Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
2.
Proc Natl Acad Sci U S A ; 117(31): 18617-18626, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32675240

ABSTRACT

Genome-wide association studies have identified noncoding variants near TBX3 that are associated with PR interval and QRS duration, suggesting that subtle changes in TBX3 expression affect atrioventricular conduction system function. To explore whether and to what extent the atrioventricular conduction system is affected by Tbx3 dose reduction, we first characterized electrophysiological properties and morphology of heterozygous Tbx3 mutant (Tbx3+/-) mouse hearts. We found PR interval shortening and prolonged QRS duration, as well as atrioventricular bundle hypoplasia after birth in heterozygous mice. The atrioventricular node size was unaffected. Transcriptomic analysis of atrioventricular nodes isolated by laser capture microdissection revealed hundreds of deregulated genes in Tbx3+/- mutants. Notably, Tbx3+/- atrioventricular nodes showed increased expression of working myocardial gene programs (mitochondrial and metabolic processes, muscle contractility) and reduced expression of pacemaker gene programs (neuronal, Wnt signaling, calcium/ion channel activity). By integrating chromatin accessibility profiles (ATAC sequencing) of atrioventricular tissue and other epigenetic data, we identified Tbx3-dependent atrioventricular regulatory DNA elements (REs) on a genome-wide scale. We used transgenic reporter assays to determine the functionality of candidate REs near Ryr2, an up-regulated chamber-enriched gene, and in Cacna1g, a down-regulated conduction system-specific gene. Using genome editing to delete candidate REs, we showed that a strong intronic bipartite RE selectively governs Cacna1g expression in the conduction system in vivo. Our data provide insights into the multifactorial Tbx3-dependent transcriptional network that regulates the structure and function of the cardiac conduction system, which may underlie the differences in PR duration and QRS interval between individuals carrying variants in the TBX3 locus.


Subject(s)
Atrioventricular Node , T-Box Domain Proteins , Transcriptome/genetics , Animals , Arrhythmias, Cardiac , Atrioventricular Node/metabolism , Atrioventricular Node/physiology , Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/metabolism , Mice , Mice, Transgenic , Mutation/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
3.
Circ Res ; 127(3): e94-e106, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32290757

ABSTRACT

RATIONALE: The heartbeat is organized by the cardiac conduction system (CCS), a specialized network of cardiomyocytes. Patterning of the CCS into atrial node versus ventricular conduction system (VCS) components with distinct physiology is essential for the normal heartbeat. Distinct node versus VCS physiology has been recognized for more than a century, but the molecular basis of this regional patterning is not well understood. OBJECTIVE: To study the genetic and genomic mechanisms underlying node versus VCS distinction and investigate rhythm consequences of failed VCS patterning. METHODS AND RESULTS: Using mouse genetics, we found that the balance between T-box transcriptional activator, Tbx5, and T-box transcriptional repressor, Tbx3, determined the molecular and functional output of VCS myocytes. Adult VCS-specific removal of Tbx5 or overexpression of Tbx3 re-patterned the fast VCS into slow, nodal-like cells based on molecular and functional criteria. In these cases, gene expression profiling showed diminished expression of genes required for VCS-specific fast conduction but maintenance of expression of genes required for nodal slow conduction physiology. Action potentials of Tbx5-deficient VCS myocytes adopted nodal-specific characteristics, including increased action potential duration and cellular automaticity. Removal of Tbx5 in vivo precipitated inappropriate depolarizations in the atrioventricular (His)-bundle associated with lethal ventricular arrhythmias. TBX5 bound and directly activated cis-regulatory elements at fast conduction channel genes required for fast physiological characteristics of the VCS action potential, defining the identity of the adult VCS. CONCLUSIONS: The CCS is patterned entirely as a slow, nodal ground state, with a T-box dependent, physiologically dominant, fast conduction network driven specifically in the VCS. Disruption of the fast VCS gene regulatory network allowed nodal physiology to emerge, providing a plausible molecular mechanism for some lethal ventricular arrhythmias.


Subject(s)
Arrhythmias, Cardiac/metabolism , Atrioventricular Node/metabolism , Heart Ventricles/metabolism , T-Box Domain Proteins/metabolism , Transcription, Genetic , Action Potentials , Animals , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Atrioventricular Node/physiopathology , Body Patterning , Female , Gene Expression Regulation, Developmental , HEK293 Cells , Heart Rate , Heart Ventricles/physiopathology , Humans , Male , Mice, Knockout , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics , Time Factors
4.
Circ Res ; 127(2): e28-e43, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32347164

