Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Inflammopharmacology ; 32(2): 1187-1201, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367124

ABSTRACT

Atriplex crassifolia (A. crassifolia) is a locally occurring member of Chenopodiaceae family that has been used in folk medicine for the treatment of joint pain and inflammation. The present study was focused to determine the analgesic and anti-inflammatory potential of the plant. n-hexane (ACNH) and methanol (ACM) extracts of A. crassifolia were evaluated for in vitro anti-inflammatory potential using protein denaturation inhibition assay. In vivo anti-inflammatory potential was determined by oral administration of 250, 500, and 1000 mg/kg/day of extracts against carrageenan and formalin-induced paw edema models. Inflammatory mediators such as TNF-α, IL-10, IL-1ß, NF-kB, IL-4, and IL-6 were estimated in blood samples of animals subjected to formalin model of inflammation. Analgesic activity was determined using acetic acid-induced writhing and tail flick assay model. Phytochemical profiling was done by GC-mass spectrophotometer. The results of in vitro anti-inflammatory activity revealed that both ACNH and ACM displayed eminent inhibition of protein denaturation in concentration-dependent manner. In acute in vivo carrageenan-induced paw edema model, both extracts reduced inflammation at 5th and 6th hour of study (p < 0.05). A. crassifolia extracts exhibited significant inhibition against formalin-induced inflammation with maximum effect at 1000 mg/kg. ACNH and ACM significantly augmented the inflammatory mediators (p < 0.05). Levels of TNF-α, IL-6, IL-1ß, and NF-kB were reduced, while those of IL-4 and IL-10 were upregulated. ACNH displayed maximum analgesic effect at 1000 mg/kg, while ACM showed potent activity at 500 and 1000 mg/kg. The extracts restored the CBC, TLC and CRP toward normal. GC-MS analysis revealed the presence of compounds like n-hexadecanoic acid, Phytol, (9E,11E)-octadecadienoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester, 1-hexacosene, vitamin E, campesterol, stigmasterol, gamma sitosterol in both extracts. These compounds have been reported to suppress inflammation by inhibiting inflammatory cytokines. The current study concludes that A. crassifolia possesses significant anti-nociceptive and anti-inflammatory potential owing to the presence of phytochemicals.


Subject(s)
Atriplex , Interleukin-10 , Animals , Carrageenan , Atriplex/metabolism , Plant Extracts , Gas Chromatography-Mass Spectrometry , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha , Interleukin-4 , Interleukin-6 , Anti-Inflammatory Agents , Analgesics , Inflammation/drug therapy , Inflammation/chemically induced , Pain/drug therapy , Edema/chemically induced , Edema/drug therapy , Edema/metabolism , Formaldehyde , Inflammation Mediators/metabolism
2.
Plant Cell Rep ; 42(8): 1291-1310, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37195504

ABSTRACT

KEY MESSAGE: The salt-tolerance of transgenic soybean cleared for environmental release was improved by stable over-expression of AhBADH gene from Atriplex hortensis, which was demonstrated through molecular analysis and field experiments. An effective strategy for increasing the productivity of major crops under salt stress conditions is the development of transgenics that harbor genes responsible for salinity tolerance. Betaine aldehyde dehydrogenase (BADH) is a key enzyme involved in the biosynthesis of the osmoprotectant, glycine betaine (GB), and osmotic balance in plants, and several plants transformed with BADH gene have shown significant improvements in salt tolerance. However, very few field-tested transgenic cultivars have been reported, as most of the transgenic studies are limited to laboratory or green house experiments. In this study, we demonstrated through field experiments that AhBADH from Atriplex hortensis confers salt tolerance when transformed into soybean (Glycine max L.). AhBADH was successfully introduced into soybean by Agrobacterium mediated transformation. A total of 256 transgenic plants were obtained, out of which 47 lines showed significant enhancement of salt tolerance compared to non-transgenic control plants. Molecular analyses of the transgenic line TL2 and TL7 with the highest salt tolerance exhibited stable inheritance and expression of AhBADH in progenies with a single copy insertion. TL1, TL2 and TL7 exhibited stable enhanced salt tolerance and improved agronomic traits when subjected to 300mM NaCl treatment. Currently, the transgenic line TL2 and TL7 with stable enhanced salt tolerance, which have been cleared for environmental release, are under biosafety assessment. TL 2 and TL7 stably expressing AhBADH could then be applied in commercial breeding experiments to genetically improve salt tolerance in soybean.


Subject(s)
Atriplex , Salt Tolerance , Salt Tolerance/genetics , Glycine max/metabolism , Atriplex/genetics , Atriplex/metabolism , Plant Breeding , Betaine-Aldehyde Dehydrogenase/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant
3.
J Anim Physiol Anim Nutr (Berl) ; 106(2): 229-238, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34060680

ABSTRACT

This experiment aimed to investigate the effects of substituting barley grain with discarded dates on intake and digestibility, nitrogen (N) utilization and fermentation characteristics of sheep fed Atriplex hay-based diets. Four Barki sheep (50.9 ± 2.93 kg of body weight (BW)) fitted with rumen cannula were used in a 4 × 4 Latin Square design with 23-day periods. Four isonitrogenous (~140 g crude protein (CP)/kg of dry matter (DM)) experimental diets were formulated with Atriplex hay, and dietary sugar content was increased by replacing barley grain with discarded dates (the proportions of discarded dates in the diet were 0, 93, 187 and 280 g/kg DM). Nutrient intakes were not influenced by diet. Organic matter, CP and neutral detergent fibre digestibility increased (p < 0.05) linearly and DM digestibility tended to increase with increased dates inclusion. Ruminal pH and molar proportion of butyrate increased (p < 0.05) linearly with increasing levels of dates inclusion, whereas ruminal ammonia-N decreased (p < 0.05) linearly. Total volatile fatty acid concentration was unaffected. Microbial protein synthesis (MCP) increased linearly and efficiency of microbial protein synthesis tended to increase as discarded dates increased. Total N intake was not affected by diets whereas, urinary N, urea-N and total N execrations linearly decreased (p < 0.05) with higher amounts of dates in the diets. Blood urea-N tended to decrease with increasing levels of dates. It could be concluded that replacing 100% barley grain with discarded dates as a source of soluble carbohydrates can enhance the utilization of N in Atriplex hay-based diet and consequently improve digestibility and MCP.


Subject(s)
Atriplex , Hordeum , Animal Feed/analysis , Animals , Atriplex/metabolism , Diet/veterinary , Digestion , Fermentation , Hordeum/chemistry , Nitrogen/metabolism , Rumen/metabolism , Sheep , Zea mays/chemistry
4.
Environ Monit Assess ; 191(11): 651, 2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31628547

ABSTRACT

The chemical characteristics of mine tailings, organic amendments (doses), and plants are the critical factors that must be evaluated and monitored to ensure the sustainability of phytostabilization. The aim of this study was to evaluate the mobility of copper (Cu) in mine tailings (MT) of the Zone Central of Chile to which commercial humic substances were added, examining their effect on the uptake of Atriplex halimus. Two commercial humic substances (HS1 and HS2) extracted from leonardite (highly oxidized lignite), of different pH and total organic carbon, were evaluated by adsorption curve for Cu. In columns, soluble Cu, pH, and electrical conductivity in leachates were evaluated for MT, MT + HS1, and MT + HS2, and HS1 and HS2 in doses of 120 mg kg-1. In pot assay, seeds were germinated directly in MT and cultivated for 140 days with the addition of HS2 in 120 and 240 mg kg-1. Mine tailing presents high concentration of Cu (2016 ± 223 mg kg-1, pH 6.3 ± 0.1). The results of sequential extraction indicate that Cu is associated with the sulfide fraction of low risk of mobility. The amount of Cu sorbed by HS1 was higher than that sorbed by HS2, and both humic substances showing better fit to the Freundlich than Langmuir model. Lixiviation of Cu was significantly lower in MT + HS1 (0.166 ± 0.043 mg kg-1) and MT + HS2 (0.157 ± 0.018 mg kg-1) than in MT (0.251 ± 0.052 mg kg-1). Copper concentration in plants reached 185.8 ± 37.8 mg kg-1 in the roots and 32.6 ± 7.4 mg kg-1 in the aerial parts cultivated in MT without effect of the humic substance addition in Cu uptake nor growth. Copper concentrations in the aerial parts were adjusted to sufficient or normal levels in plant. A good management of mine tailings through phytostabilization could consider an adequate mixture of humic substances (to avoid leaching of metals) and an organic amendment that provides essential nutrients and increases biomass generation.


Subject(s)
Atriplex/chemistry , Atriplex/metabolism , Environmental Monitoring/methods , Humic Substances/analysis , Soil Pollutants/analysis , Soil/chemistry , Adsorption , Biodegradation, Environmental , Biomass , Chile , Copper/analysis , Minerals/chemistry , Mining , Plants/chemistry
5.
Ecotoxicol Environ Saf ; 139: 344-351, 2017 May.
Article in English | MEDLINE | ID: mdl-28187398

ABSTRACT

Most arsenic in surface soil and water exists primarily in its oxidized form, as arsenate (As(V); AsO43-), which is an analog of phosphate (PO43-). Arsenate can be taken up by phosphate transporters. Atriplex atacamensis Phil. is native to northern Chile (Atacama Desert), and this species can cope with high As concentrations and low P availability in its natural environment. To determine the impact of P on As accumulation and tolerance in A. atacamensis, the plants were cultivated in a hydroponic system under four treatments: no As(V) addition with 323µM phosphate (control); 1000µM As(V) addition with 323µM phosphate; no As(V) and no phosphate; 1000µM As(V) addition and no phosphate. Phosphate starvation decreased shoot fresh weight, while As(V) addition reduced stem and root fresh weights. Arsenate addition decreased the P concentrations in both roots and leaves, but to a lesser extent than for P starvation. Phosphorus starvation increased the As concentrations in roots, but decreased it in shoots, which suggests that P deficiency reduced As translocation from roots to shoots. Arsenate addition increased total glutathione, but P deficiency decreased oxidized and reduced glutathione in As(V)-treated plants. Arsenate also induced an increase in S accumulation and nonprotein thiol and ethylene synthesis, and a decrease in K concentrations, effects that were similar for the P-supplied and P-starved plants. In contrast, in As(V)-treated plants, P starvation dramatically decreased total soluble protein content and increased lipid peroxidation, compared to plants supplied with P. Phosphorus nutrition thus appears to be an important component of A. atacamensis response to As toxicity.


Subject(s)
Arsenates/pharmacokinetics , Atriplex/drug effects , Atriplex/metabolism , Phosphorus/deficiency , Arsenates/metabolism , Arsenates/pharmacology , Biological Transport/drug effects , Ethylenes/biosynthesis , Glutathione/metabolism , Lipid Peroxidation/drug effects , Phosphorus/metabolism , Phosphorus/pharmacology , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism , Potassium/metabolism , Sulfhydryl Compounds/metabolism , Sulfur/metabolism
6.
Bioorg Med Chem Lett ; 25(8): 1665-1670, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25813159

ABSTRACT

The phytochemical investigation of a Tunisian plant Atriplex portulacoides (Chenopodiaceae) led to the isolation of two new compounds designated as portulasoid (2) and septanoecdysone (3) along with the known 20-hydroxyecdysone (20HE) (1). Their chemical structures were elucidated on the basis of extensive spectroscopic methods including ES-HRMS, 1D and 2D-NMR. The isolated compounds were finally tested for their antioxidant activity by using DPPH, ABTS(+), Fe(3+) and catalase assays and also for their antibacterial and anticholinesterase activities.


Subject(s)
Atriplex/chemistry , Ecdysterone/analogs & derivatives , Ecdysterone/chemistry , Antioxidants/chemistry , Atriplex/metabolism , Cholinesterases/chemistry , Cholinesterases/metabolism , Ecdysterone/metabolism , Ecdysterone/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Magnetic Resonance Spectroscopy , Molecular Conformation , Plant Extracts/chemistry , Plant Roots/chemistry , Plant Roots/metabolism , Protein Binding
7.
Int J Phytoremediation ; 17(7): 662-8, 2015.
Article in English | MEDLINE | ID: mdl-25191928

ABSTRACT

Phytostabilization of heavy metals in contaminated soils should be subject to two conditions, the first is the choice plant must be able to stabilize heavy metals in soil, the second is the plant material which produced from the phytostabilization process must be safe and useful to avoid overload on environmental system. A field experiment was conducted out to evaluate the phytostabilization potential of two halophytes species (Atriplex lentiformis and Atriplex undulata). Compost at rates of 0, 15 and 30 ton ha(-1) was used to examine its role in plant growth and heavy metals uptake. The high rate of compost (30 ton ha(-1)) decreased zinc (Zn) concentrations in the leaves of A. lentiformis and A. undulata by 15.8 and 13.0%, while lead (Pb) in the leaves decreased by 37.6 and 35.2% respectively. Despite the extremely high total heavy metals concentrations in the studied soil, plants of Atriplex were able to grow and maintain shoots metals content below the toxic level and the produced plant materials had a high nutritive value compared to the conventional forage crops. Phosphorus (P) and chloride (Cl) in the roots of Atriplex plants play important function in heavy metals phytostabilization mechanism by the two halophytes plants.


Subject(s)
Atriplex/metabolism , Metals, Heavy/metabolism , Salt-Tolerant Plants/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Species Specificity
8.
Int J Phytoremediation ; 17(9): 789-800, 2015.
Article in English | MEDLINE | ID: mdl-26061238

ABSTRACT

A study was carried out to identify the mechanisms underlying stress caused by Cd and Pb accumulation in leaves of Atriplex halimus L. collected from habitats representing different kinds of pollution. Mean concentrations of Cd and Pb in aerial parts exceeded the critical levels in polluted plants as compared to reference plants. There were significant reduction in guiacol peroxidase, ascorbate peroxidase and glutathione content in most of polluted plants. The results showed increase in superoxide dismutase enzyme in all polluted plants. The significant increment in catalase enzyme, glutathione S-transeferase and ascorbic acid content were observed in most of polluted plants. Results of the nine differential expressed bands showed down regulation of NADH dehydrogenase and Sedoheptulose-bisphosphatase in polluted plants. In contrast, there were six regulated genes in highly polluted plants, representing transcription factors, membrane transporters and ROS detoxification. The transcription level of phytochelatin synthase showed a significant increase in all polluted plants, while heavy metal ATPase transporter expression significantly increased in some polluted plants. In conclusion, A. halimus may use two different strategies against Cd and Pb stress, in which the molecular and physiological features affords similar levels of Cd and Pb tolerance through binding, sequestration and the reduction of harmful effect of heavy metals.


Subject(s)
Atriplex/genetics , Atriplex/metabolism , Cadmium/metabolism , Gene Expression Regulation, Plant , Lead/metabolism , Soil Pollutants/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Aminoacyltransferases/genetics , Aminoacyltransferases/metabolism , Antioxidants/metabolism , Inactivation, Metabolic , Molecular Sequence Data , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Sequence Analysis, DNA
9.
Yi Chuan ; 37(1): 84-90, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25608818

ABSTRACT

PsbQ is an extrinsic subunit of the photosystem II in eukaryotic photosynthetic organisms. Numerous studies have demonstrated that PsbQ can stabilize the inorganic cofactors and enhance the oxygen release in PSII. The decrease of photosynthesis rate under salinity condition is normally attributed to the high concentration of injurious ions, such as Na(+) and Cl(-), which accumulate in the chloroplast and damage thylakoid membrane under salinity stress. In this study, AcPsbQ1 was isolated from a halophyte Atriplex canescens cDNA library. The AcPsbQ1 contains an open reading frame of 699 bp encoding a 233 amino acid protein. In order to investigate its function, AcPsbQ1 was cloned and transformed into Saccharomyces cerevisiae INVSc1. The heterologous expression of AcPsbQ1 in transgenic yeast significantly helped to increase the adapting and recovery ability of yeast cells under the salt and drought. Quantitative real-time PCR assay was performed to reveal the expression pattern of AcPsbQ1 under different abiotic stresses. On exposure to NaCl stress, the transcript level of AcPsbQ1 was significantly enhanced. AcPsbQ1 expression level was also up-regulated under drought stress. These results indicated that AcPsbQ1 might involve in the response to salt stress in A. canescens.


Subject(s)
Atriplex/genetics , Cloning, Molecular , Photosystem II Protein Complex/genetics , Plant Proteins/genetics , Sodium Chloride/metabolism , Amino Acid Sequence , Atriplex/metabolism , Molecular Sequence Data , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants/classification , Plants/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Salinity , Sequence Alignment
10.
New Phytol ; 197(3): 970-978, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23206198

ABSTRACT

Plant hydraulic characteristics were studied in diploid, tetraploid and hexaploid cytotypes of Atriplex canescens (Chenopodiaceae) to investigate the potential physiological basis underlying the intraspecific habitat differentiation among plants of different ploidy levels. Populations of A. canescens from different habitats of the Chihuahuan Desert (New Mexico, USA) were analyzed using flow cytometry to determine ploidy levels. Traits related to xylem water transport efficiency and safety against drought-induced hydraulic failure were measured in both stems and leaves. At the stem level, cytotypes of higher ploidy showed consistently lower leaf-specific hydraulic conductivity but greater resistance to drought-induced loss of hydraulic conductivity. At the leaf level, comparisons in hydraulics between cytotypes did not show a consistent pattern, but exhibited high plasticity to proximal environmental conditions related to soil water availability. The results suggest that a trade-off between stem hydraulic efficiency and safety across ploidy levels underlies niche differentiation among different cytotypes of A. canescens. Polyploidization may have been facilitated by environmental heterogeneity related to water availability, and variation in water-related physiology found in the present study suggests an important functional basis for the niche differentiation and coexistence of A. canescens cytotypes in desert environments.


Subject(s)
Atriplex/genetics , Polyploidy , Water/metabolism , Adaptation, Biological/genetics , Atriplex/metabolism , Atriplex/physiology , Environment , New Mexico , Plant Leaves/metabolism
11.
Ecotoxicol Environ Saf ; 90: 136-42, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23332792

ABSTRACT

Tolerance of plants to elevated concentrations of heavy metals in growth media and in its tissues leads to high degrees of metal bioaccumulation, which may pose a risk for humans and animals alike. Therefore, bio-accumulating plants need thorough evaluation from an environmental health point of view. A glasshouse experiment concerning the xerohalophyte Atriplex halimus was carried out to determine its tolerance and capacity to accumulate copper. We investigated the effect of Cu from 0 to 30 mmol l(-1) on the growth, photosynthetic apparatus and nutrient uptake of A. halimus by measuring gas exchange, chlorophyll fluorescence and photoinhibition. We also determined total Cu, sodium, potassium, magnesium, phosphorous, and nitrogen content in the plant. Our results indicated that A. halimus presented a high resistance to Cu-induced stress, since the plants were able to survive at concentrations higher than 15 mmol l(-1) Cu. However, this capacity was not reflected in its ability to accumulate and tolerate greater amounts of Cu in its tissues, since clear phytotoxicity symptoms were detected at tissue concentrations greater than 38 mg kg(-1) Cu. Thus, Cu increment caused a reduction in A. halimus growth, which was related to a decrease in net photosynthetic rate. This reduction was associated with the adverse effect of Cu on the photochemical apparatus and the reduction in the absorption of essential nutrients. The high resistance of A. halimus was largely related with the capacity of this species to avoid the absorption of great amounts of Cu. For all the above reasons, A. halimus could have the characteristics of a Cu-exclusion plant.


Subject(s)
Atriplex/drug effects , Copper/metabolism , Copper/toxicity , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Animals , Atriplex/growth & development , Atriplex/metabolism , Chlorophyll/metabolism , Ecotoxicology , Fluorescence , Photosynthesis/drug effects
12.
Environ Monit Assess ; 185(5): 4221-9, 2013 May.
Article in English | MEDLINE | ID: mdl-22968295

ABSTRACT

To assess metal mobility in pruning waste and biosolids compost (pH 6.9 and total concentration of metals in milligram per kilogram of Cd 1.9, Cu 132, Fe 8,513, Mn 192, Pb 81, and Zn 313), shrubs species Atriplex halimus and Rosmarinus officinalis were transplanted in this substrate and irrigated with citric acid (4 g L(-1), pH 2.9) and nutrient solution daily for 60 days. Citric acid significantly increased the concentrations of soluble Mn and Fe in the nutrient substrate solution measured by suction probes, while other metals did not vary in concentration (Cu and Zn) or were not observed at detectable levels (Cd and Pb). In plants, citric acid significantly increased the concentrations of Cu (2.7 ± 0.1-3.3 ± 0.1 mg kg(-1)), Fe (49.2 ± 5.2-76.8 ± 6.8 mg kg(-1)), and Mn (7.2 ± 1.1-11.4 ± 0.7 mg kg(-1)) in leaves of R. officinalis, whereas the concentration of only Mn (25.4 ± 0.3-42.2 ± 2.9 mg kg(-1)) was increased in A. halimus. Increasing Fe and Mn solubility by citric acid addition indicates the possibility of using it to improve plant nutrition. The mobility of metals in this substrate was influenced for the concentration of the metal, the degree of humification of organic matter and its high Fe content.


Subject(s)
Agriculture , Atriplex/metabolism , Citric Acid/chemistry , Metals/analysis , Rosmarinus/metabolism , Soil Pollutants/analysis , Soil/chemistry , Environmental Restoration and Remediation/methods , Hydrogen-Ion Concentration , Kinetics , Metals/chemistry , Metals/metabolism , Models, Chemical , Soil Pollutants/chemistry , Soil Pollutants/metabolism
13.
Phytochemistry ; 213: 113783, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37406790

ABSTRACT

Dehydrins form the group II LEA protein family and are known to play multiple roles in plant stress tolerance and enzyme protection. They harbor a variable number of conserved lysine rich motifs (K-segments) and may also contain three additional conserved motifs (Y-, F- and S-segments). In this work, we report the isolation and characterization of an FSK2-type dehydrin from the halophytic species Atriplex halimus, which we designate as AhDHN1. In silico analysis of the protein sequence revealed that AhDHN1 contains large number of hydrophilic residues, and is predicted to be intrinsically disordered. In addition, it has an FSK2 architecture with one F-segment, one S-segment, and two K-segments. The expression analysis showed that the AhDHN1 transcript is induced by salt and water stress treatments in the leaves of Atriplex seedlings. Moreover, circular dichroism spectrum performed on recombinant AhDHN1 showed that the dehydrin lacks any secondary structure, confirming its intrinsic disorder nature. However, there is a gain of α-helicity in the presence of membrane-like SDS micelles. In vitro assays revealed that AhDHN1 is able to effectively protect enzymatic activity of the lactate dehydrogenase against cold, heat and dehydration stresses. Our findings strongly suggest that AhDHN1 can be involved in the adaptation mechanisms of halophytes to adverse environments.


Subject(s)
Atriplex , Plant Proteins , Plant Proteins/metabolism , Atriplex/genetics , Atriplex/metabolism , Amino Acid Sequence , Plants/metabolism , Protein Structure, Secondary
14.
BMC Complement Med Ther ; 23(1): 464, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104070

ABSTRACT

BACKGROUND: The plant kingdom has long been considered a valuable source for therapeutic agents, however, some plant species still untapped and need to be phytochemically and biologically explored. Although several Atriplex species have been investigated in depth, A. leucoclada, a halophytic plant native to Saudi Arabian desert, remains to be explored for its phytochemical content and biological potentials. Herein, the current study investigated the metabolic content and the anti-inflammatory potential of A. leucoclada. METHODS: Powdered aerial parts of the plant were defatted with n-hexane then the defatted powder was extracted with 80% methanol. n-Hexane extract (ATH) was analyzed using GC-MS, while the defatted extract (ATD) was subjected to different chromatographic methods to isolate the major phytoconstituents. The structures of the purified compounds were elucidated using different spectroscopic methods including advanced NMR techniques. Anti-inflammatory activity of both extracts against COX-1 and COX-2 enzymes were examined in vitro. Molecular docking of the identified compounds into the active sites of COX-1 and COX-2 enzymes was conducted using pdb entries 6Y3C and 5IKV, respectively. RESULTS: Phytochemical investigation of ATD extract led to purification and identification of nine compounds. Interestingly, all the compounds, except for 20-hydroxy ecdysone (1), are reported for the first time from A. leucoclada, also luteolin (6) and pallidol (8) are isolated for the first time from genus Atriplex. Inhibitory activity of ATD and ATH extracts against COX-1 and COX-2 enzymes revealed concentration dependent activity of both fractions with IC50 41.22, 14.40 µg/ml for ATD and 16.74 and 5.96 µg/ml for ATH against COX-1 and COX-2, respectively. Both extracts displayed selectivity indices of 2.86 and 2.80, respectively as compared to 2.56 for Ibuprofen indicating a promising selectivity towards COX-2. Molecular docking study supported in vitro testing results, where purified metabolites showed binding affinity scores ranged from -9 to -6.4 and -8.5 to -6.6 kcal/mol for COX-1 and 2, respectively, in addition the binding energies of GC-MS detected compounds ranged from -8.9 to -5.5 and -8.3 to -5.1 kcal/mol for COX-1 and 2, respectively as compared to Ibuprofen (-6.9 and -7.5 kcal/mol, respectively), indicating high binding affinities of most of the compounds. Analysis of the binding orientations revealed variable binding patterns depending on the nature of the compounds. Our study suggested A. leucoclada as a generous source for anti-inflammatory agents.


Subject(s)
Atriplex , Atriplex/metabolism , Plant Extracts/chemistry , Molecular Docking Simulation , Cyclooxygenase 2/metabolism , Ibuprofen , Saudi Arabia , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry
15.
J Environ Manage ; 102: 71-8, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22446134

ABSTRACT

The accumulation of significant pools of sulfidic sediments in inland wetlands and creeks is an emerging risk for the management of inland waterways. We used replicated plot trials to appraise the viability of various strategies for neutralizing oxidized, acidified sulfidic sediments in a highly degraded wetland. Of the twenty different treatments trialed only addition of calcium hydroxide or calcium carbonate, burning of wood, and planting of Phragmites australis, Typha domingensis and Atriplex nummularia into beds prepared with CaCO3 or P. australis and T. domingensis into beds of sediment and mulch, decreased total actual acidity (TAA) in the top 5 cm of sediment in the first two weeks following treatment. Only the calcium hydroxide treatments and planting of P. australis, T. domingensis and A. nummularia into beds prepared with CaCO3 decreased TAA for a longer period of time (6 months). None of the treatments, except the planting of P. australis into beds prepared with lime, decreased TAA in the 5-30 cm layer of sediments. Therefore, the only effective treatment appears to be the application of highly alkaline ameliorants which need to be transported to the site. A survey of the wetland was undertaken to estimate the total amount of actual and potential acidity stored in the wetland's sediment and overlying water and showed that up to 1200 tonnes of calcium carbonate would be required to neutralise all of the actual and potential acidity in the 10 ha wetland. However, neutralisation of the remaining water in the wetland (about 12.5 ML) would produce approximately 2750 m3 of metal rich sludge (approximately 100 tonnes dry weight) that would require separate disposal.


Subject(s)
Conservation of Natural Resources/methods , Geologic Sediments/chemistry , Sulfides/analysis , Water/chemistry , Wetlands , Atriplex/growth & development , Atriplex/metabolism , Calcium Hydroxide/chemistry , Carbon/chemistry , Poaceae/growth & development , Poaceae/metabolism , Typhaceae/growth & development , Typhaceae/metabolism , Victoria , Wood
16.
J Sci Food Agric ; 92(2): 336-42, 2012 Jan 30.
Article in English | MEDLINE | ID: mdl-21935956

ABSTRACT

BACKGROUND: Three annual Atriplex species-A. hortensis var. purpurea, A. hortensis var. rubra and A. rosea-growing on soil with various levels of the heavy metals copper, lead, nickel, and zinc, have been investigated. RESULTS: Metal accumulation by Atriplex plants differed among species, levels of polluted soil and tissues. Metals accumulated by Atriplex were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. The increased concentration of heavy metals in soil led to increases in heavy metal shoot and root concentrations of Ni, Cu, Pb and Zn in plants as compared to those grown on unpolluted soil. Accumulation was higher in roots than shoots for all the heavy metals. None of the plants were suitable for phytoextraction because no hyperaccumulator was identified. However, plants with a high bioconcentration factor and low translocation factor have the potential for phytostabilization. Similarly, the correlation between metal concentrations and translocations in plants (BCFs and TFs) using a linear regression was also statistically significant. CONCLUSION: Among the plants studied, var. purpurea was the most efficient in accumulating Pb and Zn in its shoots, whereas var. rubra was most suitable for phytostabilization of sites contaminated with Cu and Ni.


Subject(s)
Atriplex/metabolism , Metals, Heavy/metabolism , Salt-Tolerant Plants/metabolism , Soil Pollutants/metabolism , Arabidopsis Proteins , Atriplex/classification , Biodegradation, Environmental , Chloroplast Proteins , Copper/chemistry , Copper/metabolism , Lead/chemistry , Lead/metabolism , Membrane Proteins , Metals, Heavy/chemistry , Nickel/chemistry , Nickel/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , SEC Translocation Channels , Soil Pollutants/chemistry , Zinc/chemistry , Zinc/metabolism
17.
Article in English | MEDLINE | ID: mdl-36498118

ABSTRACT

Mining activities have led to serious environmental (soil erosion, degradation of vegetation, and groundwater contamination) and human health (musculoskeletal problems, diarrheal conditions, and chronic diseases) issues at desert mining areas in northwest China. Native plant species grown naturally in desert regions show a unique tolerance to arid and semiarid conditions and are potential candidates for soil phytoremediation. Here, an ex situ experiment involving pot planting of seedlings of three native plant species (Suaeda glauca, Artemisia desertorum, and Atriplex canescens) was designed to explore their phytoremediation potential and the underlying physiological mechanism. For Zn and Cu, the three plants were all with a biological accumulation coefficient (BAC) greater than 1. For Cd, Ni, and Pb, Atriplex canescens had the highest bioaccumulation concentrations (521.52, 862.23, and 1734.59 mg/kg), with BAC values (1.06, 1.30, 1.25) greater than 1, which indicates that Atriplex canescens could be a broad-spectrum metal extraction plant. Physiological analysis (antioxidation, extracellular secretions, photosynthesis, and hydraulics) showed that the three desert plants exploited their unique strategy to protect against the stress of complex metals in soils. Moreover, the second growing period was the main heavy metal accumulation and extraction stage concomitant with highest water use efficiency (iWUE). Taken together, the three desert plants exhibited the potent heavy metal extraction ability and physiological and ecological adaptability to a harsh polluted environment in arid desert areas, providing potential resources for the bioremediation of metal-contaminated soils in an arid and semiarid desert environment.


Subject(s)
Artemisia , Atriplex , Chenopodiaceae , Metals, Heavy , Soil Pollutants , Humans , Atriplex/metabolism , Soil Pollutants/analysis , Biodegradation, Environmental , Metals, Heavy/analysis , Soil , Plants/metabolism
18.
Planta ; 233(5): 859-71, 2011 May.
Article in English | MEDLINE | ID: mdl-21225279

ABSTRACT

Seed dimorphism provides plants with alternative strategies for survival in unfavorable environments. Here, we investigated the physiological responses and differential gene expression caused by salinity exposure in Atriplex centralasiatica plants grown from the two different seed morphs. Seedlings derived from yellow seeds (YS) showed a greater salt tolerance than those derived from brown seeds (BS). Salt treatment induced nitric oxide (NO) synthesis in roots, and seedlings derived from YS produced greater amounts of NO than did those from BS. Analyses of NO scavenging during salt stress revealed that NO contributed to the differential salt tolerance in seedlings derived from the two seed morphs by modulating antioxidative enzyme activity, hydrogen peroxide accumulation and the ion equilibrium. We also applied transcriptomics and subsequent microarray analysis to evaluate the differential gene expression during salt treatment. These genes encoded proteins related to osmotic and ionic homeostasis, redox equilibrium and signal transduction. A select group of genes including GH3.3, CAT1/2, TIP1, SIHP1 and EXP1 were further confirmed with RT-PCR analysis. These results revealed that the enhanced salt tolerance of seedlings from YS appeared to be governed by a superior ability to achieve ionic homeostasis and redox equilibrium, a rapid response to salt stress, and ultimately better growth potential. NO serves as a vital regulator in these processes.


Subject(s)
Atriplex/physiology , Gene Expression Regulation, Plant/physiology , Seeds/physiology , Adaptation, Physiological , Antioxidants/metabolism , Atriplex/genetics , Atriplex/metabolism , China , Enzyme Activators , Genetic Variation , Hydrogen Peroxide/metabolism , Nitric Oxide/biosynthesis , Plant Roots/metabolism , Salinity , Salt Tolerance/genetics , Salt Tolerance/physiology , Seedlings/metabolism , Seedlings/physiology , Seeds/metabolism , Sodium Chloride
19.
J Exp Bot ; 59(6): 1315-26, 2008.
Article in English | MEDLINE | ID: mdl-18385490

ABSTRACT

Soil salinity and drought compromise water uptake and lead to osmotic adjustment in xero-halophyte plant species. These important environmental constraints may also have specific effects on plant physiology. Stress-induced accumulation of osmocompatible solutes was analysed in two Tunisian populations of the Mediteranean shrub Atriplex halimus L.-plants originating from a salt-affected coastal site (Monastir) or from a non-saline semi-arid area (Sbikha)-were exposed to nutrient solution containing either low (40 mM) or high (160 mM) doses of NaCl or 15% polyethylene glycol. The low NaCl dose stimulated plant growth in both populations. Plants from Monastir were more resistant to high salinity and exhibited a greater ability to produce glycinebetaine in response to salt stress. Conversely, plants from Sbikha were more resistant to water stress and displayed a higher rate of proline accumulation. Proline accumulated as early as 24 h after stress imposition and such accumulation was reversible. By contrast, glycinebetaine concentration culminated after 10 d of stress and did not decrease after the stress relief. The highest salt resistance of Monastir plants was not due to a lower rate of Na(+) absorption; plants from this population exhibited a higher stomatal conductance and a prodigal water-use strategy leading to lower water-use efficiency than plants from Sbikha. Exogenous application of proline (1 mM) improved the level of drought resistance in Monastir plants through a decrease in oxidative stress quantified by the malondialdehyde concentration, while the exogenous application of glycinebetaine improved the salinity resistance of Sbikha plants through a positive effect on photosystem II efficiency.


Subject(s)
Atriplex/metabolism , Betaine/metabolism , Proline/metabolism , Sodium Chloride/metabolism , Water/metabolism , Atriplex/growth & development , Carbon Dioxide/metabolism , Malondialdehyde/metabolism , Osmotic Pressure , Oxidative Stress , Photosystem II Protein Complex/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Salinity
20.
Chemosphere ; 204: 71-78, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29653324

ABSTRACT

Mine tailings have adverse chemical and physical conditions, including high concentrations of metals and salts, low organic matter content, and unbalanced rates of nutrients which limit the development of vegetation. A large scale field experiment was conducted to reclaim a tailing pond by triggering the growth of native species by spontaneous colonization by tilling (TL) the tailing pond surface and using marble waste (CaCO3; MW), pig slurry (PS) and their combination (MW + PS) as soil amendments. Soil physicochemical properties and water and DTPA extractable metal concentrations of bulk and rhizosphere soils were analyzed after five year from the application of the treatments. In addition, plants of Atriplex halimus from each treatment were collected and metals in roots, leaves and stems analyzed. Before amendments application, the studied pond showed a neutral pH, high salinity and a moderate organic carbon content. After five years, the pH value was significantly increased only in MW plot. The results showed significant increases of DTPA-extractable Zn in MW and MW + PS plots, Pb in all treatments except MW plot, Cd only in PS plot, and Cu only in MW + PS plot. A. halimus was the most dominant species, growing spontaneously in all plots, with lower vegetation cover in CT and MW plots, 6% and 2% respectively. Application of MW increased leaf Pb accumulation by 2.5-fold and Cd by 55%, when compared to the CT. The high initial salinity and probable substitution of metals by Ca2+ on exchangeable surfaces of soil particles may be the reasons for higher uptake of metals in MW plot when compared to the other plots. Although this plant is widely utilized in contaminated sites for phytostabilization purposes, it may absorb and translocate high concentrations of metals to the aboveground tissues in saline contaminated sites.


Subject(s)
Atriplex/metabolism , Biodegradation, Environmental , Metals, Heavy/metabolism , Mining , Metals, Heavy/analysis , Metals, Heavy/pharmacokinetics , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/metabolism , Soil Pollutants/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL