Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Biochim Biophys Acta ; 1834(1): 284-91, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22922659

ABSTRACT

Bacteriophage Mu, which has a contractile tail, is one of the most famous genus of Myoviridae. It has a wide host range and is thought to contribute to horizontal gene transfer. The Myoviridae infection process is initiated by adhesion to the host surface. The phage then penetrates the host cell membrane using its tail to inject its genetic material into the host. In this penetration process, Myoviridae phages are proposed to puncture the membrane of the host cell using a central spike located beneath its baseplate. The central spike of the Mu phage is thought to be composed of gene 45 product (gp45), which has a significant sequence homology with the central spike of P2 phage (gpV). We determined the crystal structure of shortened Mu gp45Δ1-91 (Arg92-Gln197) at 1.5Å resolution and showed that Mu gp45 is a needlelike structure that punctures the membrane. The apex of Mu gp45 and that of P2 gpV contained iron, chloride, and calcium ions. Although the C-terminal domain of Mu gp45 was sufficient for binding to the E. coli membrane, a mutant D188A, in which the Asp amino acid residue that coordinates the calcium ion was replaced by Ala, did not exhibit a propensity to bind to the membrane. Therefore, we concluded that calcium ion played an important role in interaction with the host cell membrane.


Subject(s)
Bacteriophage mu/chemistry , Viral Envelope Proteins/chemistry , Bacteriophage mu/metabolism , Calcium/chemistry , Calcium/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Membrane/virology , Crystallography, X-Ray , Escherichia coli/chemistry , Escherichia coli/metabolism , Escherichia coli/virology , Protein Structure, Tertiary , Viral Envelope Proteins/metabolism , Virus Internalization
2.
Virology ; 593: 110017, 2024 05.
Article in English | MEDLINE | ID: mdl-38382161

ABSTRACT

Bacteriophage Mu is a temperate phage known to infect various species of Enterobacteria, playing a role in bacterial mutation induction and horizontal gene transfer. The phage possesses two types of tail fibers important for host recognition, which enable it to expand its range of hosts. The alternate tail fibers are formed through the action of genes 49-50 or 52-51, allowing the Mu phage to recognize different surfaces of host cells. In a previous study, we presented the X-ray crystal structure of the C-terminal lipopolysaccharide (LPS)-binding domain of gene product (gp) 49, one of the subunits comprising the Mu tail fiber. In this study, we have determined the structure of the alternative tail fiber subunit, gp52, and compared it with other tail fibers. The results revealed that Mu phage employs different structural motifs for two individual tail fibers for recognizing different hosts.


Subject(s)
Bacteriophage mu , Bacteriophages , Bacteriophage mu/chemistry , Bacteriophage mu/genetics , Bacteriophages/genetics , Viral Tail Proteins/genetics
3.
J Biol Chem ; 286(41): 35852-35862, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-21859715

ABSTRACT

Gene expression during lytic development of bacteriophage Mu occurs in three phases: early, middle, and late. Transcription from the middle promoter, P(m), requires the phage-encoded activator protein Mor and the bacterial RNA polymerase. The middle promoter has a -10 hexamer, but no -35 hexamer. Instead P(m) has a hyphenated inverted repeat that serves as the Mor binding site overlapping the position of the missing -35 element. Mor binds to this site as a dimer and activates transcription by recruiting RNA polymerase. The crystal structure of the His-Mor dimer revealed three structural elements: an N-terminal dimerization domain, a C-terminal helix-turn-helix DNA-binding domain, and a ß-strand linker between the two domains. We predicted that the highly conserved residues in and flanking the ß-strand would be essential for the conformational flexibility and DNA minor groove binding by Mor. To test this hypothesis, we carried out single codon-specific mutagenesis with degenerate oligonucleotides. The amino acid substitutions were identified by DNA sequencing. The mutant proteins were characterized for their overexpression, solubility, DNA binding, and transcription activation. This analysis revealed that the Gly-Gly motif formed by Gly-65 and Gly-66 and the ß-strand side chain of Tyr-70 are crucial for DNA binding by His-tagged Mor. Mutant proteins with substitutions at Gly-74 retained partial activity. Treatment with the minor groove- and GC-specific chemical chromomycin A(3) demonstrated that chromomycin prevented His-Mor binding but could not disrupt a pre-formed His-Mor·DNA complex, consistent with the prediction that Mor interacts with the minor groove of the GC-rich spacer in the Mor binding site.


Subject(s)
Bacteriophage mu/chemistry , Cell Cycle Proteins/chemistry , DNA, Viral/chemistry , Drosophila Proteins/chemistry , Response Elements , Amino Acid Substitution , Bacteriophage mu/genetics , Bacteriophage mu/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromomycin A3/chemistry , Crystallography, X-Ray , DNA, Viral/genetics , DNA, Viral/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Escherichia coli K12/chemistry , Escherichia coli K12/genetics , Escherichia coli K12/metabolism , Escherichia coli K12/virology , Helix-Turn-Helix Motifs , Mutation, Missense , Protein Binding , Protein Structure, Tertiary
4.
Biochemistry ; 48(11): 2347-54, 2009 Mar 24.
Article in English | MEDLINE | ID: mdl-19170593

ABSTRACT

Transactivator protein C of bacteriophage mu is essential for the transition from middle to late gene expression during the phage life cycle. The unusual, multistep activation of mom promoter (P(mom)) by C protein involves activator-mediated promoter unwinding to recruit RNA polymerase and subsequent enhanced promoter clearance of the enzyme. To achieve this, C binds its site overlapping the -35 region of the mom promoter with a very high affinity, in Mg(2+)-dependent fashion. Mg(2+)-mediated conformational transition in C is necessary for its DNA binding and transactivation. We have determined the residues in C which coordinate Mg(2+), to induce allosteric transition in the protein, required for the specific interaction with DNA. Residues E26 and D40 in the putative metal binding motif (E(26)X(10)D(37)X(2)D(40)) present toward the N-terminus of the protein are found to be important for Mg(2+) ion binding. Mutations in these residues lead to altered Mg(2+)-induced conformation, compromised DNA binding, and reduced levels of transcription activation. Although Mg(2+) is widely used in various DNA transaction reactions, this report provides the first insights on the importance of the metal ion-induced allosteric transitions in regulating transcription factor function.


Subject(s)
Bacteriophage mu/chemistry , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/chemistry , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Magnesium/chemistry , Trans-Activators/chemistry , Trans-Activators/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Amino Acid Sequence , Bacteriophage mu/genetics , Bacteriophage mu/metabolism , DNA/genetics , DNA/metabolism , Molecular Sequence Data , Protein Binding , Protein Conformation , Transcriptional Activation
5.
J Biochem ; 166(6): 529-535, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31504613

ABSTRACT

In the history of viral research, one of the important biological features of bacteriophage Mu is the ability to expand its host range. For extending the host range, the Mu phage encodes two alternate tail fibre genes. Classical amber mutation experiments and genome sequence analysis of Mu phage suggested that gene products (gp) of geneS (gpS = gp49) and gene S' (gpS' = gp52) are tail fibres and that gene products of geneU (gpU = gp50) and geneU' (gpU' = gp51) work for tail fibre assembly or tail fibre chaperones. Depending on the gene orientation, a pair of genes 49-50 or 52-51 is expressed for producing different tail fibres that enable Mu phage to recognize different host cell surface. Since several fibrous proteins including some phage tail fibres employ their specific chaperone to facilitate folding and prevent aggregation, we expected that gp50 or gp51 would be a specific chaperone for gp49 and gp52, respectively. However, heterologous overexpression results for gp49 or gp52 (tail fibre subunit) together with gp51 and gp50, respectively, were also effective in producing soluble Mu tail fibres. Moreover, we successfully purified non-native gp49-gp51 and gp52-gp50 complexes. These facts showed that gp50 and gp51 were fungible and functional for both gp49 and gp52 each other.


Subject(s)
Bacteriophage mu/chemistry , Molecular Chaperones/chemistry , Amino Acid Sequence , Bacteriophage mu/genetics , Bacteriophage mu/isolation & purification , Binding Sites , Crystallization , Lipopolysaccharides/chemistry , Molecular Chaperones/genetics , Molecular Chaperones/isolation & purification , Sequence Alignment
6.
Article in English | MEDLINE | ID: mdl-17620727

ABSTRACT

Bacteriophage Mu C protein is an activator of the four Mu late promoters that drive the expression of genes encoding DNA-modification as well as phage head and tail morphogenesis proteins. This report describes the purification and cocrystallization of wild-type and selenomethionine-substituted C protein with a synthetic late promoter P(sym), together with preliminary X-ray diffraction data analysis using SAD phasing. The selenomethionine peak data set was collected from a single crystal which diffracted to 3.1 A resolution and belonged to space group P4(1) or P4(3), with unit-cell parameters a = 68.9, c = 187.6 A and two complexes per asymmetric unit. The structure will reveal the amino acid-DNA interactions and any conformational changes associated with DNA binding.


Subject(s)
Bacteriophage mu/chemistry , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/chemistry , DNA, Viral/chemistry , Promoter Regions, Genetic , Viral Proteins/chemistry , Bacteriophage mu/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Crystallization , Crystallography, X-Ray , DNA, Viral/genetics , Promoter Regions, Genetic/genetics , Viral Proteins/genetics
7.
J Mol Biol ; 352(4): 976-85, 2005 Sep 30.
Article in English | MEDLINE | ID: mdl-16125724

ABSTRACT

Bacteriophage Mu is a double-stranded DNA phage that consists of an icosahedral head, a contractile tail with baseplate and six tail fibers, similar to the well-studied T-even phages. The baseplate of bacteriophage Mu, which recognizes and attaches to a host cell during infection, consists of at least eight different proteins. The baseplate protein, gp44, is essential for bacteriophage Mu assembly and the generation of viable phages. To investigate the role of gp44 in baseplate assembly and infection, the crystal structure of gp44 was determined at 2.1A resolution by the multiple isomorphous replacement method. The overall structure of the gp44 trimer is similar to that of the T4 phage gp27 trimer, which forms the central hub of the T4 baseplate, although these proteins share very little primary sequence homology. Based on these data, we confirm that gp44 exists as a trimer exhibiting a hub-like structure with an inner diameter of 25A through which DNA can presumably pass during infection. The molecular surface of the gp44 trimer that abuts the host cell membrane is positively charged, and it is likely that Mu phage interacts with the membrane through electrostatic interactions mediated by gp44.


Subject(s)
Bacteriophage mu/ultrastructure , Protein Structure, Quaternary , Viral Proteins/chemistry , Viral Tail Proteins/chemistry , Amino Acid Sequence , Bacteriophage mu/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Alignment , Viral Proteins/genetics , Viral Tail Proteins/genetics
8.
Structure ; 2(11): 1041-8, 1994 Nov 15.
Article in English | MEDLINE | ID: mdl-7881904

ABSTRACT

BACKGROUND: Mu transposase (MuA) is a multidomain protein encoded by the bacteriophage Mu genome. It is responsible for translocation of the Mu genome, which is the largest and most efficient transposon known. While the various domains of MuA have been delineated by means of biochemical methods, no data have been obtained to date relating to its tertiary structure. RESULTS: We have solved the three-dimensional solution structure of the DNA-binding domain (residues 1-76; MuA76) of MuA by multidimensional heteronuclear NMR spectroscopy. The structure consists of a three-membered alpha-helical bundle buttressed by a three-stranded antiparallel beta-sheet. Helices H1 and H2 and the seven-residue turn connecting them comprise a helix-turn-helix (HTH) motif. In addition, there is a long nine-residue flexible loop or wing connecting strands B2 and B3 of the sheet. NMR studies of MuA76 complexed with a consensus DNA site from the internal activation region of the Mu genome indicate that the wing and the second helix of the HTH motif are significantly perturbed upon DNA binding. CONCLUSIONS: While the general appearance of the DNA-binding domain of MuA76 is similar to that of other winged HTH proteins, the connectivity of the secondary structure elements is permuted. Hence, the fold of MuA76 represents a novel class of winged HTH DNA-binding domain.


Subject(s)
DNA-Binding Proteins/chemistry , Helix-Loop-Helix Motifs , Nucleotidyltransferases/chemistry , Bacteriophage mu/chemistry , Bacteriophage mu/genetics , Base Sequence , Binding Sites/genetics , DNA, Viral/genetics , DNA-Binding Proteins/genetics , Helix-Loop-Helix Motifs/genetics , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Molecular Structure , Nucleotidyltransferases/genetics , Protein Structure, Secondary , Protein Structure, Tertiary , Transposases
9.
J Mol Biol ; 247(4): 753-64, 1995 Apr 07.
Article in English | MEDLINE | ID: mdl-7723029

ABSTRACT

The bacteriophage Mu Com protein is a small "zinc finger-like" protein that binds a specific site in com-mom operon mRNA and activates translation of the mom open-reading-frame. Com contains six cysteine and five histidine residues that have the potential to form several alternative zinc-finger-like motifs. We have used oligonucleotide site-directed mutagenesis to individually alter each of these amino acids (Cys to Ser, and His to Asn or Gln) and tested the various forms of Com for their ability to function in vivo. We observed that mutation of any one of the four N-terminal cysteine residues (Cys-6, 9, 26 or 29) resulted in loss of Com activity. The Com protein requires zinc in order to fold into its functional tertiary structure, as demonstrated by characteristic 1H nuclear magnetic resonance (NMR) chemical shifts. 1H chemical shifts revert to random coil values in the presence of the metal chelator EDTA. The metal-binding specificity and thermal stability of Com also has been investigated using 1H NMR. We report the use of 113Cd NMR, 1H-113Cd heteronuclear spin-echo difference spectroscopy HSED and Zn extended X-ray absorption fine structure spectroscopy EXAFS to determine the zinc/protein stoichiometry as 1:1 and the ligand environment as tetrathiolate. Comparative NMR spectra of Com mutants C6S and C39S suggest position 6 is involved in zinc coordination, while position 39 is not metal-liganded. These studies indicate that the metal coordination, site of Com is a four-cysteine complex, involving residues 6, 9, 26 and 29.


Subject(s)
Bacteriophage mu/chemistry , Viral Proteins/chemistry , Zinc Fingers , Amino Acid Sequence , Base Sequence , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Mutation , Protein Folding , RNA-Binding Proteins/chemistry , Viral Proteins/genetics
10.
J Mol Biol ; 289(3): 503-16, 1999 Jun 11.
Article in English | MEDLINE | ID: mdl-10356325

ABSTRACT

PriA and other primosome assembly proteins of Escherichia coli recruit the major replicative helicase DnaB for replisome assembly during bacteriophage Mu transposition and replication. MuA transposase catalyzes the transfer of Mu ends to target DNA, forming a potential replication fork that provides the assembly site for the replisome. However, this fork lacks the single-stranded DNA needed to load DnaB. Although no pre-existing primosome assembly sites that bind PriA were found within the Mu end sequences, PriA was able to bind to the forked DNA structure created by MuA. The helicase activity of PriA could then open the duplex to create the DnaB binding site. In a tightly coupled reaction on synthetic forked substrates, PriA promoted both the unwinding of the lagging strand arm and preprimosome assembly to load DnaB onto the lagging strand template. PriA apparently translocated 3' to 5' along the lagging strand template until sufficient single-stranded DNA was exposed for binding of DnaB, which then translocated 5' to 3' in the opposite direction. Mutant PriA lacking helicase activity was unable to promote this process, and loss of PriA helicase impaired Mu DNA replication in vivo and in vitro. This suggests that the opening of the duplex by PriA helicase is a critical step in the initiation of Mu DNA replication. Concerted helicase and primosome assembly functions would allow PriA to act as initiator on recombination intermediates and stalled replication forks. As part of the replisome, PriA may act as a mobile initiator that minimizes interruptions in chromosomal replication.


Subject(s)
Bacterial Proteins , DNA Helicases/metabolism , DNA Replication , DNA-Binding Proteins/metabolism , Nucleic Acid Heteroduplexes/metabolism , Recombination, Genetic , Bacteriophage mu/chemistry , Bacteriophage mu/genetics , Base Sequence , DNA Helicases/genetics , DNA-Binding Proteins/genetics , DnaB Helicases , Molecular Sequence Data , Nucleic Acid Conformation , Nucleic Acid Heteroduplexes/chemistry , Replication Protein A
11.
J Mol Biol ; 256(1): 50-65, 1996 Feb 16.
Article in English | MEDLINE | ID: mdl-8609613

ABSTRACT

Members of the resolvase/invertase family of site-specific recombinases require supercoiled substrates containing two recombination sites. To dissect the roles of supercoiling in recombination by the Tn3 and gamma delta resolvases and the phage Mu Gin invertase, we used substrates that provided some but not all of the topological features of the standard substrate. We divided the Tn3 resolvase reaction into two stages, synapsis and postsynapsis. Using structural and functional topological analyses, we verified that the resolvase synaptic complexes with nicked catenanes were recombination intermediates. The requirement for supercoiling was even less stringent for the gamma delta resolvase, which recombined nicked catenanes about half as well as it did supercoiled substrates. Gin recombination of catenanes occurred even if the recombinational enhancer was on a nicked ring, as long as both crossover sites were on a supercoiled ring. Therefore, supercoiling is required at the Gin crossover sites but not at the enhancer. We conclude that solely conformational effects of supercoiling are required for resolvase synapsis and the function of the Gin enhancer, but that a torsional effect, probably double helix unwinding, is needed for Tn3 resolvase postsynapsis and at the Gin recombination sites.


Subject(s)
Bacteriophage mu/genetics , DNA Nucleotidyltransferases/metabolism , DNA Topoisomerases, Type I/genetics , DNA, Superhelical/genetics , DNA, Viral/genetics , Recombination, Genetic , Viral Proteins/genetics , Bacteriophage mu/chemistry , Bacteriophage mu/metabolism , Binding Sites/genetics , DNA Topoisomerases, Type I/metabolism , DNA, Superhelical/chemistry , DNA, Superhelical/metabolism , DNA, Viral/chemistry , DNA, Viral/metabolism , Enhancer Elements, Genetic , Nucleic Acid Conformation , Plasmids/genetics , Substrate Specificity , Transposases , Viral Proteins/metabolism
12.
Genetics ; 142(3): 661-72, 1996 Mar.
Article in English | MEDLINE | ID: mdl-8849877

ABSTRACT

Mutations in an N-terminal 70-amino acid domain of bacteriophage Mu's repressor cause temperature-sensitive DNA-binding activity. Surprisingly, amber mutations can conditionally correct the heat-sensitive defect in three mutant forms of the repressor gene, cts25 (D43-G), cts62 (R47-Q) and cts71 (M28-I), and in the appropriate bacterial host produce a heat-stable Sts phenotype (for survival of temperature shifts). Sts repressor mutants are heat sensitive when in supE or supF hosts and heat resistant when in Sup degrees hosts. Mutants with an Sts phenotype have amber mutations at one of three codons, Q179, Q187, or Q190. The Sts phenotype relates to the repressor size: in Sup degrees hosts sts repressors are shorter by seven, 10, or 18 amino acids compared to repressors in supE or supF hosts. The truncated form of the sts62-1 repressor, which lacks 18 residues (Q179-V196), binds Mu operator DNA more stably at 42 degrees in vitro compared to its full-length counterpart (cts62 repressor). In addition to influencing temperature sensitivity, the C-terminus appears to control the susceptibility to in vivo Clp proteolysis by influencing the multimeric structure of repressor.


Subject(s)
Adenosine Triphosphatases , Bacteriophage mu/genetics , Gene Expression Regulation, Viral , Repressor Proteins/genetics , Viral Proteins/genetics , Amino Acid Sequence , Bacteriophage mu/chemistry , Bacteriophage mu/metabolism , Base Sequence , DNA, Viral , Endopeptidase Clp , Gene Deletion , Molecular Sequence Data , Repressor Proteins/metabolism , Serine Endopeptidases/metabolism , Thermosensing , Viral Proteins/metabolism , Viral Regulatory and Accessory Proteins
13.
Elife ; 2: e01222, 2013 Oct 29.
Article in English | MEDLINE | ID: mdl-24171103

ABSTRACT

Spontaneous DNA breaks instigate genomic changes that fuel cancer and evolution, yet direct quantification of double-strand breaks (DSBs) has been limited. Predominant sources of spontaneous DSBs remain elusive. We report synthetic technology for quantifying DSBs using fluorescent-protein fusions of double-strand DNA end-binding protein, Gam of bacteriophage Mu. In Escherichia coli GamGFP forms foci at chromosomal DSBs and pinpoints their subgenomic locations. Spontaneous DSBs occur mostly one per cell, and correspond with generations, supporting replicative models for spontaneous breakage, and providing the first true breakage rates. In mammalian cells GamGFP-labels laser-induced DSBs antagonized by end-binding protein Ku; co-localizes incompletely with DSB marker 53BP1 suggesting superior DSB-specificity; blocks resection; and demonstrates DNA breakage via APOBEC3A cytosine deaminase. We demonstrate directly that some spontaneous DSBs occur outside of S phase. The data illuminate spontaneous DNA breakage in E. coli and human cells and illustrate the versatility of fluorescent-Gam for interrogation of DSBs in living cells. DOI:http://dx.doi.org/10.7554/eLife.01222.001.


Subject(s)
Chromosomes, Bacterial/metabolism , DNA Breaks, Double-Stranded , DNA-Binding Proteins/genetics , Protein Engineering/methods , Recombinant Fusion Proteins/genetics , Viral Proteins/genetics , Animals , Bacteriophage mu/chemistry , Chromosomes, Bacterial/chemistry , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , DNA/chemistry , DNA/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Ku Autoantigen , Mice , Proteins/genetics , Proteins/metabolism , Recombinant Fusion Proteins/metabolism , Synthetic Biology , Tumor Suppressor p53-Binding Protein 1 , Viral Proteins/metabolism
14.
Genes Dev ; 19(7): 840-52, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15774720

ABSTRACT

Mu DNA transposition proceeds through a series of higher-order nucleoprotein complexes called transpososomes. The structural core of the transpososome is a tetramer of the transposase, Mu A, bound to the two transposon ends. High-resolution structural analysis of the intact transposase and the transpososome has not been successful to date. Here we report the structure of Mu A at 16-angstroms and the Type 1 transpososome at 34-angstroms resolution, by 3D reconstruction of images obtained by scanning transmission electron microscopy (STEM) at cryo-temperatures. Electron spectroscopic imaging (ESI) of the DNA-phosphorus was performed in conjunction with the structural investigation to derive the path of the DNA through the transpososome and to define the DNA-binding surface in the transposase. Our model of the transpososome fits well with the accumulated biochemical literature for this intricate transposition system, and lays a structural foundation for biochemical function, including catalysis in trans and the complex circuit of macromolecular interactions underlying Mu DNA transposition.


Subject(s)
Bacteriophage mu/chemistry , DNA Transposable Elements , Transposases/chemistry , Bacteriophage mu/enzymology , Microscopy, Electron, Scanning Transmission , Microscopy, Energy-Filtering Transmission Electron , Protein Structure, Tertiary
15.
Virology ; 331(1): 6-19, 2005 Jan 05.
Article in English | MEDLINE | ID: mdl-15582649

ABSTRACT

Bacteriophage Mu uses DNA transposition for propagation and is a model for transposition studies in general. Recent identification of Mu-like prophages within bacterial genomes offers new material for evolutionary and comparative functional studies. One such prophage, Hin-Mu of Haemophilus influenzae Rd, was studied for its transpositional properties. The components of its transposition core machinery, the encoded transposase (MuA(Hin)) and the transposase binding sites, were evaluated for functional properties by sequence comparisons and DNase I footprinting. Transpositional activity of Hin-Mu was examined by in vitro assays directly assessing the assembly and catalytic function of the transposition core machinery. The Hin-Mu components readily assembled catalytically competent protein-DNA complexes, transpososomes. Thus, Hin-Mu encodes a functional transposase and contains critical transposase binding sites. Despite marked sequence differences, components of the Hin-Mu and Mu transposition core machineries are partially interchangeable, reflecting both conservation and flexibility in the functionally important regions within the transpososome structure.


Subject(s)
Bacteriophage mu/genetics , DNA Transposable Elements , DNA, Viral/chemistry , Haemophilus influenzae/virology , Prophages/genetics , Amino Acid Sequence , Bacteriophage mu/chemistry , Base Sequence , Binding Sites , Catalysis , DNA Footprinting , Deoxyribonuclease I/chemistry , Genome, Viral , Haemophilus influenzae/genetics , Molecular Sequence Data , Prophages/chemistry , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Transposases/chemistry , Transposases/genetics
16.
J Biol Chem ; 280(44): 36802-8, 2005 Nov 04.
Article in English | MEDLINE | ID: mdl-16079126

ABSTRACT

TorI (Tor inhibition protein) has been identified in Escherichia coli as a protein inhibitor acting through protein-protein interaction with the TorR response regulator. This interaction, which does not interfere with TorR DNA binding activity, probably prevents the recruitment of RNA polymerase to the torC promoter. In this study we have solved the solution structure of TorI, which adopts a prokaryotic winged-helix arrangement. Despite no primary sequence similarity, the three-dimensional structure of TorI is highly homologous to the (lambda)Xis, Mu bacteriophage repressor (MuR-DBD), and transposase (MuA-DBD) structures. We propose that the TorI protein is the structural missing link between the (lambda)Xis and MuR proteins. Moreover, in vivo assays demonstrated that TorI plays an essential role in prophage excision. Heteronuclear NMR experiments and site-directed mutagenesis studies have pinpointed out key residues involved in the DNA binding activity of TorI. Our findings suggest that TorI-related proteins identified in various pathogenic bacterial genomes define a new family of atypical excisionases.


Subject(s)
DNA, Bacterial/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Prophages , Amino Acid Sequence , Bacteriophage mu/chemistry , Base Sequence , DNA Nucleotidyltransferases/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Promoter Regions, Genetic/genetics , Protein Binding , Protein Structure, Secondary , Repressor Proteins/chemistry , Sequence Homology, Amino Acid , Transcription Factors , Transcription, Genetic , Transposases/chemistry , Viral Proteins/chemistry , Viral Regulatory and Accessory Proteins
17.
Cell ; 70(2): 303-11, 1992 Jul 24.
Article in English | MEDLINE | ID: mdl-1322248

ABSTRACT

Discovery and characterization of a new intermediate in Mu DNA transposition allowed assembly of the transposition machinery to be separated from the chemical steps of recombination. This stable intermediate, which accumulates in the presence of Ca2+, consists of the two ends of the Mu DNA synapsed by a tetramer of the Mu transposase. Within this stable synaptic complex (SSC), the recombination sites are engaged but not yet cleaved. Thus, the SSC is structurally related to both the cleaved donor and strand transfer complexes, but precedes them on the transposition pathway. Once the active protein-DNA complex is constructed, it is conserved throughout transposition. The participation of internal sequence elements and accessory factors exclusively during SSC assembly allows recombination to be controlled prior to the irreversible chemical steps.


Subject(s)
Bacteriophage mu/chemistry , Nucleotidyltransferases/chemistry , Cations, Divalent , Macromolecular Substances , Recombination, Genetic , Transposases
18.
Biochemistry ; 34(5): 1779-86, 1995 Feb 07.
Article in English | MEDLINE | ID: mdl-7849038

ABSTRACT

The Gin protein of bacteriophage Mu mediates recombination between two inverted repeat sequences. Gin binds as a dimer to each of these recombination sites. We show that Gin is a dimer in solution also, and that the dimerization is probably stabilized by hydrophobic interactions between the subunits. The subunits of the dimer could efficiently be cross-linked with the 4-A cross-linker diepoxybutane. Spontaneous oxidation of Cys(24) and/or Cys(27) also resulted in intersubunit cross-linking. One or both cysteine residues are located at the interface of the Gin dimer, which maps the dimerization domain in the N-terminal part of the protein. Binding of the disulfide-bonded dimers of Gin to a recombination site was strongly reduced, suggesting that the subunits need to reorient in order to form a stable protein-DNA complex. In the protein-DNA complex, however, oxidation of cysteine residues still seems to be possible, indicating that the N-terminal parts of two Gin subunits are also in close proximity when bound to DNA.


Subject(s)
Bacteriophage mu/chemistry , DNA Nucleotidyltransferases/chemistry , Amino Acid Sequence , Molecular Sequence Data , Oxidation-Reduction , Repetitive Sequences, Nucleic Acid
19.
Plasmid ; 42(3): 159-73, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10545259

ABSTRACT

Streptococcus thermophilus is a thermophilic gram-positive bacterium belonging to the lactic acid group. We report the isolation and characterization of a new 9.6-kDa DNA-binding protein, HSth, belonging to the HU family of nucleoid-associated proteins. The hsth gene was isolated in a 2.5-kb genomic region, upstream of a gene with strong homology to Lactococcus lactis pyrD. It is transcribed from a single E. coli sigma(70)-like promoter. Based on its high level of sequence similarity to B. subtilis and E. coli HU, HSth appears to be an HU homologue. The HSth protein shows biochemical and functional properties typical of HU proteins from gram-positive bacteria, being heat-stable, acid-soluble, and homodimeric. When expressed in HU-deficient E. coli cells, HSth supported the growth of bacteriophage Mu as efficiently as E. coli HU homo- and heterodimeric proteins. It did not, however, display any IHF-specific functions. Finally, we show that HSth binds to linear DNA with no apparent specificity, forming protein-DNA complexes similar but not identical to those observed with E. coli HU proteins.


Subject(s)
Bacterial Proteins/isolation & purification , DNA-Binding Proteins/isolation & purification , Streptococcus/chemistry , Amino Acid Sequence , Bacteriophage mu/chemistry , Base Sequence , Blotting, Northern , DNA Primers , Models, Genetic , Molecular Sequence Data , Plasmids/chemistry , Transcription, Genetic
20.
J Biol Chem ; 279(16): 16581-90, 2004 Apr 16.
Article in English | MEDLINE | ID: mdl-14729670

ABSTRACT

Transcription from the middle promoter, Pm, of bacteriophage Mu requires the phage-encoded activator protein Mor and bacterial RNA polymerase. Mor is a sequence-specific DNA-binding protein that mediates transcription activation through its interactions with the C-terminal domains of the alpha and sigma subunits of bacterial RNA polymerase. Here we present the first structure for a member of the Mor/C family of transcription activators, the crystal structure of Mor to 2.2-A resolution. Each monomer of the Mor dimer is composed of two domains, the N-terminal dimerization domain and C-terminal DNA-binding domain, which are connected by a linker containing a beta strand. The N-terminal dimerization domain has an unusual mode of dimerization; helices alpha1 and alpha2 of both monomers are intertwined to form a four-helix bundle, generating a hydrophobic core that is further stabilized by antiparallel interactions between the two beta strands. Mutational analysis of key leucine residues in helix alpha1 demonstrated a role for this hydrophobic core in protein solubility and function. The C-terminal domain has a classical helix-turn-helix DNA-binding motif that is located at opposite ends of the elongated dimer. Since the distance between the two helix-turn-helix motifs is too great to allow binding to two adjacent major grooves of the 16-bp Mor-binding site, we propose that conformational changes in the protein and DNA will be required for Mor to interact with the DNA. The highly conserved glycines flanking the beta strand may act as pivot points, facilitating the conformational changes of Mor, and the DNA may be bent.


Subject(s)
Receptors, Opioid, mu , Trans-Activators/chemistry , Viral Proteins/chemistry , Amino Acid Sequence , Bacteriophage mu/chemistry , Crystallization , Models, Molecular , Molecular Sequence Data , Protein Conformation , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL