Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
1.
PLoS Biol ; 22(3): e3002565, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38527087

ABSTRACT

K+ channels regulate morphogens to scale adult fins, but little is known about what regulates the channels and how they control morphogen expression. Using the zebrafish pectoral fin bud as a model for early vertebrate fin/limb development, we found that K+ channels also scale this anatomical structure, and we determined how one K+-leak channel, Kcnk5b, integrates into its developmental program. From FLIM measurements of a Förster Resonance Energy Transfer (FRET)-based K+ sensor, we observed coordinated decreases in intracellular K+ levels during bud growth, and overexpression of K+-leak channels in vivo coordinately increased bud proportions. Retinoic acid, which can enhance fin/limb bud growth, decreased K+ in bud tissues and up-regulated regulator of calcineurin (rcan2). rcan2 overexpression increased bud growth and decreased K+, while CRISPR-Cas9 targeting of rcan2 decreased growth and increased K+. We observed similar results in the adult caudal fins. Moreover, CRISPR targeting of Kcnk5b revealed that Rcan2-mediated growth was dependent on the Kcnk5b. We also found that Kcnk5b enhanced depolarization in fin bud cells via Na+ channels and that this enhanced depolarization was required for Kcnk5b-enhanced growth. Lastly, Kcnk5b-induced shha transcription and bud growth required IP3R-mediated Ca2+ release and CaMKK activity. Thus, we provide a mechanism for how retinoic acid via rcan2 can regulate K+-channel activity to scale a vertebrate appendage via intercellular Ca2+ signaling.


Subject(s)
Calcium , Zebrafish , Animals , Zebrafish/genetics , Calcium/metabolism , Tretinoin , Animal Fins/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Gene Expression Regulation, Developmental
2.
Dev Biol ; 502: 1-13, 2023 10.
Article in English | MEDLINE | ID: mdl-37290497

ABSTRACT

Zebrafish robustly regenerate fins, including their characteristic bony ray skeleton. Amputation activates intra-ray fibroblasts and dedifferentiates osteoblasts that migrate under a wound epidermis to establish an organized blastema. Coordinated proliferation and re-differentiation across lineages then sustains progressive outgrowth. We generate a single cell transcriptome dataset to characterize regenerative outgrowth and explore coordinated cell behaviors. We computationally identify sub-clusters representing most regenerative fin cell lineages, and define markers of osteoblasts, intra- and inter-ray fibroblasts and growth-promoting distal blastema cells. A pseudotemporal trajectory and in vivo photoconvertible lineage tracing indicate distal blastemal mesenchyme restores both intra- and inter-ray fibroblasts. Gene expression profiles across this trajectory suggest elevated protein production in the blastemal mesenchyme state. O-propargyl-puromycin incorporation and small molecule inhibition identify insulin growth factor receptor (IGFR)/mechanistic target of rapamycin kinase (mTOR)-dependent elevated bulk translation in blastemal mesenchyme and differentiating osteoblasts. We test candidate cooperating differentiation factors identified from the osteoblast trajectory, finding IGFR/mTOR signaling expedites glucocorticoid-promoted osteoblast differentiation in vitro. Concordantly, mTOR inhibition slows but does not prevent fin regenerative outgrowth in vivo. IGFR/mTOR may elevate translation in both fibroblast- and osteoblast-lineage cells during the outgrowth phase as a tempo-coordinating rheostat.


Subject(s)
Signal Transduction , Zebrafish , Animals , Zebrafish/metabolism , Cell Differentiation , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Receptors, Somatomedin/metabolism , Animal Fins/metabolism
3.
Development ; 148(21)2021 11 01.
Article in English | MEDLINE | ID: mdl-34714331

ABSTRACT

The receptor tyrosine kinase MuSK, its co-receptor Lrp4 and the Agrin ligand constitute a signaling pathway that is crucial in axial muscle for neuromuscular synapse development, yet whether this pathway functions similarly in appendicular muscle is unclear. Here, using the larval zebrafish pectoral fin, equivalent to tetrapod forelimbs, we show that, similar to axial muscle, developing appendicular muscles form aneural acetylcholine receptor (AChR) clusters prior to innervation. As motor axons arrive, neural AChR clusters form, eventually leading to functional synapses in a MuSK-dependent manner. We find that loss of Agrin or Lrp4 function, which abolishes synaptic AChR clusters in axial muscle, results in enlarged presynaptic nerve regions and progressively expanding appendicular AChR clusters, mimicking the consequences of motoneuron ablation. Moreover, musk depletion in lrp4 mutants partially restores synaptic AChR patterning. Combined, our results provide compelling evidence that, in addition to the canonical pathway in which Agrin/Lrp4 stimulates MuSK activity, Agrin/Lrp4 signaling in appendicular muscle constrains MuSK-dependent neuromuscular synapse organization. Thus, we reveal a previously unappreciated role for Agrin/Lrp4 signaling, thereby highlighting distinct differences between axial and appendicular synapse development.


Subject(s)
Agrin/metabolism , Homeodomain Proteins/metabolism , LDL-Receptor Related Proteins/metabolism , Muscle, Skeletal/metabolism , Neuromuscular Junction/metabolism , Zebrafish Proteins/metabolism , Animal Fins/innervation , Animal Fins/metabolism , Animals , Axons/metabolism , Homeodomain Proteins/genetics , LDL-Receptor Related Proteins/genetics , Muscle, Skeletal/innervation , Mutation , Receptors, Cholinergic/metabolism , Signal Transduction , Zebrafish , Zebrafish Proteins/genetics
4.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article in English | MEDLINE | ID: mdl-34230098

ABSTRACT

With over 18,000 species, the Acanthomorpha, or spiny-rayed fishes, form the largest and arguably most diverse radiation of vertebrates. One of the key novelties that contributed to their evolutionary success are the spiny rays in their fins that serve as a defense mechanism. We investigated the patterning mechanisms underlying the differentiation of median fin Anlagen into discrete spiny and soft-rayed domains during the ontogeny of the direct-developing cichlid fish Astatotilapia burtoni Distinct transcription factor signatures characterize these two fin domains, whereby mutually exclusive expression of hoxa13a/b with alx4a/b and tbx2b marks the spine to soft-ray boundary. The soft-ray domain is established by BMP inhibition via gremlin1b, which synergizes in the posterior fin with shh secreted from a zone of polarizing activity. Modulation of BMP signaling by chemical inhibition or gremlin1b CRISPR/Cas9 knockout induces homeotic transformations of spines into soft rays and vice versa. The expression of spine and soft-ray genes in nonacanthomorph fins indicates that a combination of exaptation and posterior expansion of an ancestral developmental program for the anterior fin margin allowed the evolution of robustly individuated spiny and soft-rayed domains. We propose that a repeated exaptation of such pattern might underly the convergent evolution of anterior spiny-fin elements across fishes.


Subject(s)
Animal Fins/metabolism , Bone Morphogenetic Proteins/metabolism , Cichlids/metabolism , Fish Proteins/metabolism , Hedgehog Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Animal Fins/growth & development , Animals , Biological Evolution , Body Patterning , Bone Morphogenetic Proteins/genetics , Cichlids/classification , Cichlids/genetics , Cichlids/growth & development , Fish Proteins/genetics , Gene Expression Regulation, Developmental , Hedgehog Proteins/genetics , Intercellular Signaling Peptides and Proteins/genetics , Phylogeny , Signal Transduction , Spine/growth & development , Spine/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Development ; 147(13)2020 07 03.
Article in English | MEDLINE | ID: mdl-32541014

ABSTRACT

The gap junction protein Connexin 43 (Cx43) contributes to cell fate decisions that determine the location of fin ray joints during regeneration. Here, we provide insights into how Cx43, expressed medially, influences changes in gene expression in lateral skeletal precursor cells. Using the Gap27 peptide inhibitor specific to Cx43, we show that Cx43-gap junctional intercellular communication (GJIC) influences Cx43-dependent skeletal phenotypes, including segment length. We also demonstrate that Cx43-GJIC influences the expression of the Smp/ß-catenin pathway in the lateral skeletal precursor cells, and does not influence the Sema3d pathway. Moreover, we show that the cx43lh10 allele, which has increased Cx43 protein levels, exhibits increased regenerate length and segment length. These phenotypes are rescued by Gap27, suggesting that increased Cx43 is responsible for the observed Cx43 phenotypes. Finally, our findings suggest that inhibition of Cx43 hemichannel activity does not influence Cx43-dependent skeletal phenotypes. These data provide evidence that Cx43-GJIC is responsible for regulating cell fate decisions associated with appropriate joint formation in the regenerating fin.


Subject(s)
Connexin 43/metabolism , Gap Junctions/metabolism , Animal Fins/metabolism , Animals , Cell Communication/physiology , Connexins/metabolism , Oligopeptides/metabolism , Zebrafish , Zebrafish Proteins/metabolism
6.
Development ; 147(14)2020 07 30.
Article in English | MEDLINE | ID: mdl-32665240

ABSTRACT

To identify candidate tissue regeneration enhancer elements (TREEs) important for zebrafish fin regeneration, we performed ATAC-seq from bulk tissue or purified fibroblasts of uninjured and regenerating caudal fins. We identified tens of thousands of DNA regions from each sample type with dynamic accessibility during regeneration, and assigned these regions to proximal genes with corresponding expression changes by RNA-seq. To determine whether these profiles reveal bona fide TREEs, we tested the sufficiency and requirements of several sequences in stable transgenic lines and mutant lines with homozygous deletions. These experiments validated new non-coding regulatory sequences near induced and/or essential genes during fin regeneration, including fgf20a, mdka and cx43, identifying distinct domains of directed expression for each confirmed TREE. Whereas deletion of the previously identified LEN enhancer abolished detectable induction of the nearby leptin b gene during regeneration, deletions of enhancers linked to fgf20a, mdka and cx43 had no effect or partially reduced gene expression. Our study generates a new resource for dissecting the regulatory mechanisms of appendage generation and reveals a range of requirements for individual TREEs in control of regeneration programs.


Subject(s)
Animal Fins/metabolism , Enhancer Elements, Genetic/genetics , Regeneration/physiology , Zebrafish/metabolism , Animal Fins/physiology , Animals , Animals, Genetically Modified/metabolism , Chromatin/metabolism , Chromatin Assembly and Disassembly , Connexin 43/genetics , Connexin 43/metabolism , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression , Leptin/genetics , Leptin/metabolism , Midkine/genetics , Midkine/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
7.
Genomics ; 114(2): 110300, 2022 03.
Article in English | MEDLINE | ID: mdl-35134499

ABSTRACT

The complex epimorphic regeneration of zebrafish caudal fin tissue is hasty and absolute. This study was executed to understand the role of various genes/proteins involved in the regeneration of zebrafish caudal fin tissue through differential transcriptomics and proteomics analysis. Based on our study 1408 genes and 661 proteins were found differentially regulated in the regenerating caudal fin tissue for having at least 1-log fold change. Interleukin, Solute carrier, Protein arginine methyltransferase, Homeobox, Neurotransmitter and several novel genes were found to be associated with regeneration for its differential regulation during the mechanism. Based on the network and pathway analysis the differentially regulated genes and proteins were found allied with activation of cell proliferation, cell viability, cell survival & cell movement and inactivation of organismal death, morbidity, necrosis, death of embryo & cell death. This study has mapped a detailed insight of the genes/proteins expression associated with the epimorphic regeneration more profoundly.


Subject(s)
Animal Fins , Zebrafish , Animal Fins/metabolism , Animals , Proteomics , Regeneration/genetics , Transcriptome , Zebrafish/genetics
8.
Dev Dyn ; 251(4): 556-576, 2022 04.
Article in English | MEDLINE | ID: mdl-34547148

ABSTRACT

MicroRNAs (miRNAs) are small noncoding RNAs with pivotal roles in the control of gene expression. By comparing the miRNA profiles of uninjured vs. regenerating tissues and structures, several studies have found that miRNAs are potentially involved in the regenerative process. By inducing miRNA overexpression or inhibition, elegant experiments have directed regenerative responses validating relevant miRNA-to-target interactions. The zebrafish (Danio rerio) has been the epicenter of regenerative research because of its exceptional capability to self-repair damaged tissues and body structures. In this review, we discuss recent discoveries that have improved our understanding of the impact of gene regulation mediated by miRNAs in the context of the regeneration of fins, heart, retina, and nervous tissue in zebrafish. We compiled what is known about the miRNA control of regeneration in these tissues and investigated the links among up-regulated and down-regulated miRNAs, their putative or validated targets, and the regenerative process. Finally, we briefly discuss the forthcoming prospects, highlighting directions and the potential for further development of this field.


Subject(s)
MicroRNAs , Zebrafish , Animal Fins/metabolism , Animals , Gene Expression Regulation , MicroRNAs/genetics , Regeneration/genetics , Zebrafish/metabolism
9.
Dev Dyn ; 251(9): 1535-1549, 2022 09.
Article in English | MEDLINE | ID: mdl-34242444

ABSTRACT

BACKGROUND: The development of the vertebrate limb skeleton requires a complex interaction of multiple factors to facilitate the correct shaping and positioning of bones and joints. Growth and differentiation factor 5 (Gdf5) is involved in patterning appendicular skeletal elements including joints. Expression of gdf5 in zebrafish has been detected in fin mesenchyme condensations and segmentation zones as well as the jaw joint, however, little is known about the functional role of Gdf5 outside of Amniota. RESULTS: We generated CRISPR/Cas9 knockout of gdf5 in zebrafish and analyzed the resulting phenotype at different developmental stages. Homozygous gdf5 mutant zebrafish displayed changes in segmentation of the endoskeletal disc and, as a consequence, loss of posterior radials in the pectoral fins. Mutant fish also displayed disorganization and reduced length of endoskeletal elements in the median fins, while joints and mineralization seemed unaffected. CONCLUSIONS: Our study demonstrates the importance of Gdf5 in the development of the zebrafish pectoral and median fin endoskeleton and reveals that the severity of the effect increases from anterior to posterior elements. Our findings are consistent with phenotypes observed in the human and mouse appendicular skeleton in response to Gdf5 knockout, suggesting a broadly conserved role for Gdf5 in Osteichthyes.


Subject(s)
Gene Expression Regulation, Developmental , Growth Differentiation Factor 5 , Zebrafish , Animal Fins/metabolism , Animals , Bone and Bones/metabolism , Growth Differentiation Factor 5/genetics , Growth Differentiation Factor 5/metabolism , Mice , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
10.
Dev Biol ; 477: 177-190, 2021 09.
Article in English | MEDLINE | ID: mdl-34038742

ABSTRACT

Teleost fish fins, like all vertebrate limbs, comprise a series of bones laid out in characteristic pattern. Each fin's distal bony rays typically branch to elaborate skeletal networks providing form and function. Zebrafish caudal fin regeneration studies suggest basal epidermal-expressed Sonic hedgehog (Shh) promotes ray branching by partitioning pools of adjacent pre-osteoblasts. This Shh role is distinct from its well-studied Zone of Polarizing Activity role establishing paired limb positional information. Therefore, we investigated if and how Shh signaling similarly functions during developmental ray branching of both paired and unpaired fins while resolving cellular dynamics of branching by live imaging. We found shha is expressed uniquely by basal epidermal cells overlying pre-osteoblast pools at the distal aspect of outgrowing juvenile fins. Lateral splitting of each shha-expressing epidermal domain followed by the pre-osteoblast pools precedes overt ray branching. We use ptch2:Kaede fish and Kaede photoconversion to identify short stretches of shha+basal epidermis and juxtaposed pre-osteoblasts as the Shh/Smoothened (Smo) active zone. Basal epidermal distal collective movements continuously replenish each shha+domain with individual cells transiently expressing and responding to Shh. In contrast, pre-osteoblasts maintain Shh/Smo activity until differentiating. The Smo inhibitor BMS-833923 prevents branching in all fins, paired and unpaired, with surprisingly minimal effects on caudal fin initial skeletal patterning, ray outgrowth or bone differentiation. Staggered BMS-833923 addition indicates Shh/Smo signaling acts throughout the branching process. We use live cell tracking to find Shh/Smo restrains the distal movement of basal epidermal cells by apparent 'tethering' to pre-osteoblasts. We propose short-range Shh/Smo signaling promotes these heterotypic associations to couple instructive basal epidermal collective movements to pre-osteoblast repositioning as a unique mode of branching morphogenesis.


Subject(s)
Animal Fins/embryology , Epidermal Cells/physiology , Epidermis/embryology , Hedgehog Proteins/physiology , Morphogenesis , Zebrafish Proteins/physiology , Animal Fins/cytology , Animal Fins/metabolism , Animals , Benzamides/pharmacology , Cell Movement , Epidermis/metabolism , Patched-2 Receptor/metabolism , Quinazolines/pharmacology , Signal Transduction/drug effects , Smoothened Receptor/physiology , Zebrafish
11.
Nature ; 537(7619): 225-228, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27533041

ABSTRACT

Understanding the evolutionary transformation of fish fins into tetrapod limbs is a fundamental problem in biology. The search for antecedents of tetrapod digits in fish has remained controversial because the distal skeletons of limbs and fins differ structurally, developmentally, and histologically. Moreover, comparisons of fins with limbs have been limited by a relative paucity of data on the cellular and molecular processes underlying the development of the fin skeleton. Here, we provide a functional analysis, using CRISPR/Cas9 and fate mapping, of 5' hox genes and enhancers in zebrafish that are indispensable for the development of the wrists and digits of tetrapods. We show that cells marked by the activity of an autopodial hoxa13 enhancer exclusively form elements of the fin fold, including the osteoblasts of the dermal rays. In hox13 knockout fish, we find that a marked reduction and loss of fin rays is associated with an increased number of endochondral distal radials. These discoveries reveal a cellular and genetic connection between the fin rays of fish and the digits of tetrapods and suggest that digits originated via the transition of distal cellular fates.


Subject(s)
Animal Fins/embryology , Biological Evolution , Extremities/embryology , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Zebrafish/embryology , Zebrafish/genetics , Animal Fins/metabolism , Animals , Cell Lineage , Enhancer Elements, Genetic/genetics , Gene Deletion , Gene Knockout Techniques , Mice , Multigene Family/genetics , Phenotype
12.
Nature ; 539(7627): 89-92, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27706137

ABSTRACT

The fin-to-limb transition represents one of the major vertebrate morphological innovations associated with the transition from aquatic to terrestrial life and is an attractive model for gaining insights into the mechanisms of morphological diversity between species. One of the characteristic features of limbs is the presence of digits at their extremities. Although most tetrapods have limbs with five digits (pentadactyl limbs), palaeontological data indicate that digits emerged in lobed fins of early tetrapods, which were polydactylous. How the transition to pentadactyl limbs occurred remains unclear. Here we show that the mutually exclusive expression of the mouse genes Hoxa11 and Hoxa13, which were previously proposed to be involved in the origin of the tetrapod limb, is required for the pentadactyl state. We further demonstrate that the exclusion of Hoxa11 from the Hoxa13 domain relies on an enhancer that drives antisense transcription at the Hoxa11 locus after activation by HOXA13 and HOXD13. Finally, we show that the enhancer that drives antisense transcription of the mouse Hoxa11 gene is absent in zebrafish, which, together with the largely overlapping expression of hoxa11 and hoxa13 genes reported in fish, suggests that this enhancer emerged in the course of the fin-to-limb transition. On the basis of the polydactyly that we observed after expression of Hoxa11 in distal limbs, we propose that the evolution of Hoxa11 regulation contributed to the transition from polydactyl limbs in stem-group tetrapods to pentadactyl limbs in extant tetrapods.


Subject(s)
Biological Evolution , Extremities/anatomy & histology , Homeodomain Proteins/metabolism , Vertebrates/anatomy & histology , Vertebrates/genetics , Animal Fins/anatomy & histology , Animal Fins/metabolism , Animals , Enhancer Elements, Genetic/genetics , Extinction, Biological , Female , Introns/genetics , Mice , RNA, Antisense/biosynthesis , RNA, Antisense/genetics , Transcription Factors/metabolism , Transcription, Genetic , Zebrafish/anatomy & histology , Zebrafish/genetics
13.
Nature ; 535(7613): 542-6, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27437584

ABSTRACT

The transition from fins to limbs was an important terrestrial adaptation, but how this crucial evolutionary shift arose developmentally is unknown. Current models focus on the distinct roles of the apical ectodermal ridge (AER) and the signaling molecules that it secretes during limb and fin outgrowth. In contrast to the limb AER, the AER of the fin rapidly transitions into the apical fold and in the process shuts off AER-derived signals that stimulate proliferation of the precursors of the appendicular skeleton. The differing fates of the AER during fish and tetrapod development have led to the speculation that fin-fold formation was one of the evolutionary hurdles to the AER-dependent expansion of the fin mesenchyme required to generate the increased appendicular structure evident within limbs. Consequently, a heterochronic shift in the AER-to-apical-fold transition has been postulated to be crucial for limb evolution. The ability to test this model has been hampered by a lack of understanding of the mechanisms controlling apical fold induction. Here we show that invasion by cells of a newly identified somite-derived lineage into the AER in zebrafish regulates apical fold induction. Ablation of these cells inhibits apical fold formation, prolongs AER activity and increases the amount of fin bud mesenchyme, suggesting that these cells could provide the timing mechanism proposed in Thorogood's clock model of the fin-to-limb transition. We further demonstrate that apical-fold inducing cells are progressively lost during gnathostome evolution;the absence of such cells within the tetrapod limb suggests that their loss may have been a necessary prelude to the attainment of limb-like structures in Devonian sarcopterygian fish.


Subject(s)
Animal Fins/embryology , Animal Fins/metabolism , Ectoderm/embryology , Ectoderm/metabolism , Somites/embryology , Somites/metabolism , Zebrafish/embryology , Animals , Biological Evolution , Cell Lineage , Ectoderm/cytology , Female , Limb Buds/cytology , Limb Buds/embryology , Limb Buds/metabolism , Mesoderm/cytology , Mesoderm/embryology , Mesoderm/metabolism , Somites/cytology
14.
Nature ; 540(7633): 395-399, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27974754

ABSTRACT

Seahorses have a specialized morphology that includes a toothless tubular mouth, a body covered with bony plates, a male brood pouch, and the absence of caudal and pelvic fins. Here we report the sequencing and de novo assembly of the genome of the tiger tail seahorse, Hippocampus comes. Comparative genomic analysis identifies higher protein and nucleotide evolutionary rates in H. comes compared with other teleost fish genomes. We identified an astacin metalloprotease gene family that has undergone expansion and is highly expressed in the male brood pouch. We also find that the H. comes genome lacks enamel matrix protein-coding proline/glutamine-rich secretory calcium-binding phosphoprotein genes, which might have led to the loss of mineralized teeth. tbx4, a regulator of hindlimb development, is also not found in H. comes genome. Knockout of tbx4 in zebrafish showed a 'pelvic fin-loss' phenotype similar to that of seahorses.


Subject(s)
Biological Evolution , Fish Proteins/genetics , Genome/genetics , Smegmamorpha/anatomy & histology , Smegmamorpha/genetics , Animal Fins/anatomy & histology , Animal Fins/metabolism , Animals , Conserved Sequence/genetics , Fish Proteins/deficiency , Gene Deletion , Genomics , Hindlimb/anatomy & histology , Hindlimb/metabolism , Male , Molecular Sequence Annotation , Multigene Family/genetics , Mutation Rate , Phylogeny , Reproduction/physiology , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics , Time Factors , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics
15.
Nature ; 532(7598): 201-6, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27049946

ABSTRACT

How tissue regeneration programs are triggered by injury has received limited research attention. Here we investigate the existence of enhancer regulatory elements that are activated in regenerating tissue. Transcriptomic analyses reveal that leptin b (lepb) is highly induced in regenerating hearts and fins of zebrafish. Epigenetic profiling identified a short DNA sequence element upstream and distal to lepb that acquires open chromatin marks during regeneration and enables injury-dependent expression from minimal promoters. This element could activate expression in injured neonatal mouse tissues and was divisible into tissue-specific modules sufficient for expression in regenerating zebrafish fins or hearts. Simple enhancer-effector transgenes employing lepb-linked sequences upstream of pro- or anti-regenerative factors controlled the efficacy of regeneration in zebrafish. Our findings provide evidence for 'tissue regeneration enhancer elements' (TREEs) that trigger gene expression in injury sites and can be engineered to modulate the regenerative potential of vertebrate organs.


Subject(s)
Enhancer Elements, Genetic/genetics , Organ Specificity/genetics , Regeneration/genetics , Regeneration/physiology , Wound Healing/genetics , Zebrafish/genetics , Zebrafish/physiology , Acetylation , Animal Fins/injuries , Animal Fins/metabolism , Animals , Animals, Newborn , Cell Proliferation , Chromatin Assembly and Disassembly/genetics , Epigenesis, Genetic/genetics , Female , Gene Expression Profiling , Gene Expression Regulation/genetics , Heart , Histones/chemistry , Histones/metabolism , Leptin/biosynthesis , Leptin/genetics , Lysine/metabolism , Male , Mice , Myocytes, Cardiac/cytology , Promoter Regions, Genetic/genetics , Transgenes/genetics , Zebrafish Proteins/genetics
16.
Dev Dyn ; 250(9): 1330-1339, 2021 09.
Article in English | MEDLINE | ID: mdl-33064344

ABSTRACT

BACKGROUND: Vitamin D is an essential nutrient that has long been known to regulate skeletal growth and integrity. In models of major appendage regeneration, treatment with vitamin D analogs has been reported to improve aspects of zebrafish fin regeneration in specific disease or gene misexpression contexts, but also to disrupt pattern in regenerating salamander limbs. Recently, we reported strong mitogenic roles for vitamin D signaling in several zebrafish tissues throughout life stages, including epidermal cells and osteoblasts of adult fins. To our knowledge, molecular genetic approaches to dissect vitamin D function in appendage regeneration have not been described. RESULTS: Using a knock-in GFP reporter for the expression of the vitamin D target gene and negative regulator cyp24a1, we identified active vitamin D signaling in adult zebrafish fins during tissue homeostasis and regeneration. Transgenic expression of cyp24a1 or a dominant-negative vitamin D receptor (VDR) inhibited regeneration of amputated fins, whereas global vitamin D treatment accelerated regeneration. Using tissue regeneration enhancer elements, we found that local enhancement of VDR expression could improve regeneration with low doses of a vitamin D analog. CONCLUSIONS: Vitamin D signaling enhances the efficacy of fin regeneration in zebrafish.


Subject(s)
Vitamin D , Zebrafish , Animal Fins/metabolism , Animals , Animals, Genetically Modified , Vitamin D/metabolism , Vitamin D/pharmacology , Zebrafish/genetics , Zebrafish Proteins/metabolism
17.
Dev Dyn ; 250(9): 1368-1380, 2021 09.
Article in English | MEDLINE | ID: mdl-33638212

ABSTRACT

BACKGROUND: Heparan sulfate proteoglycan (HSPG) expression is found in many animal tissues and regulates growth factor signaling such as of Fibroblast growth factors (Fgf), Wingless/Int (Wnt) and Hedgehog (HH). Glypicans, which are GPI (glycosylphosphatidylinositol)-anchored proteins, and transmembrane-anchored syndecans represent two major HSPG protein families whose involvement in development and disease has been demonstrated. Their participation in regenerative processes both of the central nervous system and of regenerating limbs is well documented. However, whether HSPG are expressed in regenerating zebrafish fins, is currently unknown. RESULTS: Here, we carried out a systematic screen of glypican and syndecan mRNA expression in regenerating zebrafish fins during the outgrowth phase. We find that 8 of the 10 zebrafish glypicans and the three known zebrafish syndecans show specific expression at 3 days post amputation. Expression is found in different domains of the regenerate, including the distal and lateral basal layers of the wound epidermis, the distal most blastema and more proximal blastema regions. CONCLUSIONS: HSPG expression is prevalent in regenerating zebrafish fins. Further research is needed to delineate the function of glypican and syndecan action during zebrafish fin regeneration.


Subject(s)
Hedgehog Proteins , Zebrafish , Animal Fins/metabolism , Animals , Hedgehog Proteins/metabolism , Heparan Sulfate Proteoglycans/genetics , Heparan Sulfate Proteoglycans/metabolism , Signal Transduction
18.
Dev Dyn ; 250(12): 1796-1809, 2021 12.
Article in English | MEDLINE | ID: mdl-34091971

ABSTRACT

BACKGROUND: Hand genes are required for the development of the vertebrate jaw, heart, peripheral nervous system, limb, gut, placenta, and decidua. Two Hand paralogues, Hand1 and Hand2, are present in most vertebrates, where they mediate different functions yet overlap in expression. In ray-finned fishes, Hand gene expression and function is only known for the zebrafish, which represents the rare condition of having a single Hand gene, hand2. Here we describe the developmental expression of hand1 and hand2 in the cichlid Copadichromis azureus. RESULTS: hand1 and hand2 are expressed in the cichlid heart, paired fins, pharyngeal arches, peripheral nervous system, gut, and lateral plate mesoderm with different degrees of overlap. CONCLUSIONS: Hand gene expression in the gut, peripheral nervous system, and pharyngeal arches may have already been fixed in the lobe- and ray-finned fish common ancestor. In other embryonic regions, such as paired appendages, hand2 expression was fixed, while hand1 expression diverged in lobe- and ray-finned fish lineages. In the lateral plate mesoderm and arch associated catecholaminergic cells, hand1 and hand2 swapped expression between divergent lineages. Distinct expression of cichlid hand1 and hand2 in the epicardium and myocardium of the developing heart may represent the ancestral pattern for bony fishes.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Cichlids/embryology , Embryonic Development/genetics , Animal Fins/embryology , Animal Fins/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Branchial Region/embryology , Branchial Region/metabolism , Cichlids/genetics , Cichlids/metabolism , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Heart/embryology , Intestines/embryology , Intestines/metabolism , Mesoderm/embryology , Mesoderm/metabolism , Myocardium/metabolism , Peripheral Nervous System/embryology , Peripheral Nervous System/metabolism , Sequence Homology , Skull/embryology , Skull/metabolism , Tooth/embryology , Tooth/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
19.
J Cell Sci ; 132(22)2019 11 14.
Article in English | MEDLINE | ID: mdl-31636113

ABSTRACT

Osteoblast differentiation is a key process for bone homeostasis and repair. Multiple signalling pathways have been associated with osteoblast differentiation, yet much remains unknown on how this process is regulated in vivo Previous studies have proposed that the Hippo pathway transcriptional co-activators YAP and TAZ (also known as YAP1 and WWTR1, respectively) maintain progenitor stemness and inhibit terminal differentiation of osteoblasts, whereas others suggest they potentiate osteoblast differentiation and bone formation. Here, we use zebrafish caudal fin regeneration as a model to clarify how the Hippo pathway regulates de novo bone formation and osteoblast differentiation. We demonstrate that Yap inhibition leads to accumulation of osteoprogenitors and prevents osteoblast differentiation in a cell non-autonomous manner. This effect correlates with a severe impairment of Bmp signalling in osteoblasts, likely by suppressing the expression of the ligand bmp2a in the surrounding mesenchymal cells. Overall, our findings provide a new mechanism of bone formation through the Hippo-Yap pathway, integrating Yap in the signalling cascade that governs osteoprogenitor maintenance and subsequent differentiation during zebrafish caudal fin regeneration.


Subject(s)
Animal Fins/physiology , Bone Morphogenetic Proteins/genetics , Osteoblasts/metabolism , Regeneration/physiology , Trans-Activators/metabolism , Zebrafish Proteins/metabolism , Zebrafish/physiology , Animal Fins/metabolism , Animals , Cell Differentiation/physiology , Cell Proliferation , Osteoblasts/cytology , Osteogenesis , Protein Serine-Threonine Kinases/metabolism , Serine-Threonine Kinase 3 , Signal Transduction , Trans-Activators/antagonists & inhibitors , YAP-Signaling Proteins , Zebrafish Proteins/antagonists & inhibitors
20.
Dev Dyn ; 249(2): 187-198, 2020 02.
Article in English | MEDLINE | ID: mdl-31487071

ABSTRACT

BACKGROUND: Matrix metalloproteinases 13 (MMP13) is a potent endopeptidase that regulate cell growth, migration, and extracellular matrix remodeling. However, its role in fin regeneration remains unclear. RESULTS: mmp13a expression is strongly upregulated during blastema formation and persists in the distal blastema. mmp13a knockdown via morpholino electroporation impairs regenerative outgrowth by decreasing cell proliferation, which correlates with a downregulation of fgf10a and sall4 expression in the blastema. Laminin distribution in the basement membrane is also affected in mmp13a MO-injected rays. Another impact of mmp13a knockdown is observed in the skeletal elements of the fin rays. Expression of two main components of actinotrichia, Collagen II and Actinodin 1 is highly reduced in mmp13a MO-injected rays leading to highly disorganized actinotrichia pattern. Inhibition of mmp13a strongly affects bone formation as shown by a reduction of Zns5 and sp7 expression and of bone matrix mineralization in rays. These defects are accompanied by a significant increase in apoptosis in mmp13a MO-injected fin regenerates. CONCLUSION: Defects of expression of this multifunctional proteinase drastically affects osteoblast differentiation, bone and actinotrichia formation as well as Laminin distribution in the basement membrane of the fin regenerate, suggesting the important role of Mmp13 during the regenerative process.


Subject(s)
Osteoblasts/cytology , Osteoblasts/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animal Fins/cytology , Animal Fins/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Laminin/metabolism , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL