Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Protein Expr Purif ; 203: 106215, 2023 03.
Article in English | MEDLINE | ID: mdl-36535546

ABSTRACT

Apyrase from potato (Solanum tuberosum) is a divalent metal ion-dependent enzyme that catalyzes the hydrolysis of nucleoside di- and tri-phosphates with broad substrate specificity. The enzyme is widely used to manipulate nucleotide levels such as in the G protein-coupled receptor (GPCR) field where it is used to deplete guanine nucleotides to stabilize nucleotide-free ternary agonist-GPCR-G protein complexes. Potato apyrase is available commercially as the native enzyme purified from potatoes or as a recombinant protein, but these are prohibitively expensive for some research applications. Here, we report a relatively simple method for the bacterial production of soluble, active potato apyrase. Apyrase has several disulfide bonds, so we co-expressed the enzyme bearing a C-terminal (His)6 tag with the E. coli disulfide isomerase DsbC at low temperature (18 °C) in the oxidizing cytoplasm of E. coli Origami B (DE3). This allowed low level production of soluble apyrase. A two-step purification procedure involving Ni-affinity followed by Cibacron Blue-affinity chromatography yielded highly purified apyrase at a level of ∼0.5 mg per L of bacterial culture. The purified enzyme was functional for ATP hydrolysis in an ATPase assay and for GTP/GDP hydrolysis in a GPCR-G protein coupling assay. This methodology enables the time- and cost-efficient production of recombinant apyrase for various research applications.


Subject(s)
Apyrase , Solanum tuberosum , Apyrase/genetics , Apyrase/chemistry , Escherichia coli/metabolism , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , Recombinant Proteins/chemistry , Solanum tuberosum/genetics , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism
2.
Am J Physiol Cell Physiol ; 320(1): C15-C29, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33052071

ABSTRACT

Extracellular diphosphate and triphosphate nucleotides are released from activated or injured cells to trigger vascular and immune P2 purinergic receptors, provoking inflammation and vascular thrombosis. These metabokines are scavenged by ectonucleoside triphosphate diphosphohydrolase-1 (E-NTPDase1 or CD39). Further degradation of the monophosphate nucleoside end products occurs by surface ecto-5'-nucleotidase (NMPase) or CD73. These ectoenzymatic processes work in tandem to promote adenosinergic responses, which are immunosuppressive and antithrombotic. These homeostatic ectoenzymatic mechanisms are lost in the setting of oxidative stress, which exacerbates inflammatory processes. We have engineered bifunctional enzymes made up from ectodomains (ECDs) of CD39 and CD73 within a single polypeptide. Human alkaline phosphatase-ectodomain (ALP-ECD) and human acid phosphatase-ectodomain (HAP-ECD) fusion proteins were also generated, characterized, and compared with these CD39-ECD, CD73-ECD, and bifunctional fusion proteins. Through the application of colorimetrical functional assays and high-performance liquid chromatography kinetic assays, we demonstrate that the bifunctional ectoenzymes express high levels of CD39-like NTPDase activity and CD73-like NMPase activity. Chimeric CD39-CD73-ECD proteins were superior in converting triphosphate and diphosphate nucleotides into nucleosides when compared with ALP-ECD and HAP-ECD. We also note a pH sensitivity difference between the bifunctional fusion proteins and parental fusions, as well as ectoenzymatic property distinctions. Intriguingly, these innovative reagents decreased platelet activation to exogenous agonists in vitro. We propose that these chimeric fusion proteins could serve as therapeutic agents in inflammatory diseases, acting to scavenge proinflammatory ATP and also generate anti-inflammatory adenosine.


Subject(s)
5'-Nucleotidase/pharmacology , Anti-Inflammatory Agents/pharmacology , Apyrase/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Protein Engineering , 5'-Nucleotidase/chemistry , 5'-Nucleotidase/genetics , 5'-Nucleotidase/metabolism , Adenine Nucleotides/metabolism , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/metabolism , Apyrase/chemistry , Apyrase/genetics , Apyrase/metabolism , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/pharmacology , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation Inhibitors/metabolism , Protein Conformation , Recombinant Fusion Proteins/metabolism , Signal Transduction , Structure-Activity Relationship , Substrate Specificity
3.
Int J Mol Sci ; 22(6)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33807069

ABSTRACT

Studies implicating an important role for apyrase (NTPDase) enzymes in plant growth and development began appearing in the literature more than three decades ago. After early studies primarily in potato, Arabidopsis and legumes, especially important discoveries that advanced an understanding of the biochemistry, structure and function of these enzymes have been published in the last half-dozen years, revealing that they carry out key functions in diverse other plants. These recent discoveries about plant apyrases include, among others, novel findings on its crystal structures, its biochemistry, its roles in plant stress responses and its induction of major changes in gene expression when its expression is suppressed or enhanced. This review will describe and discuss these recent advances and the major questions about plant apyrases that remain unanswered.


Subject(s)
Apyrase/chemistry , Apyrase/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Apyrase/antagonists & inhibitors , Apyrase/genetics , Catalytic Domain , Chemical Phenomena , Drug Discovery , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Plant , Models, Molecular , Plant Proteins/antagonists & inhibitors , Plant Proteins/genetics , Protein Conformation , Structure-Activity Relationship
4.
Int J Mol Sci ; 22(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34360901

ABSTRACT

The oxidative properties of nanomaterials arouse legitimate concerns about oxidative damage in biological systems. On the other hand, the undisputable benefits of nanomaterials promote them for biomedical applications; thus, the strategies to reduce oxidative potential are urgently needed. We aimed at analysis of nitrogen-containing carbon quantum dots (N-CQDs) in terms of their biocompatibility and internalization by different cells. Surprisingly, N-CQD uptake does not contribute to the increased oxidative stress inside cells and lacks cytotoxic influence even at high concentrations, primarily through protein corona formation. We proved experimentally that the protein coating effectively limits the oxidative capacity of N-CQDs. Thus, N-CQDs served as an immobilization support for three different enzymes with the potential to be used as therapeutics. Various kinetic parameters of immobilized enzymes were analyzed. Regardless of the enzyme structure and type of reaction catalyzed, adsorption on the nanocarrier resulted in increased catalytic efficiency. The enzymatic-protein-to-nanomaterial ratio is the pivotal factor determining the course of kinetic parameter changes that can be tailored for enzyme application. We conclude that the above properties of N-CQDs make them an ideal support for enzymatic drugs required for multiple biomedical applications, including personalized medical therapies.


Subject(s)
Biocatalysis , Carbon/chemistry , Carbon/pharmacology , Nitrogen/chemistry , Nitrogen/pharmacology , Oxidative Stress/drug effects , Protein Corona/metabolism , Quantum Dots/chemistry , Quantum Dots/metabolism , A549 Cells , Animals , Apyrase/chemistry , Apyrase/pharmacology , Catalase/chemistry , Catalase/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cellular Microenvironment/drug effects , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/pharmacology , HeLa Cells , Humans , Rats , Reactive Oxygen Species/metabolism , beta-Galactosidase/chemistry , beta-Galactosidase/pharmacology
5.
Biochem J ; 476(11): 1637-1651, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31085558

ABSTRACT

Extracellular ATP (eATP) and its metabolites have emerged as key modulators of different diseases and comprise a complex pathway called purinergic signaling. An increased number of tools have been developed to study the role of nucleotides and nucleosides in cell proliferation and migration, influence on the immune system and tumor progression. These tools include receptor agonists/antagonists, engineered ectonucleotidases, interference RNAs and ectonucleotidase inhibitors that allow the control and quantification of nucleotide levels. NTPDase1 (also called apyrase, ecto-ATPase and CD39) is one of the main enzymes responsible for the hydrolysis of eATP, and purified enzymes, such as apyrase purified from potato, or engineered as soluble CD39 (SolCD39), have been widely used in in vitro and in vivo experiments. However, the commercial apyrase had its effects recently questioned and SolCD39 exhibits limitations, such as short half-life and need of high doses to reach the expected enzymatic activity. Therefore, this study investigated a non-viral method to improve the overexpression of SolCD39 and evaluated its impact on other enzymes of the purinergic system. Our data demonstrated that PiggyBac transposon system proved to be a fast and efficient method to generate cells stably expressing SolCD39, producing high amounts of the enzyme from a limited number of cells and with high hydrolytic activity. In addition, the soluble form of NTPDase1/CD39 did not alter the expression or catalytic activity of other enzymes from the purinergic system. Altogether, these findings set the groundwork for prospective studies on the function and therapeutic role of eATP and its metabolites in physiological and pathological conditions.


Subject(s)
Antigens, CD/chemistry , Antigens, CD/metabolism , Apyrase/chemistry , Apyrase/metabolism , Animals , Antigens, CD/genetics , Apyrase/genetics , Cell Line , DNA Transposable Elements/genetics , Nucleotides/metabolism , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Solubility , Transfection , Up-Regulation
6.
Bioorg Chem ; 82: 253-266, 2019 02.
Article in English | MEDLINE | ID: mdl-30391856

ABSTRACT

Overexpression of NTPDases leads to a number of pathological situations such as thrombosis, and cancer. Thus, effective inhibitors are required to combat these pathological situations. Different classes of NTPDase inhibitors are reported so far including nucleotides and their derivatives, sulfonated dyes such as reactive blue 2, suramin and its derivatives, and polyoxomatalates (POMs). Suramin is a well-known and potent NTPDase inhibitor, nonetheless, a range of side effects are also associated with it. Reactive blue 2 also had non-specific side effects that become apparent at high concentrations. In addition, most of the NTPDase inhibitors are high molecular weight compounds, always required tedious chemical steps to synthesize. Hence, there is still need to explore novel, low molecular weight, easy to synthesize, and potent NTPDase inhibitors. Keeping in mind the known NTPDase inhibitors with imine functionality and nitrogen heterocycles, Schiff bases of tryptamine, 1-26, were synthesized and characterized by spectroscopic techniques such as EI-MS, HREI-MS, 1H-, and 13C NMR. All the synthetic compounds were evaluated for the inhibitory avidity against activities of three major isoforms of NTPDases: NTPDase-1, NTPDase-3, and NTPDase-8. Cumulatively, eighteen compounds were found to show potent inhibition (Ki = 0.0200-0.350 µM) of NTPDase-1, twelve (Ki = 0.071-1.060 µM) of NTPDase-3, and fifteen compounds inhibited (Ki = 0.0700-4.03 µM) NTPDase-8 activity. As a comparison, the Kis of the standard inhibitor suramin were 1.260 ±â€¯0.007, 6.39 ±â€¯0.89 and 1.180 ±â€¯0.002 µM, respectively. Kinetic studies were performed on lead compounds (6, 5, and 21) with human (h-) NTPDase-1, -3, and -8, and Lineweaver-Burk plot analysis showed that they were all competitive inhibitors. In silico study was conducted on compound 6 that showed the highest level of inhibition of NTPDase-1 to understand the binding mode in the active site of the enzyme.


Subject(s)
Adenosine Triphosphatases/antagonists & inhibitors , Apyrase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Schiff Bases/chemistry , Tryptamines/chemistry , Adenosine Triphosphatases/isolation & purification , Animals , Antigens, CD/chemistry , Antigens, CD/isolation & purification , Apyrase/chemistry , Apyrase/isolation & purification , Catalytic Domain , Cell Line , Chlorocebus aethiops , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/toxicity , Humans , Kinetics , Molecular Docking Simulation , Molecular Structure , Schiff Bases/chemical synthesis , Schiff Bases/toxicity , Structure-Activity Relationship , Tryptamines/chemical synthesis , Tryptamines/toxicity
7.
Chemistry ; 24(42): 10745-10755, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-29761917

ABSTRACT

The ability to study cellular metabolism and enzymatic processes involving adenosine triphosphate (ATP) is impeded by the lack of imaging probes capable of signalling the concentration and distribution of intracellular ATP rapidly, with high sensitivity. We report here the first example of a luminescent lanthanide complex capable of visualizing changes in the concentration of ATP in the mitochondria of living cells. Four cationic europium(III) complexes [Eu.1-4]+ have been synthesized and their binding capabilities towards nucleoside polyphosphate anions examined in aqueous solution at physiological pH. Complexes [Eu.1]+ and [Eu.3]+ bearing hydrogen bond donor groups in the pendant arms showed excellent discrimination between ATP, ADP and monophosphate species. Complex [Eu.3]+ showed relatively strong binding to ATP (logKa =5.8), providing a rapid, long-lived luminescent signal that enabled its detection in a highly competitive aqueous medium containing biologically relevant concentrations of Mg2+ , ADP, GTP, UTP and human serum albumin. This EuIII complex responds linearly to ATP within the physiological concentration range (1-5 mm), and was used to continuously monitor the apyrase-catalyzed hydrolysis of ATP to ADP in vitro. We demonstrate that [Eu.3]+ can permeate mammalian (NIH-3T3) cells efficiently and localize to the mitochondria selectively, permitting real-time visualization of elevated mitochondrial ATP levels following treatment with a broad spectrum kinase inhibitor, staurosporine, as well as depleted ATP levels upon treatment with potassium cyanide under glucose starvation conditions.


Subject(s)
Adenosine Triphosphate/metabolism , Antigens, CD/chemistry , Apyrase/chemistry , Europium/chemistry , Ions/chemistry , Mitochondria/metabolism , Adenosine Triphosphate/chemistry , Animals , Humans , Luminescence , Mitochondria/chemistry
8.
Cell Biol Int ; 42(6): 670-682, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29384228

ABSTRACT

Nucleoside triphosphate diphosphohydrolases (NTPDases) are enzymes that belong to the GDA1/CD39 protein superfamily. These enzymes catalyze the hydrolysis of ATP and ADP to the monophosphate form (AMP). Biochemical characterization of the nucleotidases/NTPDases from various types of cells, including those from plants, animals, and pathogenic organisms, has revealed the existence of several isoforms with different specificities with respect to divalent cations (magnesium, calcium, manganese, and zinc) and substrates. In mammals, the NTPDases play important roles in the regulation of thrombosis and inflammation. In parasites of the genus Leishmania, the causative agents of leishmaniasis, two NTPDase isoforms, termed NTPDase-1 and NTPDase-2 have been described. Independently of their cellular localization, whether cell-surface localized, secreted or targeted to other organelles, in some Leishmania species these NTPDases could be involved in parasite growth, infectivity, and virulence. Experimental evidence has suggested that the hydrolysis of ATP and ADP by parasite ecto-nucleotidases can down-modulate the host immune response. In this context, the present work provides an overview of recent works that show strong evidence not only of the involvement of the nucleotidases/NTPDases in Leishmania spp infectivity and virulence but also of the molecular mechanisms that lead to the success of the parasitic infection.


Subject(s)
Leishmania/enzymology , Nucleoside-Triphosphatase/metabolism , Protozoan Proteins/metabolism , Animals , Antigens, CD/chemistry , Antigens, CD/metabolism , Apyrase/chemistry , Apyrase/metabolism , Humans , Leishmania/immunology , Leishmania/physiology , Leishmaniasis/parasitology , Leishmaniasis/pathology , Leishmaniasis/veterinary , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Nucleoside-Triphosphatase/chemistry , Nucleoside-Triphosphatase/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Virulence
9.
Analyst ; 143(22): 5417-5430, 2018 Nov 05.
Article in English | MEDLINE | ID: mdl-30303204

ABSTRACT

Ecto-nucleoside triphosphate diphosphohydrolase1 (NTPDase1, CD39) is a major ectonucleotidase that hydrolyzes proinflammatory ATP via ADP to AMP, which is subsequently converted by ecto-5'-nucleotidase (CD73) to immunosuppressive adenosine. Activation of CD39 has potential for treating inflammatory diseases, while inhibition was suggested as a novel strategy for the immunotherapy of cancer. In the present study, we developed a selective and highly sensitive capillary electrophoresis (CE) assay using a novel fluorescent CD39 substrate, a fluorescein-labelled ATP (PSB-170621A) that is converted to its AMP derivative. To accelerate the assays, a two-directional (forward and reverse) CE system was implemented using 96-well plates, which is suitable for the screening of compound libraries (Z'-factor: 0.7). The detection limits for the forward and reverse operation were 11.7 and 2.00 pM, respectively, indicating a large enhancement in sensitivity as compared to previous methods (e.g. malachite-green assay: 1 000 000-fold, CE-UV assay: 500 000-fold, fluorescence polarization immunoassay: 12 500-fold). Enzyme kinetic studies at human CD39 revealed a Km value of 19.6 µM, and a kcat value of 119 × 10-3 s-1 for PSB-170621A, which shows similar substrate properties as ATP (11.4 µM and 82.5 × 10-3 s-1). The compound displayed similar properties at rat and mouse CD39. Subsequent docking studies into a homology model of human CD39 revealed a hydrophobic pocket that accommodates the fluorescein tag. PSB-170621A was found to be preferably hydrolyzed by CD39 as compared to other ectonucleotidases. The new assay was validated by performing inhibition assays with several standard CD39 inhibitors yielding results that were consonant with data using the natural substrates.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/chemistry , Antigens, CD/analysis , Apyrase/analysis , Electrophoresis, Capillary/methods , Enzyme Assays/methods , Fluoresceins/chemistry , Fluorescent Dyes/chemistry , Animals , Antigens, CD/chemistry , Antigens, CD/isolation & purification , Apyrase/antagonists & inhibitors , Apyrase/chemistry , Apyrase/isolation & purification , Humans , Kinetics , Limit of Detection , Mice , Molecular Docking Simulation , Rats , Sequence Homology, Amino Acid
10.
J Struct Biol ; 197(3): 201-209, 2017 03.
Article in English | MEDLINE | ID: mdl-27810564

ABSTRACT

The Pfam PF04536 TPM_phosphatase family is a broadly conserved family of domains found across prokaryotes, plants and invertebrates. Despite having a similar protein fold, members of this family have been implicated in diverse cellular processes and found in varied subcellular localizations. Very recently, the biochemical characterization of two evolutionary divergent TPM domains has shown that they are able to hydrolyze phosphate groups from different substrates. However, there are still incorrect functional annotations and uncertain relationships between the structure and function of this family of domains. BA41 is an uncharacterized single-pass transmembrane protein from the Antarctic psychrotolerant bacterium Bizionia argentinensis with a predicted compact extracytoplasmic TPM domain and a C-terminal cytoplasmic low complexity region. To shed light on the structural properties that enable TPM domains to adopt divergent roles, we here accomplish a comprehensive structural and functional characterization of the central TPM domain of BA41 (BA41-TPM). Contrary to its predicted function as a beta-propeller methanol dehydrogenase, light scattering and crystallographic studies showed that BA41-TPM behaves as a globular monomeric protein and adopts a conserved Rossmann fold, typically observed in other TPM domain structures. Although the crystal structure reveals the conservation of residues involved in substrate binding, no putative catalytic or intramolecular metal ions were detected. Most important, however, extensive biochemical studies demonstrated that BA41-TPM has hydrolase activity against ADP, ATP, and other di- and triphosphate nucleotides and shares properties of cold-adapted enzymes. The role of BA41 in extracellular ATP-mediated signaling pathways and its occurrence in environmental and pathogenic microorganisms is discussed.


Subject(s)
Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Apyrase/chemistry , Apyrase/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cold Temperature , Crystallography, X-Ray , Protein Structure, Tertiary
11.
Protein Expr Purif ; 131: 60-69, 2017 03.
Article in English | MEDLINE | ID: mdl-27856402

ABSTRACT

Visceral Leishmaniasis (VL) represents an important global health problem in several warm countries around the world. The main targets in this study are the two nucleoside triphosphate diphosphohydrolases (NTPDases) from Leishmania infantum chagasi that are the main etiologic agent of VL in the New World. These enzymes, called LicNTPDase1 and -2, are homologous to members 5 and 6 of the mammalian E-NTPDase/CD39 superfamily of enzymes. These enzymes hydrolyze nucleotides and accordingly can participate in the purine salvage pathways and in the modulation of purinergic signaling through the extracellular nucleotide-dependent host immune responses. They can therefore affect adhesion and infection of host cells and the parasite virulence. To further characterize these enzymes, in this work, we expressed LicNTPDase1 and -2 in the classical bacterial system Escherichia coli and mammalian cell system COS-7 cells. Our data demonstrate that changes in refolding after expression in bacteria can increase the activity of recombinant (r) rLicNTPDase2 up to 20 times but has no significant effect on rLicNTPDase1. Meanwhile, the expression in COS-7 led to a significant increase in activity for rLicNTPDase1.


Subject(s)
Adenosine Triphosphatases , Antigens, CD , Apyrase , Gene Expression , Leishmania infantum/genetics , Protein Refolding , Protozoan Proteins , Adenosine Triphosphatases/biosynthesis , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/isolation & purification , Animals , Antigens, CD/biosynthesis , Antigens, CD/chemistry , Antigens, CD/genetics , Antigens, CD/isolation & purification , Apyrase/biosynthesis , Apyrase/chemistry , Apyrase/genetics , Apyrase/isolation & purification , COS Cells , Chlorocebus aethiops , Escherichia coli , Leishmania infantum/enzymology , Protozoan Proteins/biosynthesis , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
12.
Curr Microbiol ; 73(6): 811-819, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27589852

ABSTRACT

In this work, we have described the expression of ecto-ATPDase on the external surface of Leishmania donovani. This enzyme has the ability to hydrolyze extracellular ATP. There is a low level of ATP hydrolysis in the absence of divalent cation 2.5 ± 0.51 nM Pi 107 cells/h which shows the divalent cation-dependent activity of this enzyme in the intact parasite. However, MgCl2 stimulated the ATP hydrolysis to a greater extent compared with CaCl2 and ZnCl2. This activity was also observed when replaced by MnCl2. The Mg-dependent ecto-ATPase activity was 46.58 ± 6.248 nM Pi 107 cells/h. The apparent K m for ATP was 5.76 mM. Since Leishmania also possesses acid phosphatase activity and to discard the possibility that the observed ATP hydrolysis was due to acid phosphatase, the effect of pH was examined. In the pH range 6.0-9.0, in which the cells were viable, the phosphatase activity decreased while ATPase activity increased. To show that the observed ATP hydrolysis was not due to phosphatase or nucleotidase activity, certain inhibitors for these enzymes were tested. Vandate and NaF inhibited the phosphatase activity; Ammonium molybdate inhibited 5'-nucleotidase activity, but these inhibitors did not inhibit the observed ATP hydrolysis. However, when ADP was used as a substrate, there was no inhibition of ATP hydrolysis showing the possibility of ATP diphosphohydrolase activity. To confirm that this Mg-dependent ATPase activity is an ecto-ATPase activity, we used an impermeable inhibitor, 4,4'-diisothiocyanostilbene 2,-2'-disulfonic acid, as well as suramin, an antagonist of P2-purinoceptors and inhibitor of some ecto-ATPases. These two reagents inhibited the Mg2+-dependent ATPase activity in a dose-dependent manner. The presence of L. donovani E-NTPDase activity was demonstrated using antibodies against NTPDase by Western blotting and flow cytometry. The presence of Mg2+-dependent ATP diphosphohydrolase activity on the surface of L. donovani modulates the nucleotide concentration and protects the parasite from the lytic effects of the nucleotides mainly ATP. Ecto-ATPDase from L. donovani may be further characterized as a good antigen and as a target for immunodiagnosis and drug development, respectively.


Subject(s)
Adenosine Triphosphatases/metabolism , Leishmania donovani/enzymology , Magnesium/metabolism , Protozoan Proteins/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Adenosine Triphosphate/metabolism , Apyrase/chemistry , Apyrase/genetics , Apyrase/metabolism , Cell Membrane/chemistry , Cell Membrane/enzymology , Cell Membrane/genetics , Enzyme Stability , Kinetics , Leishmania donovani/chemistry , Leishmania donovani/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Substrate Specificity
13.
Funct Integr Genomics ; 15(6): 753-62, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26277720

ABSTRACT

Tuber mustard (Brassica juncea (L.) Czern. et Coss. var. tumida Tsen et Lee) is an important vegetable crop with a characteristic of expanded stem that is edible. The underlying molecular mechanism of the stem expansion is not well understood. Here, we reported that a total of 51 differentially expressed fragments (DEFs) with three expression patterns during stem expansion of tuber mustard were identified by cDNA-AFLP analysis. Among the DEFs, DEF11 with high homology to Arabidopsis thaliana apyrase 2 (AtAPY2) that encodes an enzyme with ATPase and ADPase activity was development- and tissue-specific. DEF11 was thus renamed as BjAPY2. The expression levels of BjAPY2 increased with the stem expression and were the highest at stage IV, a developmental stage at which the stem expanded most rapidly. In contrast, the BjAPY2 expression levels in leaves were much lower and remained unchanged during leaf development and expansion, suggesting that BjAPY2 was closely associated with the expansion of stems but not of leaves in the tuber mustard. Interestingly, the expression of BjAPY2 was higher in the mustard under short-day (SD) photoperiod (8 h/16 h) than that under long-day (LD) photoperiod (16 h/8 h); similarly, the transcript levels of BjAPY2 were higher in the mustard grown at low temperature (14 °C/12 °C) than that at high temperature (26 °C /24 °C). The SD photoperiod and low temperature were two environmental conditions that favored the mustard stem expansion. Further cloning and analysis of the promoter region of BjAPY2 revealed that there were indeed several types of motifs in the promoter region, including the light and temperature responsive elements. These results suggested that BjAPY2 might play an important role during the stem expansion of the tuber mustard.


Subject(s)
Apyrase/genetics , Gene Expression Regulation, Plant , Heat-Shock Response , Mustard Plant/genetics , Photoperiod , Plant Proteins/genetics , Amino Acid Sequence , Apyrase/chemistry , Apyrase/metabolism , Molecular Sequence Data , Mustard Plant/growth & development , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Stems/genetics , Plant Stems/growth & development , Response Elements , Sunlight
14.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 4): 1147-54, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24699658

ABSTRACT

Nucleoside triphosphate diphosphohydrolases (NTPDases) are secreted or membrane-bound ectonucleotidases that hydrolyze the anhydride bonds of nucleoside triphosphates and nucleoside diphosphates. Mammalian cell-surface NTPDase enzymes are inhibited by various polyoxometallates. Here, the structures of NTPDase1 from the bacterium Legionella pneumophila (LpNTPDase1) in complex with the dodecatungstate POM-1, decavanadate and octamolybdate/heptamolybdate are described. The metal clusters are bound at different sites but always in a highly ordered fashion via electrostatic interactions and hydrogen bonds. For octamolybdate, covalent interactions after oxygen ligand exchange by a serine and histidine side chain are also observed. The potential inhibitory mechanism and the use of the metal clusters as phasing tools for new NTPDase structures are discussed. The binding mode of a tartrate ion at the catalytic centre suggests novel strategies for the structure-based design of NTPDase inhibitors, and the observation of the enzyme in an intermediate open state contributes to our understanding of NTPDase enzyme dynamics.


Subject(s)
Antigens, CD/chemistry , Apyrase/chemistry , Legionella pneumophila/enzymology , Tungsten Compounds/chemistry , Antigens, CD/metabolism , Apyrase/metabolism , Models, Molecular , Phosphates/chemistry , Phosphates/metabolism , Protein Structure, Tertiary , Structural Homology, Protein , Tungsten Compounds/metabolism
15.
Chemistry ; 20(48): 15768-74, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25303281

ABSTRACT

Two tripodal fluorescent probes Zn⋅L(1,2) have been synthesised, and their anion-binding capabilities were examined by using fluorescence spectroscopy. Probe Zn⋅L(1) allows the selective and ratiometric detection of adenosine triphosphate (ATP) at physiological pH, even in the presence of several competing anions, such as ADP, phosphate and bicarbonate. The probe was applied to the real-time monitoring of the apyrase-catalysed hydrolysis of ATP, in a medium that mimics an extracellular fluid.


Subject(s)
Adenosine Triphosphate/analysis , Adenosine Triphosphate/chemistry , Anions/chemistry , Apyrase/chemistry , Coordination Complexes/chemical synthesis , Fluorescent Dyes/chemical synthesis , Quinolines/chemistry , Zinc/chemistry , Catalysis , Coordination Complexes/chemistry , Fluorescent Dyes/chemistry , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Spectrometry, Fluorescence , Water
16.
Traffic ; 12(9): 1148-65, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21711430

ABSTRACT

Cargo proteins of the biosynthetic secretory pathway are folded in the endoplasmic reticulum (ER) and proceed to the trans Golgi network for sorting and targeting to the apical or basolateral sides of the membrane, where they exert their function. These processes depend on diverse protein domains. Here, we used CD39 (NTPdase1), a modulator of thrombosis and inflammation, which contains an extracellular and two transmembrane domains (TMDs), as a model protein to address comprehensively the role of native TMDs in folding, polarized transport and biological activity. In MDCK cells, CD39 exits Golgi dynamin-dependently and is targeted to the apical side of the membrane. Although the N-terminal TMD possesses an apical targeting signal, the N- and C-terminal TMDs are not required for apical targeting of CD39. Folding and transport to the plasma membrane relies only on the C-terminal TMD, while the N-terminal one is redundant. Nevertheless, both N- and C-terminal anchoring as well as genuine TMDs are critical for optimal enzymatic activity and activation by cholesterol. We conclude therefore that TMDs are not just mechanical linkers between proteins and membranes but are also able to control folding and sorting, as well as biological activity via sensing components of lipid bilayers.


Subject(s)
Antigens, CD/metabolism , Apyrase/metabolism , Cell Membrane/metabolism , Membrane Proteins/metabolism , Protein Processing, Post-Translational , Animals , Antigens, CD/chemistry , Antigens, CD/genetics , Apyrase/chemistry , Apyrase/genetics , Cell Line , Cell Membrane/genetics , Cell Polarity , Dynamins/genetics , Dynamins/metabolism , Endoplasmic Reticulum/metabolism , Membrane Proteins/chemistry , Membrane Proteins/genetics , Molecular Sequence Data , Protein Structure, Tertiary , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
17.
Proteins ; 81(7): 1271-6, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23526564

ABSTRACT

Toxoplasma gondii nucleoside triphosphate diphosphohydrolase (NTPDase) 1 was crystallized in an intermediate tetrameric conformation. The crystal structure is similar to that of T. gondii NTPDase3 and represents an inactive conformation as the activating disulfide bridge is not reduced and the active site cleft between the two domains of each monomer is open. However, the arrangement of the monomers within the tetramer differs from that of the inactive form of NTPDase3 and may represent an intermediate conformation on the path of the closure motion of the tetramer induced upon activation.


Subject(s)
Antigens, CD/chemistry , Apyrase/chemistry , Pyrophosphatases/chemistry , Toxoplasma/enzymology , Adenosine Triphosphate/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Humans , Kinetics , Models, Molecular , Nucleotides/chemistry , Protein Conformation , Protein Structure, Tertiary
18.
Chembiochem ; 14(17): 2292-300, 2013 Nov 25.
Article in English | MEDLINE | ID: mdl-24115522

ABSTRACT

Two nucleoside triphosphate diphosphohydrolase isoforms (NTPDase1 and NTPDase3) are responsible for the hydrolysis of nucleotides by the intracellular protozoan Toxoplasma gondii. They constitute about 3 % of the total parasite protein. Despite sharing 97 % sequence identity they exhibit opposite ATP versus ADP substrate discrimination ratios. Here we show by mutagenesis that the residues G492/G493 in NTPDase3 and R492/E493 in NTPDase1 are predominantly responsible for the differences in substrate specificity. Crystal structures of NTPDase1 in complexation with analogues of ATP and ADP reveal that the inverted substrate specificity of NTPDase1 relative to NTPDase3 is achieved by switching from the canonical substrate binding mode to a very different alternative one. Instead of being stacked on top of a helix of the C-terminal domain the nucleotide base is positioned in the interdomain space between the side chains of R108 and R492, recruited from both domains. Furthermore, we show that the NTPDase1 substrate specificity is mainly dependent on the presence of the side chain of E493, which causes repositioning of the ribose component of the nucleotide. All in all, binding by the flexible side chains in the alternative binding mode in NTPDase1 allows for equally good positioning of ATP and ADP with increased activity toward ADP relative to what is seen in the case of NTPDase3.


Subject(s)
Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Antigens, CD/metabolism , Apyrase/metabolism , Pyrophosphatases/metabolism , Toxoplasma/enzymology , Adenosine Diphosphate/chemistry , Adenosine Triphosphate/chemistry , Antigens, CD/chemistry , Antigens, CD/genetics , Apyrase/chemistry , Apyrase/genetics , Binding Sites , Models, Molecular , Pyrophosphatases/chemistry , Pyrophosphatases/genetics , Substrate Specificity
19.
Article in English | MEDLINE | ID: mdl-23519799

ABSTRACT

Nucleoside triphosphate diphosphohydrolases (NTPDases) are a large class of nucleotidases that hydrolyze the (γ/ß)- and (ß/α)-anhydride bonds of nucleoside triphosphates and diphosphates, respectively. NTPDases are found throughout the eukaryotic domain. In addition, a very small number of members can be found in bacteria, most of which live as parasites of eukaryotic hosts. NTPDases of intracellular and extracellular parasites are emerging as important regulators for the survival of the parasite. To deepen the knowledge of the structure and function of this enzyme class, recombinant production of the NTPDase1 from the bacterium Legionella pneumophila has been established. The protein could be crystallized in six crystal forms, of which one has been described previously. The crystals diffracted to resolutions of between 1.4 and 2.5 Å. Experimental phases determined by a sulfur SAD experiment using an orthorhombic crystal form produced an interpretable electron-density map.


Subject(s)
Antigens, CD/chemistry , Apyrase/chemistry , Bacterial Proteins/chemistry , Legionella pneumophila/chemistry , Amino Acid Sequence , Antigens, CD/genetics , Apyrase/genetics , Bacterial Proteins/genetics , Catalytic Domain , Crystallography, X-Ray , Escherichia coli/chemistry , Escherichia coli/genetics , Legionella pneumophila/enzymology , Molecular Sequence Data , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
20.
Sci Rep ; 13(1): 8958, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37268726

ABSTRACT

CD39 (ectonucleoside triphosphate diphosphohydrolase-1; ENTPD1) metabolizes extracellular ATP and ADP to AMP. AMP is subsequently metabolized by CD79 to adenosine. CD39 activity is therefore a key regulator of purinergic signalling in cancer, thrombosis, and autoimmune diseases. In this study we demonstrate that soluble, recombinant CD39 shows substrate inhibition with ADP or ATP as the substrate. Although CD39 activity initially increased with increasing substrate concentration, at high concentrations of ATP or ADP, CD39 activity was markedly reduced. Although the reaction product, AMP, inhibits CD39 activity, insufficient AMP was generated under our conditions to account for the substrate inhibition seen. In contrast, inhibition was not seen with UDP or UTP as substrates. 2-methylthio-ADP also showed no substrate inhibition, indicating the nucleotide base is an important determinant of substrate inhibition. Molecular dynamics simulations revealed that ADP can undergo conformational rearrangements within the CD39 active site that were not seen with UDP or 2-methylthio-ADP. Appreciating the existence of substrate inhibition of CD39 will help the interpretation of studies of CD39 activity, including investigations into drugs that modulate CD39 activity.


Subject(s)
Apyrase , Humans , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Apyrase/chemistry , Apyrase/metabolism , Uridine Diphosphate
SELECTION OF CITATIONS
SEARCH DETAIL