ABSTRACT

RATIONALE: ZO-1 (Zona occludens 1), encoded by the tight junction protein 1 (TJP1) gene, is a regulator of paracellular permeability in epithelia and endothelia. ZO-1 interacts with the actin cytoskeleton, gap, and adherens junction proteins and localizes to intercalated discs in cardiomyocytes. However, the contribution of ZO-1 to cardiac physiology remains poorly defined. OBJECTIVE: We aim to determine the role of ZO-1 in cardiac function. METHODS AND RESULTS: Inducible cardiomyocyte-specific Tjp1 deletion mice (Tjp1fl/fl; Myh6Cre/Esr1*) were generated by crossing the Tjp1 floxed mice and Myh6Cre/Esr1* transgenic mice. Tamoxifen-induced loss of ZO-1 led to atrioventricular (AV) block without changes in heart rate, as measured by ECG and ex vivo optical mapping. Mice with tamoxifen-induced conduction system-specific deletion of Tjp1 (Tjp1fl/fl; Hcn4CreERt2) developed AV block while tamoxifen-induced conduction system deletion of Tjp1 distal to the AV node (Tjp1fl/fl; Kcne1CreERt2) did not demonstrate conduction defects. Western blot and immunostaining analyses of AV nodes showed that ZO-1 loss decreased Cx (connexin) 40 expression and intercalated disc localization. Consistent with the mouse model study, immunohistochemical staining showed that ZO-1 is abundantly expressed in the human AV node and colocalizes with Cx40. Ventricular conduction was not altered despite decreased localization of ZO-1 and Cx43 at the ventricular intercalated disc and modestly decreased left ventricular ejection fraction, suggesting ZO-1 is differentially required for AV node and ventricular conduction. CONCLUSIONS: ZO-1 is a key protein responsible for maintaining appropriate AV node conduction through maintaining gap junction protein localization.


Subject(s)
Atrioventricular Node/metabolism , Heart Rate , Zonula Occludens-1 Protein/metabolism , Animals , Atrioventricular Node/physiology , Connexin 43/genetics , Connexin 43/metabolism , Connexins/genetics , Connexins/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Potassium Channels, Voltage-Gated/metabolism , Zonula Occludens-1 Protein/genetics , Gap Junction alpha-5 Protein
5.
Circ Res ; 127(2): 284-297, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32345129

ABSTRACT

RATIONALE: ZO-1 (Zonula occludens-1), a plasma membrane-associated scaffolding protein regulates signal transduction, transcription, and cellular communication. Global deletion of ZO-1 in the mouse is lethal by embryonic day 11.5. The function of ZO-1 in cardiac myocytes (CM) is largely unknown. OBJECTIVE: To determine the function of CM ZO-1 in the intact heart, given its binding to other CM proteins that have been shown instrumental in normal cardiac conduction and function. METHODS AND RESULTS: We generated ZO-1 CM-specific knockout (KO) mice using α-Myosin Heavy Chain-nuclear Cre (ZO-1cKO) and investigated physiological and electrophysiological function by echocardiography, surface ECG and conscious telemetry, intracardiac electrograms and pacing, and optical mapping studies. ZO-1cKO mice were viable, had normal Mendelian ratios, and had a normal lifespan. Ventricular morphometry and function were not significantly different between the ZO-1cKO versus control (CTL) mice, basally in young or aged mice, or even when hearts were subjected to hemodynamic loading. Atrial mass was increased in ZO-1cKO. Electrophysiological and optical mapping studies indicated high-grade atrioventricular (A-V) block in ZO-1cKO comparing to CTL hearts. While ZO-1-associated proteins such as vinculin, connexin 43, N-cadherin, and α-catenin showed no significant change with the loss of ZO-1, Connexin-45 and Coxsackie-adenovirus (CAR) proteins were reduced in atria of ZO-1cKO. Further, with loss of ZO-1, ZO-2 protein was increased significantly in ventricular CM in a presumed compensatory manner but was still not detected in the AV nodal myocytes. Importantly, the expression of the sodium channel protein NaV1.5 was altered in AV nodal cells of the ZO-1cKO versus CTL. CONCLUSIONS: ZO-1 protein has a unique physiological role in cardiac nodal tissue. This is in alignment with its known interaction with CAR and Cx45, and a new function in regulating the expression of NaV1.5 in AV node. Uniquely, ZO-1 is dispensable for function of the working myocardium.


Subject(s)
Atrioventricular Block/metabolism , Atrioventricular Node/metabolism , Ventricular Function , Zonula Occludens-1 Protein/metabolism , Animals , Atrioventricular Block/physiopathology , Atrioventricular Node/physiology , Cadherins/genetics , Cadherins/metabolism , Connexins/genetics , Connexins/metabolism , Male , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Vinculin/genetics , Vinculin/metabolism , Zonula Occludens-1 Protein/genetics , alpha Catenin/genetics , alpha Catenin/metabolism
6.
Pflugers Arch ; 473(12): 1885-1898, 2021 12.
Article in English | MEDLINE | ID: mdl-34704178

ABSTRACT

The atrioventricular (AV) node is the only conduction pathway where electrical impulse can pass from atria to ventricles and exhibits spontaneous automaticity. This study examined the function of the rapid- and slow-activating delayed rectifier K+ currents (IKr and IKs) in the regulation of AV node automaticity. Isolated AV node cells from guinea pigs were current- and voltage-clamped to record the action potentials and the IKr and IKs current. The expression of IKr or IKs was confirmed in the AV node cells by immunocytochemistry, and the positive signals of both channels were localized mainly on the cell membrane. The basal spontaneous automaticity was equally reduced by E4031 and HMR-1556, selective blockers of IKr and IKs, respectively. The nonselective ß-adrenoceptor agonist isoproterenol markedly increased the firing rate of action potentials. In the presence of isoproterenol, the firing rate of action potentials was more effectively reduced by the IKs inhibitor HMR-1556 than by the IKr inhibitor E4031. Both E4031 and HMR-1556 prolonged the action potential duration and depolarized the maximum diastolic potential under basal and ß-adrenoceptor-stimulated conditions. IKr was not significantly influenced by ß-adrenoceptor stimulation, but IKs was concentration-dependently enhanced by isoproterenol (EC50: 15 nM), with a significant negative voltage shift in the channel activation. These findings suggest that both the IKr and IKs channels might exert similar effects on regulating the repolarization process of AV node action potentials under basal conditions; however, when the ß-adrenoceptor is activated, IKs modulation may become more important.


Subject(s)
Action Potentials/physiology , Atrioventricular Node/metabolism , Heart Ventricles/metabolism , Potassium Channels/metabolism , Action Potentials/drug effects , Adrenergic beta-Agonists/pharmacology , Animals , Atrioventricular Node/drug effects , Female , Guinea Pigs , Heart Atria/drug effects , Heart Atria/metabolism , Heart Ventricles/drug effects , Isoproterenol/pharmacology , Myocardium/metabolism , Patch-Clamp Techniques/methods
7.
Pathol Int ; 71(2): 141-146, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33316142

ABSTRACT

We pathologically investigated three autopsy cases of cystic tumor of the atrioventricular node (CTAVN) with sudden death. Case 1 was a 36-year-old woman without any clinical history. Case 2 was a 76-year-old man with an implanted pacemaker for complete atrioventricular block. Case 3 was a 45-year-old man with a history of first-degree AV block and sinus bradycardia. Microscopically, all three cases showed the bilayered structure of tumor glands and corpora amylacea in the glandular lumens. Immunohistochemically, the inner cells of the tumor glands were positive for cytokeratin CAM5.2, CEA, EMA, olfactomedin-4 and alpha-methylacyl-coenzyme A racemase; the outer cells were positive for p63 and cytokeratin high molecular weight. In Case 1, androgen receptor and estrogen receptor were negative; progesterone receptor was focally positive in both the inner and outer cells. In Case 2, androgen receptor showed intermediate positivity in the inner cells; estrogen receptor and progesterone receptor were positive in the outer cells. Positive expression of both prostate-specific antigen and prostate-specific acid phosphate were found in the inner cells of both male cases. Because CTAVN cells exhibit different degrees of the prostatic phenotype depending on the patient's sex, we believe that CTAVN may originate from urogenital sinus tissue in some cases.


Subject(s)
Biomarkers, Tumor/metabolism , Heart Neoplasms/diagnosis , Kallikreins/metabolism , Neoplasms, Cystic, Mucinous, and Serous/diagnosis , Prostate-Specific Antigen/metabolism , Receptors, Androgen/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Adult , Aged , Atrioventricular Node/metabolism , Atrioventricular Node/pathology , Death, Sudden, Cardiac , Fatal Outcome , Female , Heart Neoplasms/metabolism , Heart Neoplasms/pathology , Humans , Male , Middle Aged , Neoplasms, Cystic, Mucinous, and Serous/metabolism , Neoplasms, Cystic, Mucinous, and Serous/pathology , Sex Factors
8.
FASEB J ; 33(1): 696-710, 2019 01.
Article in English | MEDLINE | ID: mdl-30044923

ABSTRACT

The proper development of atrioventricular (AV) valves is critical for heart morphogenesis and for the formation of the cardiac conduction system. Defects in AV valve development are the most common type of congenital heart defect. Cardiac troponin I ( ctnni), a structural and regulatory protein involved in cardiac muscle contraction, is a subunit of the troponin complex, but the functions and molecular mechanisms of ctnni during early heart development remain unclear. We created a knockout zebrafish model in which troponin I type 1b ( tnni1b) ( Tnni-HC, heart and craniofacial) was deleted using the clustered regularly interspaced short palindromic repeat/clustered regularly interspaced short palindromic repeat-associated protein system. In the homozygous mutant, the embryos showed severe pericardial edema, malformation of the heart tube, reduction of heart rate without contraction and with almost no blood flow, heart cavity congestion, and lack of an endocardial ring or valve leaflet, resulting in 88.8 ± 6.0% lethality at 7 d postfertilization. Deletion of tnni1b caused the abnormal expression of several markers involved in AV valve development, including bmp4, cspg2, has2, notch1b, spp1, and Alcam. Myocardial re-expression of tnni1b in mutants partially rescued the pericardial edema phenotype and AV canal (AVC) developmental defects. We further showed that tnni1b knockout in zebrafish and ctnni knockdown in rat h9c2 myocardial cells inhibited cardiac wnt signaling and that myocardial reactivation of wnt signaling partially rescued the abnormal expression of AVC markers caused by the tnni1b deletion. Taken together, our data suggest that tnni1b plays a vital role in zebrafish AV valve development by regulating the myocardial wnt signaling pathway.-Cai, C., Sang, C., Du, J., Jia, H., Tu, J., Wan, Q., Bao, B., Xie, S., Huang, Y., Li, A., Li, J., Yang, K., Wang, S., Lu, Q. Knockout of tnni1b in zebrafish causes defects in atrioventricular valve development via the inhibition of myocardial wnt signaling pathway.


Subject(s)
Atrioventricular Node/pathology , Embryo, Nonmammalian/pathology , Heart Valves/pathology , Myocardium/pathology , Troponin I/antagonists & inhibitors , Wnt Signaling Pathway , Zebrafish Proteins/antagonists & inhibitors , Zebrafish/embryology , Animals , Animals, Genetically Modified/embryology , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Atrioventricular Node/metabolism , CRISPR-Cas Systems , Cells, Cultured , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , Heart Valves/embryology , Heart Valves/metabolism , Myocardium/metabolism , Organogenesis , Rats , Troponin I/genetics , Troponin I/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
9.
J Cell Mol Med ; 19(6): 1375-89, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25752780

ABSTRACT

The presence of distinct electrophysiological pathways within the atrioventricular node (AVN) is a prerequisite for atrioventricular nodal reentrant tachycardia to occur. In this study, the different cell contributions that may account for the anatomical and functional heterogeneity of the AVN were investigated. To study the temporal development of the AVN, the expression pattern of ISL1, expressed in cardiac progenitor cells, was studied in sequential stages performing co-staining with myocardial markers (TNNI2 and NKX2-5) and HCN4 (cardiac conduction system marker). An ISL1+/TNNI2+/HCN4+ continuity between the myocardium of the sinus venosus and atrioventricular canal was identified in the region of the putative AVN, which showed a pacemaker-like phenotype based on single cell patch-clamp experiments. Furthermore, qPCR analysis showed that even during early development, different cell populations can be identified in the region of the putative AVN. Fate mapping was performed by in ovo vital dye microinjection. Embryos were harvested and analysed 24 and 48 hrs post-injection. These experiments showed incorporation of sinus venosus myocardium in the posterior region of the atrioventricular canal. The myocardium of the sinus venosus contributes to the atrioventricular canal. It is postulated that the myocardium of the sinus venosus contributes to nodal extensions or transitional cells of the AVN since these cells are located in the posterior region of the AVN. This finding may help to understand the origin of atrioventricular nodal reentrant tachycardia.


Subject(s)
Atrioventricular Node/metabolism , Avian Proteins/genetics , Myocardium/metabolism , Animals , Atrioventricular Node/anatomy & histology , Atrioventricular Node/embryology , Avian Proteins/metabolism , Chick Embryo , Gene Expression Regulation, Developmental , Heart/anatomy & histology , Heart/embryology , Heart/physiology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Imaging, Three-Dimensional , Immunohistochemistry , In Situ Hybridization , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Membrane Potentials , Microscopy, Fluorescence , Myocardium/cytology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Patch-Clamp Techniques , Reverse Transcriptase Polymerase Chain Reaction , Troponin I/genetics , Troponin I/metabolism
10.
Circ Res ; 111(12): 1528-38, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-22982984

ABSTRACT

RATIONALE: The gap junctional protein connexin (Cx) 45 is strongly expressed in the early embryonic myocardium. In the adult hearts of mice and humans, the expression mainly is restricted to the cardiac conduction system. Cx45 plays an essential role for development and function of the embryonic heart because general and cardiomyocyte-directed deficiencies of Cx45 in mice lead to embryonic lethality attributable to morphological and functional cardiovascular defects. The function of Cx45 in the adult mouse has not yet been cleared. OBJECTIVE: To clarify the function of Cx45 in the adult mouse heart. METHODS AND RESULTS: To circumvent the embryonic lethality resulting from Cx45 deficiency, mice were generated in which deletion of Cx45 specifically was induced in cardiomyocytes of adult mice. These Cx45-deficient mice were viable but showed a decrease in atrioventricular nodal conductivity. In addition, the Cx30.2 protein that is coexpressed with Cx45 in the cardiac conduction system was posttranscriptionally reduced by 70% in mutant hearts. Furthermore, deletion of both Cx45 and Cx30.2 resulted in viable mice that, however, showed stronger impairment of atrioventricular nodal conduction than the single Cx45-deficient mice. CONCLUSIONS: Cx45 is required for optimal impulse propagation in the atrioventricular node and stabilizes the level of the coexpressed Cx30.2 protein in the adult mouse heart. In contrast to the embryo, Cx45 is not essential for the viability of adult mice.


Subject(s)
Atrioventricular Node/embryology , Atrioventricular Node/metabolism , Connexins/physiology , Heart/embryology , Heart/physiology , Animals , Connexins/deficiency , Connexins/genetics , Heart Conduction System/embryology , Heart Conduction System/metabolism , Mice , Mice, Knockout
11.
Circ Res ; 110(11): 1525-37, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22628576

ABSTRACT

The cardiac conduction system is a specialized tract of myocardial cells responsible for maintaining normal cardiac rhythm. Given its critical role in coordinating cardiac performance, a detailed analysis of the molecular mechanisms underlying conduction system formation should inform our understanding of arrhythmia pathophysiology and affect the development of novel therapeutic strategies. Historically, the ability to distinguish cells of the conduction system from neighboring working myocytes presented a major technical challenge for performing comprehensive mechanistic studies. Early lineage tracing experiments suggested that conduction cells derive from cardiomyocyte precursors, and these claims have been substantiated by using more contemporary approaches. However, regional specialization of conduction cells adds an additional layer of complexity to this system, and it appears that different components of the conduction system utilize unique modes of developmental formation. The identification of numerous transcription factors and their downstream target genes involved in regional differentiation of the conduction system has provided insight into how lineage commitment is achieved. Furthermore, by adopting cutting-edge genetic techniques in combination with sophisticated phenotyping capabilities, investigators have made substantial progress in delineating the regulatory networks that orchestrate conduction system formation and their role in cardiac rhythm and physiology. This review describes the connectivity of these gene regulatory networks in cardiac conduction system development and discusses how they provide a foundation for understanding normal and pathological human cardiac rhythms.


Subject(s)
Gene Expression Regulation, Developmental , Gene Regulatory Networks , Heart Conduction System/growth & development , Animals , Atrioventricular Node/growth & development , Atrioventricular Node/metabolism , Genotype , Heart Conduction System/embryology , Heart Conduction System/metabolism , Heart Conduction System/physiopathology , Heart Diseases/genetics , Heart Diseases/physiopathology , Humans , Phenotype , Purkinje Fibers/growth & development , Purkinje Fibers/metabolism , Sinoatrial Node/growth & development , Sinoatrial Node/metabolism , Transcription Factors/metabolism
13.
Genes (Basel) ; 15(3)2024 02 23.
Article in English | MEDLINE | ID: mdl-38540339

ABSTRACT

Popeye domain-containing (POPDC) proteins selectively bind cAMP and mediate cellular responses to sympathetic nervous system (SNS) stimulation. The first discovered human genetic variant (POPDC1S201F) is associated with atrioventricular (AV) block, which is exacerbated by increased SNS activity. Zebrafish carrying the homologous mutation (popdc1S191F) display a similar phenotype to humans. To investigate the impact of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling, homozygous popdc1S191F and popdc1 knock-out (popdc1KO) zebrafish larvae and adult isolated popdc1S191F hearts were studied by functional fluorescent analysis. It was found that in popdc1S191F and popdc1KO larvae, heart rate (HR), AV delay, action potential (AP) and calcium transient (CaT) upstroke speed, and AP duration were less than in wild-type larvae, whereas CaT duration was greater. SNS stress by ß-adrenergic receptor stimulation with isoproterenol increased HR, lengthened AV delay, slowed AP and CaT upstroke speed, and shortened AP and CaT duration, yet did not result in arrhythmias. In adult popdc1S191F zebrafish hearts, there was a higher incidence of AV block, slower AP upstroke speed, and longer AP duration compared to wild-type hearts, with no differences in CaT. SNS stress increased AV delay and led to further AV block in popdc1S191F hearts while decreasing AP and CaT duration. Overall, we have revealed that arrhythmogenic effects of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling in zebrafish are varied, but already present in early development, and that AV node dysfunction may underlie SNS-induced arrhythmogenesis associated with popdc1 mutation in adults.


Subject(s)
Atrioventricular Block , Calcium , Adult , Animals , Humans , Calcium/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Atrioventricular Node/metabolism , Electrophysiologic Techniques, Cardiac/adverse effects , Atrioventricular Block/complications , Arrhythmias, Cardiac/genetics , Cardiac Conduction System Disease
14.
Basic Res Cardiol ; 107(3): 265, 2012 May.
Article in English | MEDLINE | ID: mdl-22457123

ABSTRACT

Gene therapy-based modulation of atrioventricular (AV) conduction by overexpression of a constitutively active inhibitory Gα(i) protein effectively reduced heart rates in atrial fibrillation (AF). However, catecholamine stimulation caused an excessive increase in ventricular rate. We hypothesized that modest genetic suppression of a stimulatory G protein in the AV node would allow persistent rate control in acute AF and would prevent undesired heart rate acceleration during ß-adrenergic activation. Atrial fibrillation was induced in 12 pigs by atrial burst pacing via an implanted cardiac pacemaker. Study animals were then assigned to receive either Ad-siRNA-Gα(s) gene therapy to inactivate Gα(s) protein or Ad-ß-gal as control. Gα(s) protein inactivation resulted in a 20 % heart rate reduction (P < 0.01). AH and HV intervals were prolonged by 37 ms (P < 0.001) and 28 ms (P < 0.001), respectively, demonstrating atrioventricular conduction delay. Impairment of left ventricular ejection fraction (LVEF) during AF was attenuated by Gα(s) suppression (LVEF 49 %) compared with controls (LVEF 34 %; P = 0.03). Isoproterenol application accelerated ventricular heart rate from 233 to 281 bpm (P < 0.001) in control animals but did not significantly affect pigs treated with Ad-siRNA-Gα(s) (192 vs. 216 bpm; P = 0.19). In conclusion, genetic inhibition of Gα(s) protein in the AV node reduced heart rate and prevented AF-associated reduction of cardiac function in a porcine model. Rate control by gene therapy may provide an alternative to current pharmacological treatment of AF.


Subject(s)
Atrial Fibrillation/therapy , Atrioventricular Node/metabolism , GTP-Binding Protein alpha Subunits, Gs/genetics , Genetic Therapy/methods , Heart Rate/genetics , RNA Interference , RNA, Small Interfering/administration & dosage , Adrenergic beta-Agonists/administration & dosage , Animals , Atrial Fibrillation/etiology , Atrial Fibrillation/genetics , Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , Atrial Fibrillation/physiopathology , Atrioventricular Node/pathology , Atrioventricular Node/physiopathology , Cardiac Pacing, Artificial , Disease Models, Animal , Electrocardiography , Fibrosis , GTP-Binding Protein alpha Subunits, Gs/metabolism , Genetic Therapy/adverse effects , Heart Rate/drug effects , Isoproterenol/administration & dosage , Pacemaker, Artificial , Stroke Volume , Sus scrofa , Time Factors , Ventricular Function, Left
15.
Phytother Res ; 26(6): 826-32, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22072550

ABSTRACT

The study assessed the hydroalcohol extract effects of Crocus sativus L. (saffron) on (i) the basic and rate-dependent electrophysiological properties of the AV node, (ii) remodeling of the AV node during experimental atrial fibrillation (AF) and (iii) the role of nitric oxide (NO) in the effects of saffron on the AV node. Stimulation protocols in isolated AV node were used to quantify AV nodal recovery, facilitation and fatigue in four groups of rabbits (n = 8-16 per group). In addition, the nodal response to AF was evaluated at multiple cycle lengths and during AF. Saffron had a depressant effect on AV nodal rate-dependent properties; further, it increased Wenckebach block cycle length, functional refractory period, facilitation and fatigue (p < 0.05). A NO-synthase inhibitor (L-NAME) prevented the depressant effects of saffron on the AV node (p < 0.05). Saffron increased the zone of concealment in experimental AF (p < 0.05). The present research showed, for the first time, established electrophysiological remodeling of the AV node during AF by saffron. Saffron increased the AV nodal refractoriness and zone of concealment. These depressant effects of saffron were mediated by endogenous NO.


Subject(s)
Atrial Fibrillation/physiopathology , Atrioventricular Node/drug effects , Crocus/chemistry , Electrophysiological Phenomena , Nitric Oxide/metabolism , Animals , Anti-Arrhythmia Agents/pharmacology , Atrioventricular Node/metabolism , Atrioventricular Node/physiopathology , Ethanol , Fatigue/chemically induced , Fatigue/physiopathology , Heart Block/physiopathology , Heart Rate , In Vitro Techniques , Male , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/antagonists & inhibitors , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rabbits , Water
16.
J Mol Cell Cardiol ; 50(1): 194-202, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20951705

ABSTRACT

Atrioventricular node (AV node) is the hub where electrical input from the atria is propagated and conveyed to the ventricles. Despite its strategic position and role in governing impulse conduction between atria and ventricles, there is paucity of data regarding the contribution of specific ion channels to the function of the AV node. Here, we examined the roles of Ca(v)1.3 L-type Ca(2+) channel in AV node by taking advantage of a mouse model with null mutation of Ca(v)1.3 (Ca(v)1.3(-/-)). Ca(v)1.3 null mutant mice show evidence of AV node dysfunction with AV block, suggesting the tissue-specific function of the Ca(v)1.3 channel. In keeping with this assertion, we demonstrate that Ca(v)1.3 isoform is highly expressed in the isolated AV node cells. Furthermore, AV node isolated from Ca(v)1.3 null mutant mice show a significant decrease in the firing frequency of spontaneous action potentials suggesting that Ca(v)1.3 L-type Ca(2+) channel plays significant roles in the automaticity of the AV node. Because of the distinct voltage-dependence of Ca(v)1.2 and Ca(v)1.3 Ca(2+) channels, Ca(v)1.2 alone does not suffice to maintain normal AV node function. Ca(v)1.3 currents activate at more hyperpolarizing voltage compared to Ca(v)1.2 currents. Consequently, Ca(v)1.2 Ca(2+) channel cannot functionally substitute for Ca(v)1.3 isoform in the AV node of Ca(v)1.3 null mutant mice. Thus, our study demonstrates that the distinct biophysical properties of Ca(v)1.3 Ca(2+) channel play critical roles in the firing frequency of AV node tissues.


Subject(s)
Atrioventricular Node/metabolism , Calcium Channels, L-Type/metabolism , Action Potentials/physiology , Animals , Immunohistochemistry , Mice , Mice, Mutant Strains , Microscopy, Confocal , Models, Theoretical , Patch-Clamp Techniques
17.
J Mol Cell Cardiol ; 50(4): 642-51, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21256850

ABSTRACT

The atrioventricular conduction axis, located in the septal component of the atrioventricular junctions, is arguably the most complex structure in the heart. It fulfils a multitude of functions, including the introduction of a delay between atrial and ventricular systole and backup pacemaking. Like any other multifunctional tissue, complexity is a key feature of this specialised tissue in the heart, and this complexity is both anatomical and electrophysiological, with the two being inextricably linked. We used quantitative PCR, histology and immunohistochemistry to analyse the axis from six human subjects. mRNAs for ~50 ion and gap junction channels, Ca(2+)-handling proteins and markers were measured in the atrial muscle (AM), a transitional area (TA), inferior nodal extension (INE), compact node (CN), penetrating bundle (PB) and ventricular muscle (VM). When compared to the AM, we found a lower expression of Na(v)1.5, K(ir)2.1, Cx43 and ANP mRNAs in the CN for example, but a higher expression of HCN1, HCN4, Ca(v)1.3, Ca(v)3.1, K(ir)3.4, Cx40 and Tbx3 mRNAs. Expression of some related proteins was in agreement with the expression of the corresponding mRNAs. There is a complex and heterogeneous pattern of expression of ion and gap junction channels and Ca(2+)-handling proteins in the human atrioventricular conduction axis that explains the function of this crucial pathway.


Subject(s)
Atrioventricular Node/cytology , Atrioventricular Node/metabolism , Heart Conduction System/cytology , Heart Conduction System/metabolism , Arrhythmias, Cardiac/metabolism , Calcium Channels, T-Type/metabolism , Caveolin 3/metabolism , Connexin 43/metabolism , Connexins/metabolism , Electrophysiology , Gap Junctions/metabolism , Humans , Immunohistochemistry , In Vitro Techniques , Ion Channels/metabolism , Muscle Proteins/metabolism , Myocardium/metabolism , NAV1.5 Voltage-Gated Sodium Channel , Reverse Transcriptase Polymerase Chain Reaction , Sodium Channels/metabolism
18.
J Clin Invest ; 118(8): 2758-70, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18636119

ABSTRACT

The coxsackievirus and adenovirus receptor (CAR) is a transmembrane protein that belongs to the family of adhesion molecules. In the postnatal heart, it is localized predominantly at the intercalated disc, where its function is not known. Here, we demonstrate that a first degree or complete block of atrioventricular (AV) conduction developed in the absence of CAR in the adult mouse heart and that prolongation of AV conduction occurred in the embryonic heart of the global CAR-KO mouse. In the cardiac-specific CAR-KO (CAR-cKO) mouse, we observed the loss of connexin 45 localization to the cell-cell junctions of the AV node but preservation of connexin 40 and 43 in contracting myocardial cells and connexin 30.2 in the AV node. There was also a marked decrease in beta-catenin and zonula occludens-1 (ZO-1) localization to the intercalated discs of CAR-cKO mouse hearts at 8 weeks before the mice developed cardiomyopathy at 21 weeks of age. We also found that CAR formed a complex with connexin 45 via its PSD-95/DigA/ZO-1-binding (PDZ-binding) motifs. We conclude that CAR expression is required for normal AV-node conduction and cardiac function. Furthermore, localization of connexin 45 at the AV-node cell-cell junction and of beta-catenin and ZO-1 at the ventricular intercalated disc are dependent on CAR.


Subject(s)
Atrioventricular Node/metabolism , Connexins/metabolism , Heart , Myocardium/metabolism , Receptors, Virus/metabolism , Animals , Connexins/ultrastructure , Coxsackie and Adenovirus Receptor-Like Membrane Protein , Electrocardiography , Embryo, Mammalian , Fluorescent Antibody Technique, Direct , HeLa Cells , Heart Ventricles/ultrastructure , Humans , Mice , Mice, Knockout , Myocardium/ultrastructure , Receptors, Virus/ultrastructure , Telemetry
19.
J Anat ; 219(2): 253-8, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21496015

ABSTRACT

Desmin is a member of the intermediate filaments, which play crucial roles in the maturation, maintenance and recovery of muscle fibers. Its expression has been examined in human cardiac muscle, rat and chicken, but its spatial distribution in the human fetal heart has not been described. The present study investigated desmin expression in the human fetal heart and associated great vessels in 14 mid-term fetuses from 9 to 18 weeks of gestation. Immunoreactivity for myosin heavy chain (MHC) and alpha smooth muscle actin (α-SMA), as well as neuron-specific enolase (NSE), was also examined. Increased expression of desmin from 9 to 18 weeks was clearly localized in the atrial wall, the proximal portions of the pulmonary vein and vena cava, and around the atrioventricular node. Desmin-positive structures were also positive for MHC. Meanwhile, the great vessels were also positive for α-SMA. The distribution of desmin exhibited a pattern quite different from that described in previous studies of rat and chicken. Thus, desmin in the human fetal heart does not seem to play a general role in myocardial differentiation but rather a specific role closely related to the maturation of the α-isozyme of MHC. Desmin expression in the developing fetal heart also appeared to be induced by mechanical stress due to the involvement of venous walls against the atrium.


Subject(s)
Desmin/metabolism , Fetal Heart/metabolism , Heart Atria/metabolism , Myocardium/metabolism , Actins/metabolism , Atrioventricular Node/metabolism , Humans , Immunohistochemistry , Myosin Heavy Chains/metabolism , Phosphopyruvate Hydratase/metabolism , Pulmonary Veins/metabolism , Venae Cavae/metabolism
20.
Pediatr Res ; 70(1): 37-43, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21399557

ABSTRACT

Atrioventricular reentry tachycardia (AVRT) requiring an accessory atrioventricular pathway (AP) is the most common type of arrhythmia in the perinatal period. The etiology of these arrhythmias is not fully understood as well as their capability to dissipate spontaneously in the first year of life. Temporary presence of APs during annulus fibrosus development might cause this specific type of arrhythmias. To study the presence of APs, electrophysiological recordings of ventricular activation patterns and immunohistochemical analyses with antibodies specifically against atrial myosin light chain 2 (MLC-2a), Periostin, Nkx2.5, and Connexin-43 were performed in embryonic mouse hearts ranging from 11.5 to 18.5 days post-conception (dpc). The electrophysiological recordings revealed the presence of functional APs in early (13.5-15.5 dpc) and late (16.5-18.5 dpc) postseptated stages of mouse heart development. These APs stained positive for MLC-2a and Nkx2.5 and negative for Periostin and Connexin-43. Longitudinal analyses showed that APs gradually decreased in number (p = 0.003) and size (p = 0.035) at subsequent developmental stages (13.5-18.5 dpc). Expression of periostin was observed in the developing annulus fibrosus, adjacent to APs and other locations where formation of fibrous tissue is essential. We conclude that functional APs are present during normal mouse heart development. These APs can serve as transient substrate for AVRTs in the perinatal period of development.


Subject(s)
Accessory Atrioventricular Bundle/physiopathology , Atrioventricular Node/physiopathology , Tachycardia, Atrioventricular Nodal Reentry/physiopathology , Accessory Atrioventricular Bundle/embryology , Accessory Atrioventricular Bundle/metabolism , Action Potentials , Animals , Atrioventricular Node/embryology , Atrioventricular Node/metabolism , Cell Adhesion Molecules/metabolism , Connexin 43/metabolism , Gestational Age , Heart Rate , Homeobox Protein Nkx-2.5 , Homeodomain Proteins/metabolism , Mice , Mice, Inbred C57BL , Myosin Light Chains/metabolism , Organogenesis , Tachycardia, Atrioventricular Nodal Reentry/embryology , Tachycardia, Atrioventricular Nodal Reentry/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL