbers and cell proportions in each cluster were compared between cohorts. Additional analyses were performed using pathway analysis, pseudotime and cell ligand-receptor interactions. RESULTS: Activated CD16+ NK cells, CD8+ tissue resident memory T cells and Treg cells were proportionately higher in SSc-ILD compared with HC lungs. Activated CD16+ NK cells in SSc-ILD showed upregulated granzyme B, IFN-γ and CD226. Amphiregulin, highly upregulated by NK cells, was predicted to interact with epidermal growth factor receptor on several bronchial epithelial cell populations. Shifts in CD8+ T cell populations indicated a transition from resting to effector to tissue resident phenotypes in SSc-ILD. CONCLUSIONS: SSc-ILD lungs show activated lymphoid populations. Activated cytotoxic NK cells suggest they may kill alveolar epithelial cells, while their expression of amphiregulin suggests they may also induce bronchial epithelial cell hyperplasia. CD8+ T cells in SSc-ILD appear to transition from resting to the tissue resident memory phenotype.


Subject(s)
Lung Diseases, Interstitial , Scleroderma, Systemic , T-Lymphocytes, Regulatory , Humans , Amphiregulin , CD8-Positive T-Lymphocytes , Killer Cells, Natural , Lung , Lung Diseases, Interstitial/immunology , Memory T Cells , Scleroderma, Systemic/immunology
20.
Microb Pathog ; 186: 106463, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38036111

ABSTRACT

Amphiregulin (AREG) serves as a ligand for the epidermal growth factor receptor (EGFR) and is involved in vital biological functions, including inflammatory responses, tissue regeneration, and immune system function. Upon interaction with the EGFR, AREG initiates a series of signaling cascades necessary for several physiological activities, such as metabolism, cell cycle regulation, and cellular proliferation. Recent findings have provided evidence for the substantial role of AREG in maintaining the equilibrium of homeostasis in damaged tissues and preserving epithelial cell structure in the context of viral infections affecting the lungs. The development of resistance to influenza virus infection depends on the presence of type 1 cytokine responses. Following the eradication of the pathogen, the lungs are subsequently colonized by several cell types that are linked with type 2 immune responses. These cells contribute to the process of repairing and resolving the tissue injury and inflammation caused by infections. Following influenza infection, the activation of AREG promotes the regeneration of bronchial epithelial cells, enhancing the tissue's structural integrity and increasing the survival rate of infected mice. In the same manner, mice afflicted with influenza experience rapid mortality due to a subsequent bacterial infection in the pulmonary region when both bacterial and viral infections manifest concurrently inside the same host. The involvement of AREG in bacterial infections has been demonstrated. The gene AREG experiences increased transcriptional activity inside host cells in response to bacterial infections caused by pathogens such as Escherichia coli and Neisseria gonorrhea. In addition, AREG has been extensively studied as a mitogenic stimulus in epithelial cell layers. Consequently, it is regarded as a prospective contender that might potentially contribute to the observed epithelial cell reactions in helminth infection. Consistent with this finding, mice that lack the AREG gene exhibit a delay in the eradication of the intestinal parasite Trichuris muris. The observed delay is associated with a reduction in the proliferation rate of colonic epithelial cells compared to the infected animals in the control group. The aforementioned findings indicate that AREG plays a pivotal role in facilitating the activation of defensive mechanisms inside the epithelial cells of the intestinal tissue. The precise cellular sources of AREG in this specific context have not yet been determined. However, it is evident that the increased proliferation of the epithelial cell layer in infected mice is reliant on CD4+ T cells. The significance of this finding lies in its demonstration of the crucial role played by the interaction between immunological and epithelial cells in regulating the AREG-EGFR pathway. Additional research is necessary to delve into the cellular origins and signaling mechanisms that govern the synthesis of AREG and its tissue-protective properties, independent of infection.


Subject(s)
Bacterial Infections , Influenza, Human , Animals , Humans , Mice , Amphiregulin/metabolism , ErbB Receptors/metabolism , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL