Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27.766
Filter
1.
Cell ; 186(7): 1300-1302, 2023 03 30.
Article in English | MEDLINE | ID: mdl-37001494

ABSTRACT

In 1916, Ricca hypothesized that plant defense mediators are transported by xylem vessels. While it was discovered that electrical waves generated at plant wounds also transmit information over great distances, the molecular nature of the so-called Ricca factor remained unclear. In this issue of Cell, Gao et al. identify thioglucoside glucohydrolases as a Ricca factor in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Herbivory , Plants , Arabidopsis Proteins/genetics , Xylem
2.
Cell ; 186(11): 2329-2344.e20, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37192618

ABSTRACT

Enabling and constraining immune activation is of fundamental importance in maintaining cellular homeostasis. Depleting BAK1 and SERK4, the co-receptors of multiple pattern recognition receptors (PRRs), abolishes pattern-triggered immunity but triggers intracellular NOD-like receptor (NLR)-mediated autoimmunity with an elusive mechanism. By deploying RNAi-based genetic screens in Arabidopsis, we identified BAK-TO-LIFE 2 (BTL2), an uncharacterized receptor kinase, sensing BAK1/SERK4 integrity. BTL2 induces autoimmunity through activating Ca2+ channel CNGC20 in a kinase-dependent manner when BAK1/SERK4 are perturbed. To compensate for BAK1 deficiency, BTL2 complexes with multiple phytocytokine receptors, leading to potent phytocytokine responses mediated by helper NLR ADR1 family immune receptors, suggesting phytocytokine signaling as a molecular link connecting PRR- and NLR-mediated immunity. Remarkably, BAK1 constrains BTL2 activation via specific phosphorylation to maintain cellular integrity. Thus, BTL2 serves as a surveillance rheostat sensing the perturbation of BAK1/SERK4 immune co-receptors in promoting NLR-mediated phytocytokine signaling to ensure plant immunity.


Subject(s)
Arabidopsis , Plant Immunity , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Receptors, Pattern Recognition , Signal Transduction
3.
Cell ; 186(19): 4100-4116.e15, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37643610

ABSTRACT

Nucleosomes block access to DNA methyltransferase, unless they are remodeled by DECREASE in DNA METHYLATION 1 (DDM1LSH/HELLS), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 promotes replacement of histone variant H3.3 by H3.1. In ddm1 mutants, DNA methylation is partly restored by loss of the H3.3 chaperone HIRA, while the H3.1 chaperone CAF-1 becomes essential. The single-particle cryo-EM structure at 3.2 Å of DDM1 with a variant nucleosome reveals engagement with histone H3.3 near residues required for assembly and with the unmodified H4 tail. An N-terminal autoinhibitory domain inhibits activity, while a disulfide bond in the helicase domain supports activity. DDM1 co-localizes with H3.1 and H3.3 during the cell cycle, and with the DNA methyltransferase MET1Dnmt1, but is blocked by H4K16 acetylation. The male germline H3.3 variant MGH3/HTR10 is resistant to remodeling by DDM1 and acts as a placeholder nucleosome in sperm cells for epigenetic inheritance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA Methylation , Histones , Nucleosomes , Chromatin Assembly and Disassembly , DNA , DNA Modification Methylases , Epigenesis, Genetic , Histones/genetics , Nucleosomes/genetics , Semen , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
4.
Cell ; 186(6): 1230-1243.e14, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36931246

ABSTRACT

Although Ca2+ has long been recognized as an obligatory intermediate in visual transduction, its role in plant phototransduction remains elusive. Here, we report a Ca2+ signaling that controls photoreceptor phyB nuclear translocation in etiolated seedlings during dark-to-light transition. Red light stimulates acute cytosolic Ca2+ increases via phyB, which are sensed by Ca2+-binding protein kinases, CPK6 and CPK12 (CPK6/12). Upon Ca2+ activation, CPK6/12 in turn directly interact with and phosphorylate photo-activated phyB at Ser80/Ser106 to initiate phyB nuclear import. Non-phosphorylatable mutation, phyBS80A/S106A, abolishes nuclear translocation and fails to complement phyB mutant, which is fully restored by combining phyBS80A/S106A with a nuclear localization signal. We further show that CPK6/12 function specifically in the early phyB-mediated cotyledon expansion, while Ser80/Ser106 phosphorylation generally governs phyB nuclear translocation. Our results uncover a biochemical regulatory loop centered in phyB phototransduction and provide a paradigm for linking ubiquitous Ca2+ increases to specific responses in sensory stimulus processing.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Phytochrome B/genetics , Phytochrome B/metabolism , Phytochrome/genetics , Phytochrome/metabolism , Calcium/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Light , Light Signal Transduction , Mutation
5.
Cell ; 186(22): 4773-4787.e12, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37806310

ABSTRACT

Pollen-pistil interactions establish interspecific/intergeneric pre-zygotic hybridization barriers in plants. The rejection of undesired pollen at the stigma is crucial to avoid outcrossing but can be overcome with the support of mentor pollen. The mechanisms underlying this hybridization barrier are largely unknown. Here, in Arabidopsis, we demonstrate that receptor-like kinases FERONIA/CURVY1/ANJEA/HERCULES RECEPTOR KINASE 1 and cell wall proteins LRX3/4/5 interact on papilla cell surfaces with autocrine stigmatic RALF1/22/23/33 peptide ligands (sRALFs) to establish a lock that blocks the penetration of undesired pollen tubes. Compatible pollen-derived RALF10/11/12/13/25/26/30 peptides (pRALFs) act as a key, outcompeting sRALFs and enabling pollen tube penetration. By treating Arabidopsis stigmas with synthetic pRALFs, we unlock the barrier, facilitating pollen tube penetration from distantly related Brassicaceae species and resulting in interspecific/intergeneric hybrid embryo formation. Therefore, we uncover a "lock-and-key" system governing the hybridization breadth of interspecific/intergeneric crosses in Brassicaceae. Manipulating this system holds promise for facilitating broad hybridization in crops.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Peptide Hormones , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Brassicaceae/genetics , Brassicaceae/metabolism , Peptide Hormones/metabolism , Peptides/metabolism , Pollen/metabolism , Pollen Tube/metabolism , Reproductive Isolation
6.
Cell ; 186(25): 5457-5471.e17, 2023 12 07.
Article in English | MEDLINE | ID: mdl-37979582

ABSTRACT

Extracellular perception of auxin, an essential phytohormone in plants, has been debated for decades. Auxin-binding protein 1 (ABP1) physically interacts with quintessential transmembrane kinases (TMKs) and was proposed to act as an extracellular auxin receptor, but its role was disputed because abp1 knockout mutants lack obvious morphological phenotypes. Here, we identified two new auxin-binding proteins, ABL1 and ABL2, that are localized to the apoplast and directly interact with the extracellular domain of TMKs in an auxin-dependent manner. Furthermore, functionally redundant ABL1 and ABL2 genetically interact with TMKs and exhibit functions that overlap with those of ABP1 as well as being independent of ABP1. Importantly, the extracellular domain of TMK1 itself binds auxin and synergizes with either ABP1 or ABL1 in auxin binding. Thus, our findings discovered auxin receptors ABL1 and ABL2 having functions overlapping with but distinct from ABP1 and acting together with TMKs as co-receptors for extracellular auxin.


Subject(s)
Arabidopsis , Indoleacetic Acids , Plant Growth Regulators , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
7.
Cell ; 182(5): 1072-1074, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32888491

ABSTRACT

The plant immune response regulator NPR1 resides in either the nucleus or in cytoplasmic puncta, depending on levels of the plant hormone salicylic acid. NPR1 nuclear roles include pathogenesis response (PR) gene regulation. In this issue of Cell, Zavaliev et al. determine that cytoplasmic NPR1-containing assemblies are consistent with multi-component protein condensates with roles to promote cell survival.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Survival , Gene Expression Regulation, Plant , Plant Immunity
8.
Cell ; 178(5): 1260-1272.e14, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442410

ABSTRACT

Infectious disease is both a major force of selection in nature and a prime cause of yield loss in agriculture. In plants, disease resistance is often conferred by nucleotide-binding leucine-rich repeat (NLR) proteins, intracellular immune receptors that recognize pathogen proteins and their effects on the host. Consistent with extensive balancing and positive selection, NLRs are encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define a nearly complete species-wide pan-NLRome in Arabidopsis thaliana based on sequence enrichment and long-read sequencing. The pan-NLRome largely saturates with approximately 40 well-chosen wild strains, with half of the pan-NLRome being present in most accessions. We chart NLR architectural diversity, identify new architectures, and quantify selective forces that act on specific NLRs and NLR domains. Our study provides a blueprint for defining pan-NLRomes.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , NLR Proteins/genetics , Alleles , Arabidopsis Proteins/metabolism , Disease Resistance/genetics , Genetic Variation , Genome, Plant , NLR Proteins/metabolism , Plant Diseases/genetics , Plant Immunity , Species Specificity
9.
Cell ; 176(5): 1068-1082.e19, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30739798

ABSTRACT

The RNA-directed DNA methylation (RdDM) pathway in plants controls gene expression via cytosine DNA methylation. The ability to manipulate RdDM would shed light on the mechanisms and applications of DNA methylation to control gene expression. Here, we identified diverse RdDM proteins that are capable of targeting methylation and silencing in Arabidopsis when tethered to an artificial zinc finger (ZF-RdDM). We studied their order of action within the RdDM pathway by testing their ability to target methylation in different mutants. We also evaluated ectopic siRNA biogenesis, RNA polymerase V (Pol V) recruitment, targeted DNA methylation, and gene-expression changes at thousands of ZF-RdDM targets. We found that co-targeting both arms of the RdDM pathway, siRNA biogenesis and Pol V recruitment, dramatically enhanced targeted methylation. This work defines how RdDM components establish DNA methylation and enables new strategies for epigenetic gene regulation via targeted DNA methylation.


Subject(s)
Arabidopsis Proteins/metabolism , DNA Methylation/physiology , DNA-Directed RNA Polymerases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cytosine/metabolism , DNA/metabolism , DNA Methylation/genetics , DNA-Directed RNA Polymerases/genetics , Gene Expression Regulation, Plant/genetics , RNA Polymerase II/metabolism , RNA, Plant/genetics , RNA, Small Interfering/metabolism
10.
Cell ; 178(2): 400-412.e16, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31299202

ABSTRACT

Root system architecture (RSA), the distribution of roots in soil, plays a major role in plant survival. RSA is shaped by multiple developmental processes that are largely governed by the phytohormone auxin, suggesting that auxin regulates responses of roots that are important for local adaptation. However, auxin has a central role in numerous processes, and it is unclear which molecular mechanisms contribute to the variation in RSA for environmental adaptation. Using natural variation in Arabidopsis, we identify EXOCYST70A3 as a modulator of the auxin system that causes variation in RSA by acting on PIN4 protein distribution. Allelic variation and genetic perturbation of EXOCYST70A3 lead to alteration of root gravitropic responses, resulting in a different RSA depth profile and drought resistance. Overall our findings suggest that the local modulation of the pleiotropic auxin pathway can gives rise to distinct RSAs that can be adaptive in specific environments.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Alleles , Apomorphine/analogs & derivatives , Apomorphine/pharmacology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Droughts , Exocytosis , Gene Expression Regulation, Plant/drug effects , Genome-Wide Association Study , Membrane Transport Proteins/metabolism , Mutation , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism
11.
Cell ; 174(5): 1095-1105.e11, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30057112

ABSTRACT

Transcriptional downregulation caused by intronic triplet repeat expansions underlies diseases such as Friedreich's ataxia. This downregulation of gene expression is coupled with epigenetic changes, but the underlying mechanisms are unknown. Here, we show that an intronic GAA/TTC triplet expansion within the IIL1 gene of Arabidopsis thaliana results in accumulation of 24-nt short interfering RNAs (siRNAs) and repressive histone marks at the IIL1 locus, which in turn causes its transcriptional downregulation and an associated phenotype. Knocking down DICER LIKE-3 (DCL3), which produces 24-nt siRNAs, suppressed transcriptional downregulation of IIL1 and the triplet expansion-associated phenotype. Furthermore, knocking down additional components of the RNA-dependent DNA methylation (RdDM) pathway also suppressed both transcriptional downregulation of IIL1 and the repeat expansion-associated phenotype. Thus, our results show that triplet repeat expansions can lead to local siRNA biogenesis, which in turn downregulates transcription through an RdDM-dependent epigenetic modification.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Epigenesis, Genetic , Introns , RNA, Plant/genetics , RNA, Small Interfering/genetics , Ribonuclease III/genetics , Transcription, Genetic , DNA Methylation , DNA Polymerase beta/genetics , Down-Regulation , Gene Expression Regulation, Plant , Genes, Plant , Oligonucleotides, Antisense/genetics , Phenotype , RNA Interference , Transgenes , Trinucleotide Repeat Expansion
12.
Cell ; 173(2): 456-469.e16, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29576453

ABSTRACT

Following a previous microbial inoculation, plants can induce broad-spectrum immunity to pathogen infection, a phenomenon known as systemic acquired resistance (SAR). SAR establishment in Arabidopsis thaliana is regulated by the Lys catabolite pipecolic acid (Pip) and flavin-dependent-monooxygenase1 (FMO1). Here, we show that elevated Pip is sufficient to induce an FMO1-dependent transcriptional reprogramming of leaves that is reminiscent of SAR. In planta and in vitro analyses demonstrate that FMO1 functions as a pipecolate N-hydroxylase, catalyzing the biochemical conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates in plants after microbial attack. When exogenously applied, it overrides the defect of NHP-deficient fmo1 in acquired resistance and acts as a potent inducer of plant immunity to bacterial and oomycete infection. Our work has identified a pathogen-inducible L-Lys catabolic pathway in plants that generates the N-hydroxylated amino acid NHP as a critical regulator of systemic acquired resistance to pathogen infection.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Oxygenases/metabolism , Pipecolic Acids/metabolism , Plant Immunity/drug effects , Arabidopsis/enzymology , Arabidopsis/immunology , Arabidopsis Proteins/genetics , Gas Chromatography-Mass Spectrometry , Lysine/metabolism , Oomycetes/pathogenicity , Oxygenases/genetics , Pipecolic Acids/analysis , Pipecolic Acids/pharmacology , Plant Leaves/enzymology , Plant Leaves/immunology , Plant Leaves/metabolism , Pseudomonas syringae/pathogenicity , Transaminases/genetics , Transaminases/metabolism
13.
Mol Cell ; 84(12): 2272-2286.e7, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38851185

ABSTRACT

The interconnections between co-transcriptional regulation, chromatin environment, and transcriptional output remain poorly understood. Here, we investigate the mechanism underlying RNA 3' processing-mediated Polycomb silencing of Arabidopsis FLOWERING LOCUS C (FLC). We show a requirement for ANTHESIS PROMOTING FACTOR 1 (APRF1), a homolog of yeast Swd2 and human WDR82, known to regulate RNA polymerase II (RNA Pol II) during transcription termination. APRF1 interacts with TYPE ONE SERINE/THREONINE PROTEIN PHOSPHATASE 4 (TOPP4) (yeast Glc7/human PP1) and LUMINIDEPENDENS (LD), the latter showing structural features found in Ref2/PNUTS, all components of the yeast and human phosphatase module of the CPF 3' end-processing machinery. LD has been shown to co-associate in vivo with the histone H3 K4 demethylase FLOWERING LOCUS D (FLD). This work shows how the APRF1/LD-mediated polyadenylation/termination process influences subsequent rounds of transcription by changing the local chromatin environment at FLC.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chromatin , Gene Expression Regulation, Plant , Gene Silencing , MADS Domain Proteins , RNA Polymerase II , Transcription Termination, Genetic , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/enzymology , Chromatin/metabolism , Chromatin/genetics , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , Histones/metabolism , Histones/genetics , Histone Deacetylases
14.
Mol Cell ; 84(12): 2255-2271.e9, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38851186

ABSTRACT

The mechanisms and timescales controlling de novo establishment of chromatin-mediated transcriptional silencing by Polycomb repressive complex 2 (PRC2) are unclear. Here, we investigate PRC2 silencing at Arabidopsis FLOWERING LOCUS C (FLC), known to involve co-transcriptional RNA processing, histone demethylation activity, and PRC2 function, but so far not mechanistically connected. We develop and test a computational model describing proximal polyadenylation/termination mediated by the RNA-binding protein FCA that induces H3K4me1 removal by the histone demethylase FLD. H3K4me1 removal feeds back to reduce RNA polymerase II (RNA Pol II) processivity and thus enhance early termination, thereby repressing productive transcription. The model predicts that this transcription-coupled repression controls the level of transcriptional antagonism to PRC2 action. Thus, the effectiveness of this repression dictates the timescale for establishment of PRC2/H3K27me3 silencing. We experimentally validate these mechanistic model predictions, revealing that co-transcriptional processing sets the level of productive transcription at the locus, which then determines the rate of the ON-to-OFF switch to PRC2 silencing.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Gene Silencing , Histones , MADS Domain Proteins , Polycomb Repressive Complex 2 , RNA Polymerase II , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Histones/metabolism , Histones/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Transcription, Genetic , Polyadenylation , Histone Demethylases/metabolism , Histone Demethylases/genetics , Transcription Termination, Genetic , Chromatin/metabolism , Chromatin/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
15.
Cell ; 166(4): 881-893, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27518563

ABSTRACT

Classically, hormones elicit specific cellular responses by activating dedicated receptors. Nevertheless, the biosynthesis and turnover of many of these hormone molecules also produce chemically related metabolites. These molecules may also possess hormonal activities; therefore, one or more may contribute to the adaptive plasticity of signaling outcomes in host organisms. Here, we show that a catabolite of the plant hormone abscisic acid (ABA), namely phaseic acid (PA), likely emerged in seed plants as a signaling molecule that fine-tunes plant physiology, environmental adaptation, and development. This trait was facilitated by both the emergence-selection of a PA reductase that modulates PA concentrations and by the functional diversification of the ABA receptor family to perceive and respond to PA. Our results suggest that PA serves as a hormone in seed plants through activation of a subset of ABA receptors. This study demonstrates that the co-evolution of hormone metabolism and signaling networks can expand organismal resilience.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis/metabolism , Plant Growth Regulators/metabolism , Sesquiterpenes/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , NADP/metabolism , Signal Transduction
16.
Cell ; 166(6): 1526-1538.e11, 2016 Sep 08.
Article in English | MEDLINE | ID: mdl-27569911

ABSTRACT

Nuclear transport of immune receptors, signal transducers, and transcription factors is an essential regulatory mechanism for immune activation. Whether and how this process is regulated at the level of the nuclear pore complex (NPC) remains unclear. Here, we report that CPR5, which plays a key inhibitory role in effector-triggered immunity (ETI) and programmed cell death (PCD) in plants, is a novel transmembrane nucleoporin. CPR5 associates with anchors of the NPC selective barrier to constrain nuclear access of signaling cargos and sequesters cyclin-dependent kinase inhibitors (CKIs) involved in ETI signal transduction. Upon activation by immunoreceptors, CPR5 undergoes an oligomer to monomer conformational switch, which coordinates CKI release for ETI signaling and reconfigures the selective barrier to allow significant influx of nuclear signaling cargos through the NPC. Consequently, these coordinated NPC actions result in simultaneous activation of diverse stress-related signaling pathways and constitute an essential regulatory mechanism specific for ETI/PCD induction.


Subject(s)
Active Transport, Cell Nucleus/immunology , Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Membrane Proteins/metabolism , Nuclear Pore/immunology , Signal Transduction , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Cell Cycle Proteins/metabolism , Gene Expression Regulation, Plant , Membrane Proteins/chemistry , Membrane Proteins/genetics , Protein Conformation
17.
Cell ; 167(1): 87-98.e14, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27641502

ABSTRACT

Aerobic organisms survive low oxygen (O2) through activation of diverse molecular, metabolic, and physiological responses. In most plants, root water permeability (in other words, hydraulic conductivity, Lpr) is downregulated under O2 deficiency. Here, we used a quantitative genetics approach in Arabidopsis to clone Hydraulic Conductivity of Root 1 (HCR1), a Raf-like MAPKKK that negatively controls Lpr. HCR1 accumulates and is functional under combined O2 limitation and potassium (K(+)) sufficiency. HCR1 regulates Lpr and hypoxia responsive genes, through the control of RAP2.12, a key transcriptional regulator of the core anaerobic response. A substantial variation of HCR1 in regulating Lpr is observed at the Arabidopsis species level. Thus, by combinatorially integrating two soil signals, K(+) and O2 availability, HCR1 modulates the resilience of plants to multiple flooding scenarios.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , MAP Kinase Kinase Kinases/metabolism , Oxygen/metabolism , Plant Roots/metabolism , Potassium/metabolism , Water/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , DNA-Binding Proteins , Gene Expression Regulation, Plant , MAP Kinase Kinase Kinases/genetics , Permeability , Transcription Factors/genetics
18.
Mol Cell ; 83(23): 4386-4397.e9, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37995686

ABSTRACT

The multi-pass transmembrane protein ACCELERATED CELL DEATH 6 (ACD6) is an immune regulator in Arabidopsis thaliana with an unclear biochemical mode of action. We have identified two loci, MODULATOR OF HYPERACTIVE ACD6 1 (MHA1) and its paralog MHA1-LIKE (MHA1L), that code for ∼7 kDa proteins, which differentially interact with specific ACD6 variants. MHA1L enhances the accumulation of an ACD6 complex, thereby increasing the activity of the ACD6 standard allele for regulating plant growth and defenses. The intracellular ankyrin repeats of ACD6 are structurally similar to those found in mammalian ion channels. Several lines of evidence link increased ACD6 activity to enhanced calcium influx, with MHA1L as a direct regulator of ACD6, indicating that peptide-regulated ion channels are not restricted to animals.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ankyrins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Death , Ion Channels/genetics , Ion Channels/metabolism , Plant Immunity/genetics
19.
Mol Cell ; 83(7): 1109-1124.e4, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36921607

ABSTRACT

The Polycomb-group chromatin modifiers play important roles to repress or switch off gene expression in plants and animals. How the active chromatin state is switched to a Polycomb-repressed state is unclear. In Arabidopsis, prolonged cold induces the switching of the highly active chromatin state at the potent floral repressor FLC to a Polycomb-repressed state, which is epigenetically maintained when temperature rises to confer "cold memory," enabling plants to flower in spring. We report that the cis-acting cold memory element (CME) region at FLC bears bivalent marks of active histone H3K4me3 and repressive H3K27me3 that are read and interpreted by an assembly of bivalent chromatin readers to drive cold-induced switching of the FLC chromatin state. In response to cold, the 47-bp CME and its associated bivalent chromatin feature drive the switching of active chromatin state at a recombinant gene to a Polycomb-repressed domain, conferring cold memory. We reveal a paradigm for environment-induced chromatin-state switching at bivalent loci in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chromatin/genetics , Chromatin/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Cold Temperature , Gene Expression Regulation, Plant , Flowers/genetics , Flowers/metabolism
20.
Genes Dev ; 37(3-4): 103-118, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36746605

ABSTRACT

RNA-directed DNA methylation in plants is guided by 24-nt siRNAs generated in parallel with 23-nt RNAs of unknown function. We show that 23-nt RNAs function as passenger strands during 24-nt siRNA incorporation into AGO4. The 23-nt RNAs are then sliced into 11- and 12-nt fragments, with 12-nt fragments remaining associated with AGO4. Slicing recapitulated with recombinant AGO4 and synthetic RNAs reveals that siRNAs of 21-24 nt, with any 5'-terminal nucleotide, can guide slicing, with sliced RNAs then retained by AGO4. In vivo, RdDM target locus RNAs that copurify with AGO4 also display a sequence signature of slicing. Comparing plants expressing slicing-competent versus slicing-defective AGO4 shows that slicing elevates cytosine methylation levels at virtually all RdDM loci. We propose that siRNA passenger strand elimination and AGO4 tethering to sliced target RNAs are distinct modes by which AGO4 slicing enhances RNA-directed DNA methylation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , DNA Methylation , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Gene Silencing , RNA, Plant/genetics , RNA, Plant/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL