Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 501
Filter
1.
J Sci Food Agric ; 104(7): 4128-4135, 2024 May.
Article in English | MEDLINE | ID: mdl-38308538

ABSTRACT

BACKGROUND: Glycation is a green processing technology. Based on our previous studies, glycation with l-arabinose and xylose was beneficial to enhance the texture properties of silver carp mince (SCM) gels. However, the possible enhancement mechanism remained unclear. Therefore, in this study, SCM gels with different types of reducing sugar (glucose, l-arabinose, and xylose) were prepared based on our previous study. The possible mechanism of texture enhancement of SCM gels was analyzed by investigating the changes in water distribution, protein structures, and microstructure in the gel system. RESULTS: The glycation of l-arabinose and xylose enhanced the hardness, cohesiveness, chewiness, and resilience of SCM gels. Hardness increased from 1883.04 (control group) to 3624.54 (l-arabinose group) and 4348.18 (xylose group). Low-field nuclear magnetic resonance (LF-NMR) showed that glycation promoted the tight binding of immobilized water to proteins. Raman spectroscopic analysis showed that glycation increased the surface hydrophobicity and promoted the formation of disulfide bonds. Scanning electron microscopy (SEM) showed that glycation promoted the formation of uniform and dense three-dimensional network structure in SCM gels. CONCLUSION: In summary, glycation enhanced the binding ability of immobilized water to proteins, improved the surface hydrophobicity, promoted the formation of disulfide bonds, and led to a more uniform and dense gel network structure of proteins, thus enhancing the texture properties of SCM gels. This research provided a theoretical basis for a better understanding of the mechanism of the effect of glycation on the quality of gel products and also provided technical support for the application of l-arabinose and xylose in new functional gel foods. © 2024 Society of Chemical Industry.


Subject(s)
Carps , Maillard Reaction , Animals , Xylose/chemistry , Arabinose/chemistry , Carps/metabolism , Gels/chemistry , Proteins , Water , Disulfides
2.
J Mol Recognit ; 36(1): e2993, 2023 01.
Article in English | MEDLINE | ID: mdl-36112092

ABSTRACT

Atomic force microscopy (AFM) was used to conduct single-molecule imaging of protein/DNA complexes involved in the regulation of the arabinose operon of Escherichia coli. In the presence of arabinose, the transcription regulatory protein AraC binds to a 38 bp region consisting of the araI1 and araI2 half-sites. The domain positioning of full-length AraC, when bound to DNA, was not previously known. In this study, AraC was combined with 302 and 560 bp DNA and arabinose, deposited on a mica substrate, and imaged with AFM in air. High resolution images of 560 bp DNA, where bound protein was visible, showed that AraC induces a bend in the DNA with an angle 60° ± 12° with a median of 55°. These results are consistent with earlier gel electrophoresis measurements that measured the DNA bend angle based on migration rates. By using known domain structures of AraC, geometric constraints, and contacts determined from biochemical experiments, we developed a model of the tertiary and quaternary structure of DNA-bound AraC in the presence of arabinose. The DNA bend angle predicted by the model is in agreement with the measurement values. We discuss the results in view of other regulatory proteins that cause DNA bending and formation of the open complex to initiate transcription.


Subject(s)
AraC Transcription Factor , Escherichia coli Proteins , AraC Transcription Factor/genetics , AraC Transcription Factor/chemistry , AraC Transcription Factor/metabolism , Escherichia coli Proteins/metabolism , Microscopy, Atomic Force , Cytarabine/metabolism , Repressor Proteins/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Bacterial Proteins/metabolism , Arabinose/chemistry , Arabinose/metabolism , Arabinose/pharmacology , Transcription Factors/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , DNA/metabolism , Protein Binding
3.
Biochem Biophys Res Commun ; 604: 14-21, 2022 05 14.
Article in English | MEDLINE | ID: mdl-35279441

ABSTRACT

l-Arabinose 1-dehydrogenase (AraDH) catalyzes the NAD(P)+-dependent oxidation of l-arabinose to L-arabinono-1,4-lactone in the non-phosphorylative l-arabinose pathway, and is classified into glucose-fructose oxidoreductase and short-chain dehydrogenase/reductase (SDR). We herein report the crystal structure of a SDR-type AraDH (from Herbaspirillum huttiense) for the first time. The interactions between Asp49 and the 2'- and 3'-hydroxyl groups of NAD+ were consistent with strict specificity for NAD+. In a binding model for the substrate, Ser155 and Tyr168, highly conserved in the SDR superfamily, interacted with the C1 and/or C2 hydroxyl(s) of l-arabinose, whereas interactions between Asp107, Arg109, and Gln206 and the C2 and/or C3 hydroxyl(s) were unique to AraDH. Trp200 significantly contributed to the selectivities of the C4 hydroxyl and C6 methyl of substrates.


Subject(s)
Arabinose , Short Chain Dehydrogenase-Reductases , Arabinose/chemistry , NAD/metabolism , Oxidoreductases/metabolism , Short Chain Dehydrogenase-Reductases/metabolism , Substrate Specificity
4.
J Sci Food Agric ; 102(14): 6193-6201, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35679352

ABSTRACT

Taro, a staple food for residents in Africa and parts of Asia, is an important source of carbohydrate. China has abundant taro resources. Taro contains polysaccharide, vitamins, minerals and other substances. Taro polysaccharides, as a significant active ingredient in taro, are mainly composed of monosaccharide units such as glucose, galactose, arabinose, mannose, and so on. Taro polysaccharides have antioxidant, lipid-lowering, and immunomodulatory effects. In today's world, people are interested in food containing natural ingredients, which stimulates the potential of taro polysaccharides in the food, pharmaceutical, medical, and other fields. Herein, the extraction and purification, structural characterization, functional activity, and application of taro polysaccharides are reviewed to strengthen the cognition of taro polysaccharides. It provides references for further research and development of taro polysaccharides. © 2022 Society of Chemical Industry.


Subject(s)
Colocasia , Antioxidants/chemistry , Arabinose/chemistry , Galactose/chemistry , Glucose , Humans , Lipids , Mannose , Monosaccharides/chemistry , Pharmaceutical Preparations , Polysaccharides/chemistry , Vitamins
5.
Biotechnol Lett ; 43(7): 1385-1394, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33797656

ABSTRACT

OBJECTIVE: The effects of monosaccharide constituents of lignocellulosic materials on exopolysaccharide (EPS) production by Mesorhizobium sp. Semia 816 were studied. RESULTS: According to the results, by using sugars commonly found in lignocellulosic biomass as carbon sources (glucose, arabinose and xylose), no significant differences were observed in the production of EPS, reaching 3.39 g/L, 3.33 g/L and 3.27 g/L, respectively. Differences were observed in monosaccharide composition, mainly in relation to rhamnose and glucuronic acid contents (1.8 times higher when arabinose was compared with xylose). However, the biopolymers showed no differences in relation to rheological properties, with EPS aqueous-based suspensions (1.0% w/v) presenting pseudoplastic behavior, and a slight difference in degradation temperatures. Using soybean hulls hydrolysate as carbon source, slightly higher values were obtained (3.93 g/L). CONCLUSION: The results indicate the potential of the use of lignocellulosic hydrolysates containing these sugars as a source of carbon in the cultivation of Mesorhizobium sp. Semia 816 for the production of EPS with potential industrial applications.


Subject(s)
Glycine max/chemistry , Lignin/chemistry , Mesorhizobium/growth & development , Monosaccharides/chemistry , Arabinose/chemistry , Biomass , Fermentation , Glucose/chemistry , Hydrolysis , Mesorhizobium/chemistry , Xylose/chemistry
6.
Bioprocess Biosyst Eng ; 44(2): 297-306, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32948889

ABSTRACT

The deconstruction of banana peel for carbohydrate recovery was performed by sequential treatment (acid, alkaline, and enzymatic). The pretreatment with citric acid promoted the extraction of pectin, resulting in a yield of 8%. In addition, xylose and XOS, 348.5 and 17.3 mg/g xylan, respectively, were also quantified in acidic liquor as a result of partial depolymerization of hemicellulose. The spent solid was pretreated with alkaline solution (NaOH or KOH) for delignification and release of residual carbohydrates from the hemicellulose. The yields of xylose and arabinose (225.2 and 174.0 mg/g hemicellulose) were approximately 40% higher in the pretreatment with KOH, while pretreatment with NaOH promoted higher delignification (67%), XOS yield (32.6 mg/g xylan), and preservation of cellulosic fraction. Finally, the spent alkaline solid, rich in cellulose (76%), was treated enzymatically to release glucose, reaching the final concentration of 28.2 g/L. The mass balance showed that through sequential treatment, 9.9 g of xylose, 0.5 g of XOS, and 8.2 g of glucose were obtained from 100 g of raw banana peels, representing 65.8% and 46.5% conversion of hemicellulose and cellulose, respectively. The study of the fractionation of carbohydrates in banana peel proved to be a useful tool for valorization, mainly of the hemicellulose fraction for the production of XOS and xylose with high value applications in the food industry.


Subject(s)
Arabinose/chemistry , Fruit/chemistry , Musa/chemistry , Pectins/chemistry , Polysaccharides/chemistry , Xylose/chemistry , Hydrolysis , Hydroxides/chemistry , Potassium Compounds/chemistry , Sodium Hydroxide/chemistry
7.
Molecules ; 26(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34361767

ABSTRACT

This study describes the catalytic properties of a GH30_7 xylanase produced by the fungus Talaromyces leycettanus. The enzyme is an ando-ß-1,4-xylanase, showing similar specific activity towards glucuronoxylan, arabinoxylan, and rhodymenan (linear ß-1,3-ß-1,4-xylan). The heteroxylans are hydrolyzed to a mixture of linear as well as branched ß-1,4-xylooligosaccharides that are shorter than the products generated by GH10 and GH11 xylanases. In the rhodymenan hydrolyzate, the linear ß-1,4-xylooligosaccharides are accompanied with a series of mixed linkage homologues. Initial hydrolysis of glucuronoxylan resembles the action of other GH30_7 and GH30_8 glucuronoxylanases, resulting in a series of aldouronic acids of a general formula MeGlcA2Xyln. Due to the significant non-specific endoxylanase activity of the enzyme, these acidic products are further attacked in the unbranched regions, finally yielding MeGlcA2Xyl2-3. The accommodation of a substituted xylosyl residue in the -2 subsite also applies in arabinoxylan depolymerization. Moreover, the xylose residue may be arabinosylated at both positions 2 and 3, without negatively affecting the main chain cleavage. The catalytic properties of the enzyme, particularly the great tolerance of the side-chain substituents, make the enzyme attractive for biotechnological applications. The enzyme is also another example of extraordinarily great catalytic diversity among eukaryotic GH30_7 xylanases.


Subject(s)
Endo-1,4-beta Xylanases/metabolism , Fungal Proteins/metabolism , Talaromyces/enzymology , Xylans/metabolism , Amino Acid Sequence , Arabinose/chemistry , Arabinose/metabolism , Carbohydrate Sequence , Endo-1,4-beta Xylanases/genetics , Fungal Proteins/genetics , Gene Expression , Glucuronates/chemistry , Glucuronates/metabolism , Hydrolysis , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Talaromyces/chemistry , Talaromyces/genetics , Xylans/chemistry
8.
Angew Chem Int Ed Engl ; 60(42): 22925-22932, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34428345

ABSTRACT

The template-directed synthesis of RNA played an important role in the transition from prebiotic chemistry to the beginnings of RNA based life, but the mechanism of RNA copying chemistry is incompletely understood. We measured the kinetics of template copying with a set of primers with modified 3'-nucleotides and determined the crystal structures of these modified nucleotides in the context of a primer/template/substrate-analog complex. pH-rate profiles and solvent isotope effects show that deprotonation of the primer 3'-hydroxyl occurs prior to the rate limiting step, the attack of the alkoxide on the activated phosphate of the incoming nucleotide. The analogs with a 3 E ribose conformation show the fastest formation of 3'-5' phosphodiester bonds. Among those derivatives, the reaction rate is strongly correlated with the electronegativity of the 2'-substituent. We interpret our results in terms of differences in steric bulk and charge distribution in the ground vs. transition states.


Subject(s)
RNA/metabolism , Arabinose/chemistry , Crystallography, X-Ray , DNA Primers/metabolism , Deuterium Oxide/chemistry , Imidazoles/chemistry , Kinetics , Nucleic Acid Conformation , Nucleotides/chemistry , RNA/chemistry , Structure-Activity Relationship , Templates, Genetic , Water/chemistry
9.
J Biol Chem ; 294(46): 17339-17353, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31558605

ABSTRACT

Feruloyl esterases (EC 3.1.1.73), belonging to carbohydrate esterase family 1 (CE1), hydrolyze ester bonds between ferulic acid (FA) and arabinose moieties in arabinoxylans. Recently, some CE1 enzymes identified in metagenomics studies have been predicted to contain a family 48 carbohydrate-binding module (CBM48), a CBM family associated with starch binding. Two of these CE1s, wastewater treatment sludge (wts) Fae1A and wtsFae1B isolated from wastewater treatment surplus sludge, have a cognate CBM48 domain and are feruloyl esterases, and wtsFae1A binds arabinoxylan. Here, we show that wtsFae1B also binds to arabinoxylan and that neither binds starch. Surface plasmon resonance analysis revealed that wtsFae1B's Kd for xylohexaose is 14.8 µm and that it does not bind to starch mimics, ß-cyclodextrin, or maltohexaose. Interestingly, in the absence of CBM48 domains, the CE1 regions from wtsFae1A and wtsFae1B did not bind arabinoxylan and were also unable to catalyze FA release from arabinoxylan. Pretreatment with a ß-d-1,4-xylanase did enable CE1 domain-mediated FA release from arabinoxylan in the absence of CBM48, indicating that CBM48 is essential for the CE1 activity on the polysaccharide. Crystal structures of wtsFae1A (at 1.63 Å resolution) and wtsFae1B (1.98 Å) revealed that both are folded proteins comprising structurally-conserved hydrogen bonds that lock the CBM48 position relative to that of the CE1 domain. wtsFae1A docking indicated that both enzymes accommodate the arabinoxylan backbone in a cleft at the CE1-CBM48 domain interface. Binding at this cleft appears to enable CE1 activities on polymeric arabinoxylan, illustrating an unexpected and crucial role of CBM48 domains for accommodating arabinoxylan.


Subject(s)
Carboxylesterase/chemistry , Carboxylic Ester Hydrolases/chemistry , Coumaric Acids/chemistry , Receptors, Cell Surface/chemistry , Arabinose/chemistry , Carboxylesterase/genetics , Carboxylic Ester Hydrolases/ultrastructure , Crystallography, X-Ray , Escherichia coli/chemistry , Escherichia coli/enzymology , Hydrolysis , Oligosaccharides/chemistry , Polysaccharides/chemistry , Protein Conformation , Receptors, Cell Surface/ultrastructure , Substrate Specificity , Surface Plasmon Resonance , Wastewater/chemistry , Xylans/chemistry
10.
Glycobiology ; 30(8): 663-676, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32039451

ABSTRACT

The many emerging applications of microalgae such as Chlorella also instigate interest in their ability to conduct protein modifications such as N-glycosylation. Chlorella vulgaris has recently been shown to equip its proteins with highly O-methylated oligomannosidic N-glycans. Two other frequently occurring species names are Chlorella sorokiniana and Chlorella pyrenoidosa-even though the latter is taxonomically ill defined. We analyzed by mass spectrometry and nuclear magnetic resonance spectroscopy the N-glycans of type culture collection strains of C. sorokiniana and of a commercial product labeled C. pyrenoidosa. Both samples contained arabinose, which has hitherto not been found in N-glycans. Apart from this only commonality, the structures differed fundamentally from each other and from that of N-glycans of land plants. Despite these differences, the two algae lines exhibited considerable homology in their ITS1-5.8S-ITS2 rDNA sequences. These drastic differences of N-glycan structures between species belonging to the very same genus provoke questions as to the biological function on a unicellular organism.


Subject(s)
Arabinose/chemistry , Chlorella/chemistry , Polysaccharides/chemistry , Carbohydrate Conformation , Mass Spectrometry
11.
Biochem Biophys Res Commun ; 530(1): 203-208, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32828286

ABSTRACT

L-Arabinose 1-dehydrogenase (AraDH) is responsible for the first step of the non-phosphorylative L-arabinose pathway from bacteria, and catalyzes the NAD(P)+-dependent oxidation of L-arabinose to L-arabinonolactone. This enzyme belongs to the so-called Gfo/Idh/MocA protein superfamily, but has a very poor phylogenetic relationship with other functional members. We previously reported the crystal structures of AraDH without a ligand and in complex with NADP+. To clarify the underlying catalytic mechanisms in more detail, we herein elucidated the crystal structure in complex with L-arabinose and NADP+. In addition to the previously reported five amino acid residues (Lys91, Glu147, His153, Asp169, and Asn173), His119, Trp152, and Trp231 interacted with L-arabinose, which were not found in substrate recognition by other Gfo/Idh/MocA members. Structure-based site-directed mutagenic analyses suggested that Asn173 plays an important role in catalysis, whereas Trp152, Trp231, and His119 contribute to substrate binding. The preference of NADP+ over NAD+ was significantly subjected by a pair of Ser37 and Arg38, whose manners were similar to other Gfo/Idh/MocA members.


Subject(s)
Arabinose/metabolism , Azospirillum brasilense/metabolism , Bacterial Proteins/metabolism , Carbohydrate Dehydrogenases/metabolism , NADP/metabolism , Amino Acid Sequence , Arabinose/chemistry , Azospirillum brasilense/chemistry , Bacterial Proteins/chemistry , Carbohydrate Dehydrogenases/chemistry , Crystallography, X-Ray , Models, Molecular , NADP/chemistry , Protein Conformation
12.
Org Biomol Chem ; 18(14): 2696-2701, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32206767

ABSTRACT

S-Glycosides are important tools for the elucidation of specific protein-carbohydrate interactions and can significantly aid structural and functional studies of carbohydrate-active enzymes, as they are often inert or act as enzyme inhibitors. In this context, this work focuses on the introduction of an S-linkage into arabinoxylan oligosaccharides (AXs) in order to obtain a small collection of synthetic tools for the study of AXs degrading enzymes. The key step for the introduction of the S-glycosidic linkage involved anomeric thiol S-alkylation of an orthogonally protected l-arabinopyranoside triflate. The resulting S-linked disaccharide was subsequently employed in a series of glycosylation reactions to obtain a selectively protected tetrasaccharide. This could be further elaborated through chemoselective deprotection and glycosylation reactions to introduce branching l-arabinofuranosides.


Subject(s)
Glycosides/chemistry , Oligosaccharides/chemistry , Xylans/chemistry , Arabinose/analogs & derivatives , Arabinose/chemistry , Cross-Linking Reagents/chemistry , Disaccharides/chemical synthesis , Glycosylation , Sulfhydryl Compounds/chemistry
13.
J Labelled Comp Radiopharm ; 63(5): 231-239, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32222086

ABSTRACT

PURPOSE: Detection of bacteria-specific metabolism via positron emission tomography (PET) is an emerging strategy to image human pathogens, with dramatic implications for clinical practice. In silico and in vitro screening tools have recently been applied to this problem, with several monosaccharides including l-arabinose showing rapid accumulation in Escherichia coli and other organisms. Our goal for this study was to evaluate several synthetically viable arabinofuranose-derived 18 F analogs for their incorporation into pathogenic bacteria. PROCEDURES: We synthesized four radiolabeled arabinofuranose-derived sugars: 2-deoxy-2-[18 F]fluoro-arabinofuranoses (d-2-18 F-AF and l-2-18 F-AF) and 5-deoxy-5-[18 F]fluoro-arabinofuranoses (d-5-18 F-AF and l-5-18 F-AF). The arabinofuranoses were synthesized from 18 F- via triflated, peracetylated precursors analogous to the most common radiosynthesis of 2-deoxy-2-[18 F]fluoro-d-glucose ([18 F]FDG). These radiotracers were screened for their uptake into E. coli and Staphylococcus aureus. Subsequently, the sensitivity of d-2-18 F-AF and l-2-18 F-AF to key human pathogens was investigated in vitro. RESULTS: All 18 F radiotracer targets were synthesized in high radiochemical purity. In the screening study, d-2-18 F-AF and l-2-18 F-AF showed greater accumulation in E. coli than in S. aureus. When evaluated in a panel of pathologic microorganisms, both d-2-18 F-AF and l-2-18 F-AF demonstrated sensitivity to most gram-positive and gram-negative bacteria. CONCLUSIONS: Arabinofuranose-derived 18 F PET radiotracers can be synthesized with high radiochemical purity. Our study showed absence of bacterial accumulation for 5-substitued analogs, a finding that may have mechanistic implications for related tracers. Both d-2-18 F-AF and l-2-18 F-AF showed sensitivity to most gram-negative and gram-positive organisms. Future in vivo studies will evaluate the diagnostic accuracy of these radiotracers in animal models of infection.


Subject(s)
Arabinose/analogs & derivatives , Bacteria/isolation & purification , Positron-Emission Tomography/methods , Arabinose/chemistry , Humans , Radioactive Tracers , Radiochemistry
14.
Molecules ; 25(18)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32972033

ABSTRACT

Flavonoids and triterpenoids were revealed to be the potential inhibitors on soluble epoxide hydrolase (sEH). The aim of this study is to reveal sEH inhibitors from Fuji apples. A flavonoid and three triterpenoids derived from the fruit of Malus domestica were identified as quercetin-3-O-arabinoside (1), ursolic acid (2), corosolic acid (3), and 2-oxopomolic acid (4). They had half-maximal inhibitory concentration of the inhibitors (IC50) values of 39.3 ± 3.4, 84.5 ± 9.5, 51.3 ± 4.9, and 11.4 ± 2.7 µM, respectively, on sEH. The inhibitors bound to allosteric sites of enzymes in mixed (1) and noncompetitive modes (2-4). Molecular simulations were carried out for inhibitors 1 and 4 to calculate the binding force of ligands to receptors. The inhibitors bound to the left (1) and right (4) pockets next to the enzyme's active site. Based on analyses of their molecular docking and dynamics, it was shown that inhibitors 1 and 4 can stably bind sEH at 1 bar and 300 K. Finally, inhibitors 1 and 4 are promising candidates for further studies using cell-based assays and in vivo cardiovascular tests.


Subject(s)
Arabinose/chemistry , Arabinose/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/chemistry , Malus/chemistry , Triterpenes/chemistry , Triterpenes/pharmacology , Arabinose/analogs & derivatives , Arabinose/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/metabolism , Hydrogen Bonding , Inhibitory Concentration 50 , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Conformation , Solubility , Triterpenes/metabolism
15.
Glycobiology ; 29(7): 530-542, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30976784

ABSTRACT

The endoplasmic reticulum (ER) contains both α-glucosidases and α-mannosidases which process the N-linked oligosaccharides of newly synthesized glycoproteins and thereby facilitate polypeptide folding and glycoprotein quality control. By acting as structural mimetics, iminosugars can selectively inhibit these ER localized α-glycosidases, preventing N-glycan trimming and providing a molecular basis for their therapeutic applications. In this study, we investigate the effects of a panel of nine iminosugars on the actions of ER luminal α-glucosidase I and α-glucosidase II. Using ER microsomes to recapitulate authentic protein N-glycosylation and oligosaccharide processing, we identify five iminosugars that selectively inhibit N-glycan trimming. Comparison of their inhibitory activities in ER microsomes against their effects on purified ER α-glucosidase II, suggests that 3,7a-diepi-alexine acts as a selective inhibitor of ER α-glucosidase I. The other active iminosugars all inhibit α-glucosidase II and, having identified 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) as the most effective of these compounds, we use in silico modeling to understand the molecular basis for this enhanced activity. Taken together, our work identifies the C-3 substituted pyrrolizidines casuarine and 3,7a-diepi-alexine as promising "second-generation" iminosugar inhibitors.


Subject(s)
Arabinose/pharmacology , Endoplasmic Reticulum/enzymology , Glycoside Hydrolase Inhibitors/pharmacology , Imino Furanoses/pharmacology , Pyrrolizidine Alkaloids/pharmacology , Sugar Alcohols/pharmacology , alpha-Glucosidases/metabolism , Animals , Arabinose/chemistry , Dogs , Glycoside Hydrolase Inhibitors/chemistry , Humans , Imino Furanoses/chemistry , Mice , Microsomes/drug effects , Microsomes/metabolism , Pyrrolizidine Alkaloids/chemistry , Sugar Alcohols/chemistry
16.
Org Biomol Chem ; 17(35): 8083-8087, 2019 09 21.
Article in English | MEDLINE | ID: mdl-31460550

ABSTRACT

A modified nucleoside triphosphate bearing two modifications based on a 2'-deoxy-2'-fluoro-arabinofuranose sugar and a uracil nucleobase equipped with a C5-ethynyl moiety (5-ethynyl-2'F-ANA UTP) was synthesized. This nucleotide analog could enzymatically be incorporated into DNA oligonucleotides by primer extension and reverse transcribed to unmodified DNA. This nucleotide could be used in SELEX for the identification of high binding affinity and nuclease resistant aptamers.


Subject(s)
Aptamers, Nucleotide/chemistry , Arabinose/analogs & derivatives , Uridine Triphosphate/chemistry , Arabinose/chemistry , Binding Sites , Carbohydrate Conformation , DNA/chemistry , DNA/genetics
17.
J Phys Chem A ; 123(12): 2340-2350, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30807168

ABSTRACT

Gas phase, isolated monosaccharides arabinose- and mannose-related anionic species generated through the matrix-assisted laser desorption ionization (MALDI) method are investigated via negative ion photoelectron spectroscopy (PES) and density functional theory (DFT) calculations. The vertical detachment energies (VDEs) of the observed anionic species are experimentally determined: the corresponding structures are assigned based on good agreement between experimental and theoretical VDEs. Arabinose- parent anion is found to exist as open chain structures in the gas phase, while mannose- parent anionic species are not observed. Both monosaccharides undergo dissociation through loss of H and loss of H2O. (saccharide-H)- anions evidence coexisting positional and conformational isomers. (saccharide-H2O)- species have only two positional isomers, each with conformational differences. The present results for arabinose and mannose are further compared to those previously reported for ribose and fructose. This comparison is based on the anions observed and identified through the same PES/DFT techniques for the four saccharides (arabinose, mannose, ribose, and fructose). The issue of natural selection of ribose as the sugar backbone constituent of RNA is thereby explored from the point of view of anionic electronic structure and stability of the four species. Saccharide phosphates are also discussed in the present work with regard to addressing the unique natural selection of ribose for the backbone support of RNA and DNA.


Subject(s)
Anions/chemistry , Arabinose/chemistry , Fructose/chemistry , Mannose/chemistry , Ribose/chemistry , Density Functional Theory , Models, Chemical , Molecular Conformation , Photoelectron Spectroscopy , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
18.
J Nat Prod ; 82(7): 1908-1916, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31241928

ABSTRACT

The total synthesis of putative penasulfate A was effectively achieved by a convergent strategy with a longest linear sequence of 14 steps and overall yield of 8.6%. The highlights of our strategy involved an E-selective olefin cross-metathesis, Suzuki cross-coupling, and a copper(I)-catalyzed coupling reaction.


Subject(s)
Arabinose/chemistry , Fatty Acids/chemistry , Fatty Acids/chemical synthesis , Pipecolic Acids/chemistry , Pipecolic Acids/chemical synthesis , Alkenes/chemistry , Catalysis , Molecular Structure , Stereoisomerism
19.
Biochemistry (Mosc) ; 84(5): 540-552, 2019 May.
Article in English | MEDLINE | ID: mdl-31234768

ABSTRACT

L-Arabinose is an important component of mycobacterial cell wall. L-Arabinose is involved in the synthesis of arabinogalactan, lipoarabinomannan, and other sugar compounds, which suggests that it can modulate cell wall permeability and drug resistance. However, whether L-arabinose affects mycobacterial antibiotic resistance and the underlying regulatory mechanism remains unclear. In this study, we characterized a new transcription factor of Mycobacterium smegmatis, AraR, that responds to L-arabinose and regulates mycobacterial sensitivity to isoniazid (INH). AraR specifically recognizes two conserved 15-bp motifs within the upstream regulatory region of the arabinose (araR) operon. AraR functions as a transcriptional repressor that negatively regulates araR expression. In contrast to the effect of AraR, overexpression of the araR operon contributes to the mycobacterial INH resistance. L-arabinose acts as an effector and derepresses transcriptional inhibition by AraR. The araR-deficient strain is more resistant to INH than the wild-type strain, whereas the araR-overexpressing strain is more sensitive to INH. Addition of L-arabinose to the medium can significantly increase the resistance to INH of the wild-type strain, but not of the araR knockout strain. Therefore, we identified a new L-arabinose-responding transcription factor and revealed its effect on the bacterial antibiotic resistance. These findings can provide new insights in the regulatory mechanisms mediated by sugar molecules and their relationship with drug resistance in mycobacteria.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/drug effects , Isoniazid/pharmacology , Mycobacterium smegmatis/metabolism , Transcription Factors/metabolism , Arabinose/chemistry , Arabinose/metabolism , Bacterial Proteins/genetics , Base Sequence , Mycobacterium smegmatis/drug effects , Operon , Protein Binding , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Transcription Factors/genetics
20.
Bioprocess Biosyst Eng ; 42(9): 1495-1506, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31111213

ABSTRACT

Conversion of lignocellulosic feedstocks to polyhydroxybutyrate (PHB) could make lignocellulosic biorefineries more profitable and sustainable. Glucose, xylose and arabinose are the main sugars derived from pretreatment and hydrolysis of herbaceous feedstocks. Burkholderia sacchari DSM 17165 is a bacterium that can convert these sugars into PHB. However, the effects of sugar ratio, sugar concentration, and molar C:N ratio on PHB production have not been studied. In this study, a seven-run mixture design for sugar ratio combined with a 32 full factorial design for process variables was performed to optimize PHB production. A polynomial model was built based on experimental data, and optimum conditions for different sugar streams were derived and validated. The highest PHB production (3.81 g/L) was achieved with arabinose at a concentration of 25.54 g/L and molar C:N ratio of 74.35. Results provide references for manipulation of sugar mixture and process control to maximize PHB production.


Subject(s)
Arabinose/pharmacology , Burkholderiaceae/growth & development , Glucose/pharmacology , Polymers/metabolism , Xylose/pharmacology , Arabinose/chemistry , Glucose/chemistry , Xylose/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL