Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Microbiology (Reading) ; 170(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-39046321

ABSTRACT

Bacteriophage ϕ6 is a segmented dsRNA virus with a lipid envelope, which are unusual traits in bacterial viruses but common in eukaryotic viruses. This uniqueness allowed ϕ6 and its Pseudomonad hosts to serve as a molecular model for RNA genetics, mutation, replication, packaging, and reassortment in both bacterial and eukaryotic viruses. However, an additional uniqueness of ϕ6, created by its high mutation rate, was its use as an experimental system to study key questions such as the evolution of sex (segment reassortment), host-pathogen interactions, mutational load, rates of adaptation, genetic and phenotypic complexity, and game theory.


Subject(s)
Bacteriophage phi 6 , Evolution, Molecular , Bacteriophage phi 6/genetics , Bacteriophage phi 6/physiology , RNA Viruses/genetics , Host-Pathogen Interactions , Virus Replication , Mutation
2.
Appl Environ Microbiol ; 87(22): e0121521, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34469200

ABSTRACT

Fomites can represent a reservoir for pathogens, which may be subsequently transferred from surfaces to skin. In this study, we aim to understand how different factors (including virus type, surface type, time since last hand wash, and direction of transfer) affect virus transfer rates, defined as the fraction of virus transferred, between fingerpads and fomites. To determine this, 360 transfer events were performed with 20 volunteers using Phi6 (a surrogate for enveloped viruses), MS2 (a surrogate for nonenveloped viruses), and three clean surfaces (stainless steel, painted wood, and plastic). Considering all transfer events (all surfaces and both transfer directions combined), the mean transfer rates of Phi6 and MS2 were 0.17 and 0.26, respectively. Transfer of MS2 was significantly higher than that of Phi6 (P < 0.05). Surface type was a significant factor that affected the transfer rate of Phi6: Phi6 is more easily transferred to and from stainless steel and plastic than to and from painted wood. Direction of transfer was a significant factor affecting MS2 transfer rates: MS2 is more easily transferred from surfaces to fingerpads than from fingerpads to surfaces. Data from these virus transfer events, and subsequent transfer rate distributions, provide information that can be used to refine quantitative microbial risk assessments. This study provides a large-scale data set of transfer events with a surrogate for enveloped viruses, which extends the reach of the study to the role of fomites in the transmission of human enveloped viruses like influenza and SARS-CoV-2. IMPORTANCE This study created a large-scale data set for the transfer of enveloped viruses between skin and surfaces. The data set produced by this study provides information on modeling the distribution of enveloped and nonenveloped virus transfer rates, which can aid in the implementation of risk assessment models in the future. Additionally, enveloped and nonenveloped viruses were applied to experimental surfaces in an equivalent matrix to avoid matrix effects, so results between different viral species can be directly compared without confounding effects of different matrices. Our results indicating how virus type, surface type, time since last hand wash, and direction of transfer affect virus transfer rates can be used in decision-making processes to lower the risk of viral infection from transmission through fomites.


Subject(s)
Fingers/virology , Fomites/virology , Virus Physiological Phenomena , Bacteriophage phi 6/physiology , Bacteriophage phi 6/ultrastructure , Fomites/classification , Hand Hygiene , Humans , Levivirus/physiology , Levivirus/ultrastructure , Viral Envelope/ultrastructure , Virus Diseases/transmission , Virus Diseases/virology , Viruses/ultrastructure
3.
Appl Environ Microbiol ; 86(17)2020 08 18.
Article in English | MEDLINE | ID: mdl-32591388

ABSTRACT

The infection of health care workers during the 2013 to 2016 Ebola outbreak raised concerns about fomite transmission. In the wake of the coronavirus disease 2019 (COVID-19) pandemic, investigations are ongoing to determine the role of fomites in coronavirus transmission as well. The bacteriophage phi 6 has a phospholipid envelope and is commonly used in environmental studies as a surrogate for human enveloped viruses. The persistence of phi 6 was evaluated as a surrogate for Ebola virus (EBOV) and coronaviruses on porous and nonporous hospital surfaces. Phi 6 was suspended in a body fluid simulant and inoculated onto 1-cm2 coupons of steel, plastic, and two fabric curtain types. The coupons were placed at two controlled absolute humidity (AH) levels: a low AH of 3.0 g/m3 and a high AH of 14.4 g/m3 Phi 6 declined at a lower rate on all materials under low-AH conditions, with a decay rate of 0.06-log10 PFU/day to 0.11-log10 PFU/day, than under the higher AH conditions, with a decay rate of 0.65-log10 PFU/h to 1.42-log10 PFU/day. There was a significant difference in decay rates between porous and nonporous surfaces at both low AH (P < 0.0001) and high AH (P < 0.0001). Under these laboratory-simulated conditions, phi 6 was found to be a conservative surrogate for EBOV under low-AH conditions in that it persisted longer than Ebola virus in similar AH conditions. Additionally, some coronaviruses persist longer than phi 6 under similar conditions; therefore, phi 6 may not be a suitable surrogate for coronaviruses.IMPORTANCE Understanding the persistence of enveloped viruses helps inform infection control practices and procedures in health care facilities and community settings. These data convey to public health investigators that enveloped viruses can persist and remain infective on surfaces, thus demonstrating a potential risk for transmission. Under these laboratory-simulated Western indoor hospital conditions, we assessed the suitability of phi 6 as a surrogate for environmental persistence research related to enveloped viruses, including EBOV and coronaviruses.


Subject(s)
Bacteriophage phi 6/isolation & purification , Bacteriophage phi 6/physiology , Coronavirus/physiology , Ebolavirus/physiology , Environmental Microbiology , Fomites/virology , Virus Inactivation , Betacoronavirus/physiology , COVID-19 , Coronavirus/isolation & purification , Coronavirus Infections/transmission , Coronavirus Infections/virology , Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/transmission , Hemorrhagic Fever, Ebola/virology , Hospitals , Humans , Humidity , Pandemics , Pneumonia, Viral/transmission , Porosity , SARS-CoV-2 , Temperature
4.
RNA ; 23(1): 119-129, 2017 01.
Article in English | MEDLINE | ID: mdl-27803153

ABSTRACT

Genome packaging of double-stranded RNA (dsRNA) phages has been widely studied using biochemical and molecular biology methods. We adapted the existing in vitro packaging system of one such phage for single-molecule experimentation. To our knowledge, this is the first attempt to study the details of viral RNA packaging using optical tweezers. Pseudomonas phage φ6 is a dsRNA virus with a tripartite genome. Positive-sense (+) single-stranded RNA (ssRNA) genome precursors are packaged into a preformed procapsid (PC), where negative strands are synthesized. We present single-molecule measurements of the viral ssRNA packaging by the φ6 PC. Our data show that packaging proceeds intermittently in slow and fast phases, which likely reflects differences in the unfolding of the RNA secondary structures of the ssRNA being packaged. Although the mean packaging velocity was relatively low (0.07-0.54 nm/sec), packaging could reach 4.62 nm/sec during the fast packaging phase.


Subject(s)
Bacteriophage phi 6/physiology , RNA, Viral/genetics , Bacteriophage phi 6/genetics , In Vitro Techniques , Models, Molecular , Nucleic Acid Conformation , RNA Folding , RNA, Viral/chemistry , Virus Assembly
5.
Proc Biol Sci ; 282(1821): 20151932, 2015 12 22.
Article in English | MEDLINE | ID: mdl-26702041

ABSTRACT

Competition for resources is thought to play a critical role in both the origins and maintenance of biodiversity. Although numerous laboratory evolution experiments have confirmed that competition can be a key driver of adaptive diversification, few have demonstrated its role in the maintenance of the resulting diversity. We investigate the conditions that favour the origin and maintenance of alternative generalist and specialist resource-use phenotypes within the same population. Previously, we confirmed that competition for hosts among φ6 bacteriophage in a mixed novel (non-permissive) and ancestral (permissive) host microcosm triggered the evolution of a generalist phenotype capable of infecting both hosts. However, because the newly evolved generalists tended to competitively exclude the ancestral specialists, coexistence between the two phenotypes was rare. Here, we show that reducing the relative abundance of the novel host slowed the increase in frequency of the generalist phenotype, allowing sufficient time for the specialist to further adapt to the ancestral host. This adaptation resulted in 'evolutionary rescue' of the specialists, preventing their competitive exclusion by the generalists. Thus, our results suggest that competition promotes both the origin and maintenance of biodiversity when it is strong enough to favour a novel resource-use phenotype, but weak enough to allow adaptation of both the novel and ancestral phenotypes to their respective niches.


Subject(s)
Bacteriophage phi 6/physiology , Biological Evolution , Adaptation, Physiological , Bacteriophage phi 6/genetics , Bacteriophage phi 6/growth & development , Ecosystem , Phenotype , Pseudomonas pseudoalcaligenes/virology , Pseudomonas syringae/virology , Selection, Genetic , Species Specificity
6.
J Virol ; 88(12): 7112-6, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24719418

ABSTRACT

Assembly of an empty procapsid is a crucial step in the formation of many complex viruses. Here, we used the self-assembly system of the double-stranded RNA bacteriophage ϕ6 to study the role of electrostatic interactions in a scaffolding-independent procapsid assembly pathway. We demonstrate that ϕ6 procapsid assembly is sensitive to salt at both the nucleation and postnucleation steps. Furthermore, we observed that the salt sensitivity of ϕ6 procapsid-directed transcription is reversible.


Subject(s)
Bacteriophage phi 6/chemistry , Bacteriophage phi 6/physiology , Capsid/metabolism , Transcription, Genetic , Virus Assembly , Bacteriophage phi 6/genetics , Capsid/chemistry , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Static Electricity
7.
J Virol ; 87(24): 13279-86, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24089550

ABSTRACT

Many complex viruses use an assembly pathway in which their genome is packaged into an empty procapsid which subsequently matures into its final expanded form. We utilized Pseudomonas phage 6, a well-established virus assembly model, to probe the plasticity of the procapsid maturation pathway. The 6 packaging nucleoside triphosphatase (NTPase), which powers sequential translocation of the three viral genomic single-stranded RNA molecules to the procapsid during capsid maturation, is part of the mature 6 virion but may spontaneously be dissociated from the procapsid shell. We demonstrate that the dissociation of NTPase subunits results in premature capsid expansion, which is detected as a change in the sedimentation velocity and as defects in RNA packaging and transcription activity. However, this dead-end conformation of the procapsids was rescued by the addition of purified NTPase hexamers, which efficiently associated on the NTPase-deficient particles and subsequently drove their contraction to the compact naive conformation. The resulting particles regained their biological and enzymatic activities, directing them into a productive maturation pathway. These observations imply that the maturation pathways of complex viruses may contain reversible steps that allow the rescue of the off-pathway conformation in an overall unidirectional virion assembly pathway. Furthermore, we provide direct experimental evidence that particles which have different physical properties (distinct sedimentation velocities and conformations) display different stages of the genome packaging program and show that the transcriptional activity of the 6 procapsids correlates with the number of associated NTPase subunits.


Subject(s)
Bacteriophage phi 6/physiology , Pseudomonas syringae/virology , Virion/physiology , Virus Assembly , Bacteriophage phi 6/genetics , Bacteriophage phi 6/ultrastructure , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/genetics , Virion/ultrastructure
8.
Viruses ; 16(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38932268

ABSTRACT

Experimental evolution studies, in which biological populations are evolved in a specific environment over time, can address questions about the nature of spontaneous mutations, responses to selection, and the origins and maintenance of novel traits. Here, we review more than 30 years of experimental evolution studies using the bacteriophage (phage) Φ6 cystovirus. Similar to many lab-studied bacteriophages, Φ6 has a high mutation rate, large population size, fast generation time, and can be genetically engineered or cryogenically frozen, which facilitates its rapid evolution in the laboratory and the subsequent characterization of the effects of its mutations. Moreover, its segmented RNA genome, outer membrane, and capacity for multiple phages to coinfect a single host cell make Φ6 a good non-pathogenic model for investigating the evolution of RNA viruses that infect humans. We describe experiments that used Φ6 to address the fitness effects of spontaneous mutations, the consequences of evolution in the presence of coinfection, the evolution of host ranges, and mechanisms and consequences of the evolution of thermostability. We highlight open areas of inquiry where further experimentation on Φ6 could inform predictions for pathogenic viruses.


Subject(s)
Bacteriophage phi 6 , Mutation , Bacteriophage phi 6/genetics , Bacteriophage phi 6/physiology , Host Specificity , Evolution, Molecular , Cystoviridae/genetics , Genome, Viral , Humans , Directed Molecular Evolution , Biological Evolution
9.
BMC Evol Biol ; 13: 206, 2013 Sep 24.
Article in English | MEDLINE | ID: mdl-24059872

ABSTRACT

BACKGROUND: Sex presents evolutionary costs and benefits, leading to the expectation that the amount of genetic exchange should vary in conditions with contrasting cost-benefit equations. Like eukaryotes, viruses also engage in sex, but the rate of genetic exchange is often assumed to be a relatively invariant property of a particular virus. However, the rates of genetic exchange can vary within one type of virus according to geography, as highlighted by phylogeographic studies of cystoviruses. Here we merge environmental microbiology with experimental evolution to examine sex in a diverse set of cystoviruses, consisting of the bacteriophage ϕ6 and its relatives. To quantify reassortment we manipulated - by experimental evolution - electrophoretic mobility of intact virus particles for use as a phenotypic marker to estimate genetic exchange. RESULTS: We generated descendants of ϕ6 that exhibited fast and slow mobility during gel electrophoresis. We identified mutations associated with slow and fast phenotypes using whole genome sequencing and used crosses to establish the production of hybrids of intermediate mobility. We documented natural variation in electrophoretic mobility among environmental isolates of cystoviruses and used crosses against a common fast mobility ϕ6 strain to monitor the production of hybrids with intermediate mobility, thus estimating the amount of genetic exchange. Cystoviruses from different geographic locations have very different reassortment rates when measured against ϕ6, with viruses isolated from California showing higher reassortment rates than those from the Northeastern US. CONCLUSIONS: The results confirm that cystoviruses from different geographic locations have remarkably different reassortment rates -despite similar genome structure and replication mechanisms- and that these differences are in large part due to sexual reproduction. This suggests that particular viruses may indeed exhibit diverse sexual behavior, but wide geographic sampling, across varying environmental conditions may be necessary to characterize the full repertoire. Variation in reassortment rates can assist in the delineation of viral populations and is likely to provide insight into important viral evolutionary dynamics including the rate of coinfection, virulence, and host range shifts. Electrophoretic mobility may be an indicator of important determinants of fitness and the techniques herein can be applied to the study of other viruses.


Subject(s)
Bacteriophage phi 6/classification , Bacteriophage phi 6/genetics , Cystoviridae/genetics , Bacteriophage phi 6/physiology , Biological Evolution , California , Cystoviridae/classification , Cystoviridae/physiology , Electrophoresis , Genome, Viral , Host Specificity
10.
J Virol ; 86(9): 5376-9, 2012 May.
Article in English | MEDLINE | ID: mdl-22379079

ABSTRACT

Enveloped double-stranded RNA (dsRNA) bacterial virus Pseudomonas phage ϕ6 has been developed into an advanced assembly system where purified virion proteins and genome segments self-assemble into infectious viral particles, inferring the assembly pathway. The most intriguing step is the membrane assembly occurring inside the bacterial cell. Here, we demonstrate that the middle virion shell, made of protein 8, associates with the expanded viral core particle and the virus-specific membrane vesicle.


Subject(s)
Bacteriophage phi 6/physiology , Capsid Proteins/metabolism , Viral Envelope Proteins/metabolism , Lipid Metabolism , Protein Binding , Virus Assembly
11.
J Virol ; 86(21): 11616-24, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22896624

ABSTRACT

Bacteriophage 6 is a double-stranded RNA (dsRNA) virus whose genome is packaged sequentially as three single-stranded RNA (ssRNA) segments into an icosahedral procapsid which serves as a compartment for genome replication and transcription. The procapsid shell consists of 60 copies each of P1(A) and P1(B), two nonequivalent conformers of the P1 protein. Hexamers of the packaging ATPase P4 are mounted over the 5-fold vertices, and monomers of the RNA-dependent RNA polymerase (P2) attach to the inner surface, near the 3-fold axes. A fourth protein, P7, is needed for packaging and also promotes assembly. We used cryo-electron microscopy to localize P7 by difference mapping of procapsids with different protein compositions. We found that P7 resides on the interior surface of the P1 shell and appears to be monomeric. Its binding sites are arranged around the 3-fold axes, straddling the interface between two P1(A) subunits. Thus, P7 may promote assembly by stabilizing an initiation complex. Only about 20% of the 60 P7 binding sites were occupied in our preparations. P7 density overlaps P2 density similarly mapped, implying mutual occlusion. The known structure of the 12 homolog fits snugly into the P7 density. Both termini-which have been implicated in RNA binding-are oriented toward the adjacent 5-fold vertex, the entry pathway of ssRNA segments. Thus, P7 may promote packaging either by interacting directly with incoming RNA or by modulating the structure of the translocation pore.


Subject(s)
Bacteriophage phi 6/physiology , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , Viral Proteins/metabolism , Virus Assembly , Virus Replication , Bacteriophage phi 6/ultrastructure , Binding Sites , Cryoelectron Microscopy , Macromolecular Substances/metabolism , Macromolecular Substances/ultrastructure , Protein Binding
12.
J Virol ; 86(5): 2837-49, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22205747

ABSTRACT

RNA-dependent RNA polymerases (RdRps) are key to the replication of RNA viruses. A common divalent cation binding site, distinct from the positions of catalytic ions, has been identified in many viral RdRps. We have applied biochemical, biophysical, and structural approaches to show how the RdRp from bacteriophage ϕ6 uses the bound noncatalytic Mn(2+) to facilitate the displacement of the C-terminal domain during the transition from initiation to elongation. We find that this displacement releases the noncatalytic Mn(2+), which must be replaced for elongation to occur. By inserting a dysfunctional Mg(2+) at this site, we captured two nucleoside triphosphates within the active site in the absence of Watson-Crick base pairing with template and mapped movements of divalent cations during preinitiation. These structures refine the pathway from preinitiation through initiation to elongation for the RNA-dependent RNA polymerization reaction, explain the role of the noncatalytic divalent cation in 6 RdRp, and pinpoint the previously unresolved Mn(2+)-dependent step in replication.


Subject(s)
Bacteriophage phi 6/enzymology , Cations, Divalent/metabolism , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Transcription, Genetic , Viral Proteins/chemistry , Viral Proteins/metabolism , Bacteriophage phi 6/chemistry , Bacteriophage phi 6/genetics , Bacteriophage phi 6/physiology , Binding Sites , Manganese/metabolism , Protein Structure, Tertiary , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , Virus Replication
13.
Biol Lett ; 9(1): 20120616, 2013 Feb 23.
Article in English | MEDLINE | ID: mdl-23075527

ABSTRACT

Competition for resources has long been viewed as a key agent of divergent selection. Theory holds that populations facing severe intraspecific competition will tend to use a wider range of resources, possibly even using entirely novel resources that are less in demand. Yet, there have been few experimental tests of these ideas. Using the bacterial virus (bacteriophage) 6 as a model system, we examined whether competition for host resources promotes the evolution of novel resource use. In the laboratory, 6 exhibits a narrow host range but readily produces mutants capable of infecting novel bacterial hosts. Here, we show that when 6 populations were subjected to intense intraspecific competition for their standard laboratory host, they rapidly evolved new generalist morphs that infect novel hosts. Our results therefore suggest that competition for host resources may drive the evolution of host range expansion in viruses. More generally, our findings demonstrate that intraspecific resource competition can indeed promote the evolution of novel resource-use phenotypes.


Subject(s)
Bacteriophage phi 6/physiology , Biological Evolution , Pseudomonas/virology , Selection, Genetic , Bacteriophage phi 6/genetics , Bacteriophage phi 6/growth & development , Ecosystem , Microbial Interactions , Phenotype , Population Density , Pseudomonas pseudoalcaligenes/virology , Pseudomonas syringae/virology , Species Specificity
14.
BMC Evol Biol ; 12: 153, 2012 Aug 22.
Article in English | MEDLINE | ID: mdl-22913547

ABSTRACT

BACKGROUND: Viruses are exceedingly diverse in their evolved strategies to manipulate hosts for viral replication. However, despite these differences, most virus populations will occasionally experience two commonly-encountered challenges: growth in variable host environments, and growth under fluctuating population sizes. We used the segmented RNA bacteriophage ϕ6 as a model for studying the evolutionary genomics of virus adaptation in the face of host switches and parametrically varying population sizes. To do so, we created a bifurcating deme structure that reflected lineage splitting in natural populations, allowing us to test whether phylogenetic algorithms could accurately resolve this 'known phylogeny'. The resulting tree yielded 32 clones at the tips and internal nodes; these strains were fully sequenced and measured for phenotypic changes in selected traits (fitness on original and novel hosts). RESULTS: We observed that RNA segment size was negatively correlated with the extent of molecular change in the imposed treatments; molecular substitutions tended to cluster on the Small and Medium RNA chromosomes of the virus, and not on the Large segment. Our study yielded a very large molecular and phenotypic dataset, fostering possible inferences on genotype-phenotype associations. Using further experimental evolution, we confirmed an inference on the unanticipated role of an allelic switch in a viral assembly protein, which governed viral performance across host environments. CONCLUSIONS: Our study demonstrated that varying complexities can be simultaneously incorporated into experimental evolution, to examine the combined effects of population size, and adaptation in novel environments. The imposed bifurcating structure revealed that some methods for phylogenetic reconstruction failed to resolve the true phylogeny, owing to a paucity of molecular substitutions separating the RNA viruses that evolved in our study.


Subject(s)
Adaptation, Biological/genetics , Bacteriophage phi 6/genetics , Evolution, Molecular , Host Specificity/genetics , Algorithms , Bacteriophage phi 6/physiology , Genetic Association Studies , Genetic Fitness , Genomics , Mutation Rate , Phylogeny , Population Density , Pseudomonas/virology , RNA, Viral/genetics
15.
Appl Environ Microbiol ; 78(9): 3280-5, 2012 May.
Article in English | MEDLINE | ID: mdl-22389376

ABSTRACT

Effective sanitization is important in viral epizootic outbreaks to avoid further spread of the pathogen. This study examined thermal inactivation as a sanitizing treatment for manure inoculated with highly pathogenic avian influenza virus H7N1 and bacteriophages MS2 and 6. Rapid inactivation of highly pathogenic avian influenza virus H7N1 was achieved at both mesophilic (35°C) and thermophilic (45 and 55°C) temperatures. Similar inactivation rates were observed for bacteriophage 6, while bacteriophage MS2 proved too thermoresistant to be considered a valuable indicator organism for avian influenza virus during thermal treatments. Guidelines for treatment of litter in the event of emergency composting can be formulated based on the inactivation rates obtained in the study.


Subject(s)
Bacteriophage phi 6/physiology , Influenza A Virus, H7N1 Subtype/physiology , Levivirus/physiology , Microbial Viability , Sanitation/methods , Soil Microbiology , Soil , Bacteriophage phi 6/growth & development , Influenza A Virus, H7N1 Subtype/growth & development , Levivirus/growth & development , Manure/virology , Temperature
16.
Viruses ; 14(2)2022 01 21.
Article in English | MEDLINE | ID: mdl-35215798

ABSTRACT

The interaction of phages with abiotic environmental surfaces is usually an understudied field of phage ecology. In this study, we investigated the virucidal potential of different metal salts, metal and ceramic powders doped with Ag and Cu ions, and newly fabricated ceramic and metal surfaces against Phi6 bacteriophage. The new materials were fabricated by spark plasma sintering (SPS) and/or selective laser melting (SLM) techniques and had different surface free energies and infiltration features. We show that inactivation of Phi6 in solutions with Ag and Cu ions can be as effective as inactivation by pH, temperature, or UV. Adding powder to Ag and Cu ion solutions decreased their virucidal effect. The newly fabricated ceramic and metal surfaces showed very good virucidal activity. In particular, 45%TiO2 + 5%Ag + 45%ZrO2 + 5%Cu, in addition to virus adhesion, showed virucidal and infiltration properties. The results indicate that more than 99.99% of viruses deposited on the new ceramic surface were inactivated or irreversibly attached to it.


Subject(s)
Bacteriophage phi 6/drug effects , Copper/pharmacology , Silver/pharmacology , Bacteriophage phi 6/growth & development , Bacteriophage phi 6/physiology , Ceramics/chemistry , Copper/chemistry , Hydrogen-Ion Concentration , Powders/chemistry , Silver/chemistry , Surface Properties , Temperature
17.
J Virol ; 84(9): 4821-5, 2010 May.
Article in English | MEDLINE | ID: mdl-20164238

ABSTRACT

Bacteriophages of the family Cystoviridae have genomes consisting of three double-stranded RNA (dsRNA) segments, L, S, and M, packaged within a polyhedral capsid along with RNA polymerase. Transcription of genomic segment L is activated by the interaction of host protein YajQ with the capsid structure. Segment L codes for the proteins of the inner capsid, which are expressed early in infection. Green fluorescent protein (GFP) fusions with YajQ produce uniform fluorescence in uninfected cells and in cells infected with viruses not dependent on YajQ. Punctate fluorescence develops when cells are infected with YajQ-dependent viruses. It appears that the host protein binds to the infecting particles and remains with them during the entire infection period.


Subject(s)
Bacterial Proteins/metabolism , Bacteriophage phi 6/physiology , Capsid Proteins/metabolism , Pseudomonas syringae/virology , RNA-Binding Proteins/metabolism , Transcription, Genetic , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Microscopy, Fluorescence , Protein Binding , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
18.
Proc Biol Sci ; 277(1697): 3113-21, 2010 Oct 22.
Article in English | MEDLINE | ID: mdl-20484240

ABSTRACT

A pathogen can readily mutate to infect new host types, but this does not guarantee successful establishment in the new habitat. What factors, then, dictate emergence success? One possibility is that the pathogen population cannot sustain itself on the new host type (i.e. host is a sink), but migration from a source population allows adaptive sustainability and eventual emergence by delivering beneficial mutations sampled from the source's standing genetic variation. This idea is relevant regardless of whether the sink host is truly novel (host shift) or whether the sink is an existing or related, similar host population thriving under conditions unfavourable to pathogen persistence (range expansion). We predicted that sink adaptation should occur faster under range expansion than during a host shift owing to the effects of source genetic variation on pathogen adaptability in the sink. Under range expansion, source migration should benefit emergence in the sink because selection acting on source and sink populations is likely to be congruent. By contrast, during host shifts, source migration is likely to disrupt emergence in the sink owing to uncorrelated selection or performance tradeoffs across host types. We tested this hypothesis by evolving bacteriophage populations on novel host bacteria under sink conditions, while manipulating emergence via host shift versus range expansion. Controls examined sink adaptation when unevolved founding genotypes served as migrants. As predicted, adaptability was fastest under range expansion, and controls did not adapt. Large, similar and similarly timed increases in fitness were observed in the host-shift populations, despite declines in mean fitness of immigrants through time. These results suggest that source populations are the origin of mutations that drive adaptive emergence at the edge of a pathogen's ecological or geographical range.


Subject(s)
Bacteriophage phi 6/genetics , Host-Pathogen Interactions/genetics , Mutation , Pseudomonas/virology , Adaptation, Biological , Bacteriophage phi 6/physiology , Evolution, Molecular , Gene Flow , Geography , Pseudomonas/genetics , Pseudomonas/physiology
19.
Nucleic Acids Res ; 36(22): 7059-67, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18986997

ABSTRACT

RNA-dependent RNA polymerases (RdRP) form an important class of enzymes that is responsible for genome replication and transcription in RNA viruses and involved in the regulation of RNA interference in plants and fungi. The RdRP kinetics have been extensively studied, but pausing, an important regulatory mechanism for RNA polymerases that has also been implicated in RNA recombination, has not been considered. Here, we report that RdRP experience a dramatic, long-lived decrease in its elongation rate when it is reinitiated following stalling. The rate decrease has an intriguingly weak temperature dependence, is independent of both the nucleotide concentration during stalling and the length of the RNA transcribed prior to stalling; however it is sensitive to RNA structure. This allows us to delineate the potential factors underlying this irreversible conversion of the elongation complex to a less active mode.


Subject(s)
Bacteriophage phi 6/enzymology , RNA-Dependent RNA Polymerase/metabolism , RNA/biosynthesis , Viral Proteins/metabolism , Bacteriophage phi 6/physiology , Kinetics , Nucleotides/metabolism , RNA/chemistry , Temperature , Transcription, Genetic , Virus Replication
20.
Article in English | MEDLINE | ID: mdl-20183493

ABSTRACT

Two bacteriophages, phi6 and phi8, were investigated as potential surrogates for H5N1 highly pathogenic avian influenza virus in persistence and chlorine inactivation studies in water. In the persistence studies, phi6 and phi8 remained infectious at least as long as the H5N1 viruses at both 17 and 28 degrees C in fresh water, but results varied in salinated water. The bacteriophage phi6 also exhibited a slightly higher chlorine resistance than that of the H5N1 viruses. Based upon these findings, the bacteriophages may have potential for use as surrogates in persistence and inactivation studies in fresh water.


Subject(s)
Bacteriophage phi 6/drug effects , Chlorine/toxicity , Influenza A Virus, H5N1 Subtype , Virus Inactivation/drug effects , Water Microbiology , Bacteriophage phi 6/physiology , Salinity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL