Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.047
Filter
1.
Mol Med ; 30(1): 2, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172658

ABSTRACT

BACKGROUND: Umbilical cord blood-derived therapeutics, such as serum (UCS) and platelet-rich plasma (UCPRP), are popular treatment options in clinical trials and can potentially be utilized to address a clinically unmet need caused by preservatives, specifically benzalkonium chloride (BAK), present in ophthalmic formulations. As current clinical interventions for secondary injuries caused by BAK are suboptimal, this study will explore the feasibility of utilizing UCS and UCPRP for cornea treatment and investigate the underlying mechanisms associated with this approach. METHODS: Mice's corneas were administered BAK to induce damage. UCS and UCPRP were then utilized to attempt to treat the injuries. Ocular tests were performed on the animals to evaluate recovery, while immunostaining, RNA-seq, and subsequent bioinformatics analysis were conducted to investigate the treatment mechanism. RESULTS: BAK administration led to widespread inflammatory responses in the cornea. Subsequent treatment with UCS and UCPRP led to the downregulation of immune-related 'interactions between cytokine receptors' and 'IL-17 signaling' pathways. Although axonal enhancers such as Ngf, Rac2, Robo2, Srgap1, and Rock2 were found to be present in the injured group, robust axonal regeneration was observed only in the UCS and UCPRP treatment groups. Further analysis revealed that, as compared to normal corneas, inflammation was not restored to pre-injury levels post-treatment. Importantly, Neuropeptide Y (Npy) was also involved in regulating immune responses, indicating neuroimmune axis interactions. CONCLUSIONS: Cord blood-derived therapeutics are feasible options for overcoming the sustained injuries induced by BAK in the cornea. They also have potential applications in areas where axonal regeneration is required.


Subject(s)
Benzalkonium Compounds , Biological Products , Mice , Animals , Benzalkonium Compounds/metabolism , Benzalkonium Compounds/pharmacology , Neuropeptide Y/metabolism , Fetal Blood , Interleukin-17/metabolism , Cornea/metabolism
2.
Exp Eye Res ; 247: 110030, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39127236

ABSTRACT

PURPOSE: Benzalkonium chloride (BAC) is commonly used as a preservative in ophthalmic medications, despite its potential to induce chemical injury. Extensive research has demonstrated that BAC can lead to adverse effects, including injuries to the ocular surface. Our study aimed to elucidate the underlying mechanism of necroptosis induced by BAC. METHODS: Human corneal epithelial (HCE) cells and mouse corneas were subjected to chemical injury, and the necrostatin-1 (Nec1) group was compared to the dimethylsulfoxide (DMSO) group. The extent of damage to HCE cells was assessed using CCK-8 and flow cytometry. Hematoxylin and eosin staining, as well as fluorescein sodium staining, were used to detect and characterize corneal injury. The activation of inflammatory cytokines and necroptosis-related proteins and genes was evaluated using Western blotting, immunofluorescence staining, and quantitative RT‒PCR. RESULTS: In our study, the induction of necroptosis by a hypertonic solution was not observed. However, necroptosis was observed in HCE cells exposed to NaOH and BAC, which activated the receptor-interacting protein kinase 1 (RIPK1) - receptor-interacting protein kinase 3 (RIPK3) - mixed lineage kinase domain-like protein (MLKL) signaling pathway. In mouse corneal tissues, BAC could induce necroptosis and inflammation. The administration of Nec1 mitigated the inflammatory response and ocular surface damage caused by BAC-induced necroptosis in our experimental models. Furthermore, our in vivo experiments revealed that the severity of necroptosis was greater in the 3-day group than in the 7-day group. CONCLUSIONS: Necroptosis plays a role in the pathological development of ocular surface injury caused by exposure to BAC. Furthermore, our study demonstrated that the administration of Nec1 could mitigate the pathological effects of necroptosis induced by BAC in clinical settings.


Subject(s)
Benzalkonium Compounds , Epithelium, Corneal , Imidazoles , Indoles , Necroptosis , Protein Kinases , Receptor-Interacting Protein Serine-Threonine Kinases , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Necroptosis/drug effects , Animals , Mice , Epithelium, Corneal/drug effects , Epithelium, Corneal/pathology , Epithelium, Corneal/metabolism , Indoles/pharmacology , Benzalkonium Compounds/toxicity , Benzalkonium Compounds/pharmacology , Imidazoles/pharmacology , Protein Kinases/metabolism , Humans , Disease Models, Animal , Mice, Inbred C57BL , Blotting, Western , Cells, Cultured , Flow Cytometry , Signal Transduction/drug effects , Eye Burns/chemically induced , Eye Burns/pathology , Male , Burns, Chemical/pathology , Burns, Chemical/metabolism , Burns, Chemical/drug therapy , Preservatives, Pharmaceutical/toxicity
3.
Environ Sci Technol ; 58(35): 15450-15462, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39141879

ABSTRACT

The use of disinfectants containing benzalkonium chloride (BAC) has become increasingly widespread in response to triclosan (TCS) restrictions and the COVID-19 pandemic, leading to the increasing presence of BAC in aquatic ecosystems. However, the potential environmental health impacts of BAC on fish remain poorly explored. In this study, we show that BAC and TCS can induce the gut dysbiosis in zebrafish (Danio rerio), with substantial effects on health. Breeding pairs of adult zebrafish were exposed to environmentally relevant concentrations of BAC and TCS (0.4-40 µg/L) for 42 days. Both BAC and TCS exposure perturbed the gut microbiota, triggering the classical NF-κB signaling pathway and resulting in downstream pathological toxicity associated with inflammatory responses, histological damage, inhibited ingestion, and decreased survival. These effects were dose-dependent and sex-specific, as female zebrafish were more susceptible than male zebrafish. Furthermore, we found that BAC induced toxicity to a greater extent than the restricted TCS at environmentally relevant concentrations, which is particularly concerning. Our results suggest that environmental exposure to antimicrobial chemicals can have ecological consequences by perturbing the gut microbiota, a previously underappreciated target of such chemicals. Rigorous ecological analysis should be conducted before widely introducing replacement antimicrobial compounds into disinfecting products.


Subject(s)
Benzalkonium Compounds , Gastrointestinal Microbiome , Triclosan , Zebrafish , Animals , Benzalkonium Compounds/pharmacology , Triclosan/toxicity , Gastrointestinal Microbiome/drug effects , Female , Male , Environmental Exposure , Anti-Infective Agents/pharmacology , Anti-Infective Agents/toxicity
4.
Clin Lab ; 70(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38213201

ABSTRACT

BACKGROUND: The goal was to assess the antimicrobial efficacy of two commonly used biocides, chlorhexidine, and benzalkonium chloride, against MDR isolates of Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli ST131, as well as the prevalence of resistance genes. METHODS: MIC of chlorhexidine and benzalkonium chloride and their effects on both the planktonic phase and biofilm were determined. Finally, the presence of genes responsible for resistance to quaternary ammonium compounds was investigated by PCR. RESULTS: No significant relationship was observed between the presence of resistance genes and different concentrations of quaternary ammonium compounds (benzalkonium chloride). There was no association between biofilm formation and the presence of resistance genes. CONCLUSIONS: Chlorhexidine digluconate and benzalkonium chloride at appropriate concentrations could prevent biofilm formation.


Subject(s)
Benzalkonium Compounds , Chlorhexidine , Humans , Chlorhexidine/pharmacology , Benzalkonium Compounds/pharmacology , Pseudomonas aeruginosa/genetics , Escherichia coli/genetics , Quaternary Ammonium Compounds/pharmacology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
5.
BMC Microbiol ; 23(1): 337, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37957548

ABSTRACT

BACKGROUND: Little is known about susceptibility of Staphylococcus lugdunensis to antiseptics. The objective of this study was to evaluate, at the molecular and phenotypic level, the susceptibility of 49 clinical S. lugdunensis strains (belonging to the seven clonal complexes [CCs] defined by multilocus sequence typing) to two antiseptics frequently used in healthcare settings (chlorhexidine digluconate [CHX] and chloride benzalkonium [BAC]). RESULTS: The minimum inhibitory concentrations (MICs), by broth microdilution method, varied for BAC from 0.25 mg/L to 8 mg/L (MIC50 = 1 mg/L, MIC90 = 2 mg/L) and for CHX from 0.5 mg/L to 2 mg/L (MIC50 = 1 mg/L, MIC90 = 2 mg/L). The BAC and CHX minimum bactericidal concentrations (MBCs) varied from 2 mg/L to 8 mg/L (MBC50 = 4 mg/L, MBC90 = 8 mg/L) and from 2 mg/L to 4 mg/L (MBC50 and MBC90 = 4 mg/L), respectively. A reduced susceptibility to CHX (MIC = 2 mg/L) was observed for 12.2% of the strains and that to BAC (MIC ≥ 4 mg/L) for 4.1%. The norA resistance gene was detected in all the 49 isolates, whereas the qacA gene was rarely encountered (two strains; 4.1%). The qacC, qacG, qacH, and qacJ genes were not detected. The two strains harboring the qacA gene had reduced susceptibility to both antiseptics and belonged to CC3. CONCLUSION: The norA gene was detected in all the strains, suggesting that it could belong to the core genome of S. lugdunensis. S. lugdunensis is highly susceptible to both antiseptics tested. Reduced susceptibility to BAC and CHX was a rare phenomenon. Of note, a tendency to higher MICs of BAC was detected for CC3 isolates. These results should be confirmed on a larger collection of strains.


Subject(s)
Anti-Infective Agents, Local , Disinfectants , Staphylococcus lugdunensis , Benzalkonium Compounds/pharmacology , Staphylococcus lugdunensis/genetics , Chlorides , Bacterial Proteins/genetics , Chlorhexidine/pharmacology , Anti-Infective Agents, Local/pharmacology , Microbial Sensitivity Tests , Disinfectants/pharmacology
6.
J Appl Microbiol ; 134(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37587011

ABSTRACT

AIMS: Disinfectants such as benzalkonium chloride (BC), extensively used in animal farms and food-processing industries, contribute to the development of adaptive and cross-resistance in foodborne pathogens, posing a serious threat to food safety and human health. The purpose of this study is to explore whether continuous exposure of Salmonella enterica serovar 1,4,[5],12:i:- (S. 1,4,[5],12:i:-) to sublethal concentrations of BC could result in acquired resistance to this agent and other environmental stresses (e.g. antibiotics, heat, and acid). METHODS AND RESULTS: BC tolerance increased in all tested strains after exposure to gradually increasing concentrations of BC, with increases in minimum inhibitory concentrations between two and sixfold. The survival rate of BC-adapted strains was significantly (P < 0.05) higher than that of their wild-type (non-adapted) counterparts in lethal concentrations of BC. In addition, significant reductions (P < 0.05) in zeta potential were observed in BC-adapted strains compared to wild-type ones, indicating that a reduction in cell surface charge was a cause of adaptative resistance. More importantly, two BC-adapted strains exhibited increased antibiotic resistance to levofloxacin, ceftazidime, and tigecycline, while gene mutations (gyrA, parC) and antibiotic efflux-related genes (acrB, mdsA, mdsB) were detected by genomic sequencing analysis. Moreover, the tolerance of BC-adapted strains to heat (50, 55, and 60°C) and acid (pH 2.0, 2.5) was strain-dependent and condition-dependent. CONCLUSIONS: Repeated exposure to sublethal concentrations of BC could result in the emergence of BC- and antibiotic-resistant S. 1,4,[5],12:i:- strains.


Subject(s)
Anti-Bacterial Agents , Disinfectants , Animals , Humans , Anti-Bacterial Agents/pharmacology , Benzalkonium Compounds/pharmacology , Disinfectants/pharmacology , Serogroup , Ceftazidime
7.
Clin Lab ; 69(10)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37844044

ABSTRACT

BACKGROUND: Disinfectants and antiseptics inhibit the dissemination of pathogenic organisms in hospitals but often cause disinfectant-resistant microorganisms, an important factor for nosocomial infection. This study aimed to evaluate the correlation between qacΔE efflux pump gene and its resistance to disinfectants among Escherichia coli clinical isolates. METHODS: A total of 97 E. coli isolates were isolated from patients with urinary tract infections. The minimum inhibition concentration (MIC) value of chlorhexidine and benzalkonium chloride was determined using broth microdilution method. Effect of efflux pumps was assessed by MIC test in the presence of phenylalanine-arginine ß-naphthylamide (PAßN), and then the qacΔE efflux pump gene was detected using polymerase chain reaction (PCR). RESULT: Of the isolates, 85.6% and 61.9% were resistant to chlorhexidine and benzalkonium chloride, respectively. Following the treatment of isolates with the efflux pump's inhibitor, PAßN, the MIC value of chlorhexidine and benzalkonium chloride decreased in 75.2% and 57.7% of the isolates, respectively. A significant correlation was found between PAßN treatment and the change in the resistant strains to susceptible strains (p = 0.021). The qacΔE gene was detected in 84.5% (n = 82) of the isolates, and the presence of the gene amongst disinfectant-resistant strains was also significant (p < 0.001). CONCLUSIONS: It is suggested to conduct other studies on other efflux pumps, as well as to periodically monitor the resistance to disinfectants. Substances inhibiting efflux pumps and neutral compounds are effective in the reduction of resistance to disinfectants. New disinfectants and drugs should be designed.


Subject(s)
Cross Infection , Disinfectants , Humans , Disinfectants/pharmacology , Chlorhexidine/pharmacology , Escherichia coli/genetics , Benzalkonium Compounds/pharmacology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics
8.
Food Microbiol ; 112: 104210, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36906325

ABSTRACT

In certain circumstances, disinfectants are used at sublethal concentrations. The aim of this research work was to determine whether contact of Listeria monocytogenes NCTC 11994 with subinhibitory concentrations of three disinfectants widely used in food processing environments and in the health-care system, benzalkonium chloride (BZK), sodium hypochlorite (SHY) and peracetic acid (PAA), can cause the adaptation of the strain to the biocides and increase its resistance to tetracycline (TE). The minimum inhibitory concentrations (MIC; ppm) were 2.0 (BZK), 3500.0 (SHY) and 1050.0 (PAA). On exposure to increasing subinhibitory concentrations of the biocides, the maximum concentrations (ppm) of the compounds that allowed the strain to grow were (ppm) 8.5 (BZK), 3935.5 (SHY) and 1125.0 (PAA). Both the control cells (non-exposed) and the cells that had been in contact with low doses of biocides were treated with different concentrations of TE (0 ppm, 250 ppm, 500 ppm, 750 ppm, 1000 ppm and 1250 ppm) for 24, 48 and 72 h, and the survival percentages determined using flow cytometry, following dying with SYTO 9 and propidium iodide. The cells previously exposed to PAA presented higher survival percentages (P < 0.05) than the rest of the cells for most of the concentrations of TE and treatment times trialled. These results are worrying because TE is sometimes used to treat listeriosis, highlighting the importance of avoiding the use of disinfectant at subinhibitory doses. Furthermore, the findings suggest that flow cytometry is a fast and simple technique to obtain quantitative data on bacterial resistance to antibiotics.


Subject(s)
Disinfectants , Listeria monocytogenes , Disinfectants/pharmacology , Flow Cytometry , Sodium Hypochlorite/pharmacology , Anti-Bacterial Agents/pharmacology , Tetracycline , Peracetic Acid , Benzalkonium Compounds/pharmacology , Microbial Sensitivity Tests
9.
Acta Microbiol Immunol Hung ; 70(4): 311-317, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38063878

ABSTRACT

Antimicrobial disinfectants have been extensively used to control hospital-acquired infections worldwide. Prolonged exposure to bacteria could promote resistance to antimicrobial disinfectants. This study evaluated the antimicrobial activity of four commonly used disinfectants; triclosan, chlorhexidine digluconate, benzalkonium chloride, and formaldehyde against Acinetobacter baumannii clinical isolates. This study also determined the prevalence and association of efflux pumps encoding genes qacE, qacED1, emrA, and aceI with tolerance to disinfectants. A total of 100 A. baumannii isolates were included in the current study. The antimicrobial disinfectants' minimum inhibitory concentration (MIC) was determined using an agar dilution method. Genes involved in resistance to disinfectants were investigated by PCR method. The benzalkonium chloride MICs ranged between 32 and 128 µg mL-1, chlorhexidine digluconate 8-64 µg mL-1, triclosan 1-32 µg mL-1, and formaldehyde 128 µg mL-1. Overall, the highest MIC90 value was identified for formaldehyde (128 µg mL-1), followed by benzalkonium chloride and chlorhexidine digluconate (64 µg mL-1, each one) and triclosan (4 µg mL-1). In the present study, the qacE, qacED1, emrA, and aceI genes were found in 91%, 55%, 100%, and 88% of isolates, respectively. The qacG gene was not identified in our A. baumannii isolates. The qacED1 gene was associated with higher MICs for all disinfectants tested (P < 0.05), while the qacE and aceI genes were associated with higher MICs for benzalkonium chloride and chlorhexidine. This study indicated that triclosan is the most effective disinfectant against A. baumannii isolates.


Subject(s)
Acinetobacter baumannii , Disinfectants , Triclosan , Disinfectants/pharmacology , Triclosan/pharmacology , Benzalkonium Compounds/pharmacology , Iran , Formaldehyde/pharmacology , Mitomycin/pharmacology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
10.
Ecotoxicol Environ Saf ; 253: 114678, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36857920

ABSTRACT

The prevalence and spread of multidrug-resistant (MDR) bacteria pose a global challenge to public health. Natural transformation is one of the essential ways for horizontal transfer of antibiotic resistance genes (ARGs). Although disinfectants are frequently used during COVID-19, little is known about whether these disinfectants are associated with the transformation of plasmid-borne ARGs. In our study, we assessed the effect of some disinfectants on bacterial transformation using resistance plasmids as extracellular DNA and E. coli DH5α as the recipient bacteria. The results showed that these disinfectants at environmentally relevant concentrations, including benzalkonium bromide (BB), benzalkonium chloride (BC) and polyhexamethylene guanidine hydrochloride (PHMG), significantly enhanced the transformation of plasmid-encoded ARGs. Furthermore, we investigated the mechanisms underlying the promotive effect of disinfectants on transformation. We revealed that the addition of disinfectants significantly increased the membrane permeability and promoted membrane-related genes expression. Moreover, disinfectants led to the boosted bacterial respiration, ATP production and flagellum motility, as well as increased expression of bacterial secretion system-related genes. Together, our findings shed insights into the spread of ARGs through bacterial transformation and indicate potential risks associated with the widespread use of disinfectants.


Subject(s)
COVID-19 , Disinfectants , Humans , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Disinfectants/toxicity , Drug Resistance, Bacterial/genetics , Plasmids , Genes, Bacterial , Bacteria , Benzalkonium Compounds/pharmacology
11.
Chem Pharm Bull (Tokyo) ; 71(7): 552-557, 2023.
Article in English | MEDLINE | ID: mdl-37394604

ABSTRACT

Benzalkonium chloride (BAC) is a useful preservative for ophthalmic solutions but has some disadvantageous effects on corneal epithelium, especially keratinocytes. Therefore, patients requiring the chronic administration of ophthalmic solutions may suffer from damage due to BAC, and ophthalmic solutions with a new preservative instead of BAC are desired. To resolve the above situation, we focused on 1,3-didecyl-2-methyl imidazolium chloride (DiMI). As a preservative for ophthalmic solutions, we evaluated the physical and chemical properties (absorption to a sterile filter, solubility, heat stress stability, and light/UV stress stability), and also the anti-microbial activity. The results indicated that DiMI was soluble enough to prepare ophthalmic solutions, and was stable under severe heat and light/UV conditions. In addition, the anti-microbial effect of DiMI as a preservative was considered to be stronger than BAC. Moreover, our in vitro toxicity tests suggested that DiMI is safer to humans than BAC. Considering the test results, DiMI may be an excellent candidate for a new preservative to replace BAC. If we can overcome manufacturing process issues (soluble time and flushing volume) and the insufficiency of toxicological information, DiMI may be widely adopted as a safe preservative, and immediately contribute to the increased well-being of all patients.


Subject(s)
Benzalkonium Compounds , Epithelium, Corneal , Humans , Benzalkonium Compounds/pharmacology , Benzalkonium Compounds/chemistry , Ophthalmic Solutions/pharmacology , Ophthalmic Solutions/chemistry , Preservatives, Pharmaceutical/pharmacology
12.
Int J Mol Sci ; 24(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569507

ABSTRACT

Unravelling the mechanisms of action of disinfectants is essential to optimise dosing regimes and minimise the emergence of antimicrobial resistance. In this work, we examined the mechanisms of action of a commonly used disinfectant-benzalkonium chloride (BAC)-over a significant pathogen-L. monocytogenes-in the food industry. For that purpose, we used modelling at multiple scales, from the cell membrane to cell population inactivation. Molecular modelling revealed that the integration of the BAC into the membrane requires three phases: (1) the approaching of BAC to the cellular membrane, (2) the absorption of BAC to its surface, and (3) the integration of the compound into the lipid bilayer, where it remains at least for several nanoseconds, probably destabilising the membrane. We hypothesised that the equilibrium of adsorption, although fast, was limiting for sufficiently large BAC concentrations, and a kinetic model was derived to describe time-kill curves of a large population of cells. The model was tested and validated with time series data of free BAC decay and time-kill curves of L. monocytogenes at different inocula and BAC dose concentrations. The knowledge gained from the molecular simulation plus the proposed kinetic model offers the means to design novel disinfection processes rationally.


Subject(s)
Disinfectants , Listeria monocytogenes , Disinfection , Benzalkonium Compounds/pharmacology , Food Microbiology , Molecular Dynamics Simulation , Kinetics , Disinfectants/pharmacology
13.
Int J Mol Sci ; 24(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37373526

ABSTRACT

(1) We investigated the effects of the Lactobacillus fermentum HY7302 (HY7302) in a mouse model of benzalkonium chloride (BAC)-induced dry eye, and the possibility of using HY7302 as a food supplement for preventing dry eye. (2) The ocular surface of Balb/c mice was exposed to 0.2% BAC for 14 days to induce dry eye (n = 8), and the control group was treated with the same amount of saline (n = 8). HY7302 (1 × 109 CFU/kg/day, 14 days, n = 8) was orally administered daily to the mice, and omega-3 (200 mg/kg/day) was used as a positive control. To understand the mechanisms by which HY7302 inhibits BAC-induced dry eye, we performed an in vitro study using a human conjunctival cell line (clone-1-5c-4). (3) The probiotic HY7302 improved the BAC-induced decreases in the corneal fluorescein score and tear break-up time. In addition, the lactic acid bacteria increased tear production and improved the detached epithelium. Moreover, HY7302 lowered the BAC-induced increases in reactive oxygen species production in a conjunctival cell line and regulated the expression of several apoptosis-related factors, including phosphorylated protein kinase B (AKT), B-cell lymphoma protein 2 (Bcl-2), and activated caspase 3. Also, HY7302 alleviated the expression of pro-inflammatory cytokines, such as interleukin-1ß (IL-1ß), IL-6, and IL-8, and also regulated the matrix metallopeptidase-9 production in the conjunctival cell line. (4) In this study, we showed that L. fermentum HY7302 helps prevent dry eye disease by regulating the expression of pro-inflammatory and apoptotic factors, and could be used as a new functional food composition to prevent dry eye disease.


Subject(s)
Dry Eye Syndromes , Limosilactobacillus fermentum , Humans , Mice , Animals , Benzalkonium Compounds/pharmacology , Dry Eye Syndromes/chemically induced , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/metabolism , Epithelial Cells/metabolism , Conjunctiva/metabolism , Tears/metabolism , Disease Models, Animal
14.
Appl Environ Microbiol ; 88(21): e0126922, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36226965

ABSTRACT

For decades, quaternary ammonium compounds (QAC)-based sanitizers have been broadly used in food processing environments to control foodborne pathogens such as Listeria monocytogenes. Still, there is a lack of consensus on the likelihood and implication of reduced Listeria susceptibility to benzalkonium chloride (BC) that may emerge due to sublethal exposure to the sanitizers in food processing environments. With a focus on fresh produce processing, we attempted to fill multiple data and evidence gaps surrounding the debate. We determined a strong correlation between tolerance phenotypes and known genetic determinants of BC tolerance with an extensive set of fresh produce isolates. We assessed BC selection on L. monocytogenes through a large-scale and source-structured genomic survey of 25,083 publicly available L. monocytogenes genomes from diverse sources in the United States. With the consideration of processing environment constraints, we monitored the temporal onset and duration of adaptive BC tolerance in both tolerant and sensitive isolates. Finally, we examined residual BC concentrations throughout a fresh produce processing facility at different time points during daily operation. While genomic evidence supports elevated BC selection and the recommendation for sanitizer rotation in the general context of food processing environments, it also suggests a marked variation in the occurrence and potential impact of the selection among different commodities and sectors. For the processing of fresh fruits and vegetables, we conclude that properly sanitized and cleaned facilities are less affected by BC selection and unlikely to provide conditions that are conducive for the emergence of adaptive BC tolerance in L. monocytogenes. IMPORTANCE Our study demonstrates an integrative approach to improve food safety assessment and control strategies in food processing environments through the collective leveraging of genomic surveys, laboratory assays, and processing facility sampling. In the example of assessing reduced Listeria susceptibility to a widely used sanitizer, this approach yielded multifaceted evidence that incorporates population genetic signals, experimental findings, and real-world constraints to help address a lasting debate of policy and practical importance.


Subject(s)
Listeria monocytogenes , Listeria , Listeria monocytogenes/genetics , Benzalkonium Compounds/pharmacology , Drug Resistance, Bacterial/genetics , Food Handling , Food Microbiology
15.
Appl Environ Microbiol ; 88(11): e0048622, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35587542

ABSTRACT

Selection for Listeria monocytogenes strains that are tolerant to quaternary ammonium compounds (such as benzalkonium chloride [BC]) is a concern across the food industry, including in fresh produce processing environments. This study evaluated the ability of 67 strains of produce-associated L. monocytogenes and other Listeria spp. ("parent strains") to show enhanced BC tolerance after serial passaging in increasing BC concentrations and to maintain this tolerance after substreaking in the absence of BC. After serial passaging in BC, 62/67 "BC passaged cultures" showed higher MICs (4 to 20 mg/L) than parent strains (2 to 6 mg/L). After the substreaking of two isolates from BC passaged cultures for each parent strain, 105/134 "adapted isolates" maintained MICs (4 to 6 mg/L) higher than parent strain MICs. These results suggested that adapted isolates acquired heritable adaptations that confer BC tolerance. Whole-genome sequencing and Sanger sequencing of fepR, a local repressor of the MATE family efflux pump FepA, identified nonsynonymous fepR mutations in 48/67 adapted isolates. The mean inactivation of adapted isolates after exposure to use-level concentrations of BC (300 mg/L) was 4.48 log, which was not significantly different from inactivation observed in parent strains. Serial passaging of cocultures of L. monocytogenes strains containing bcrABC or qacH did not yield adapted isolates that showed enhanced BC tolerance in comparison to that of monocultures. These results suggest that horizontal gene transfer either did not occur or did not yield isolates with enhanced BC tolerance. Overall, this study provides new insights into selection of BC tolerance among L. monocytogenes and other Listeria spp. IMPORTANCE Listeria monocytogenes tolerance to quaternary ammonium compounds has been raised as a concern with regard to L. monocytogenes persistence in food processing environments, including in fresh produce packing and processing environments. Persistence of L. monocytogenes can increase the risk of product contamination, food recalls, and foodborne illness outbreaks. Our study shows that strains of L. monocytogenes and other Listeria spp. can acquire heritable adaptations that confer enhanced tolerance to low concentrations of benzalkonium chloride, but these adaptations do not increase survival of L. monocytogenes and other Listeria spp. when exposed to concentrations of benzalkonium chloride used for food contact surface sanitation (300 mg/L). Overall, these findings suggest that the emergence of benzalkonium chloride-tolerant Listeria strains in food processing environments is of limited concern, as even strains adapted to gain higher MICs in vitro maintain full sensitivity to the concentrations of benzalkonium chloride used for food contact surface sanitation.


Subject(s)
Listeria monocytogenes , Listeria , Benzalkonium Compounds/pharmacology , Drug Resistance, Bacterial/genetics , Food Handling , Food Microbiology , Listeria/genetics , Listeria monocytogenes/genetics , Mutation , Quaternary Ammonium Compounds
16.
Photochem Photobiol Sci ; 21(11): 1895-1905, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35859250

ABSTRACT

TONS504 (C51H58N8O5I2), a chlorine derivative, effectively generates singlet oxygen by light activation and exhibits photodynamic antimicrobial effects (PAEs) on various pathogens. However, this photosensitizer has some limitations: a high tendency to self-aggregate and a relatively weak PAE for Gram-negative bacteria compared with Gram-positive bacteria. To overcome these limitations, the present study investigated the synergistic effects of the PAE of TONS504 and two additives commonly contained in ophthalmic solutions: benzalkonium chloride (BAC) or ethylenediaminetetraacetic acid (EDTA). Staphylococcus aureus and Pseudomonas aeruginosa were exposed to TONS504 and/or each additive. Photodynamic antimicrobial chemotherapy was performed with light irradiation centered at a wavelength of 665 nm with a total light energy of 30 J/cm2. Following incubation, the number of colonies formed was counted. Additionally, we examined the inhibitory effects of the additives on TONS504 self-aggregation by observing its absorption spectrum. Consequently, the PAEs of TONS504 on S. aureus were enhanced by both additives, and BAC displayed stronger synergistic effects on the bacteria than EDTA. By contrast, only EDTA increased the PAE on P. aeruginosa. The peak of the TONS504 absorption spectrum shifted to a longer wave length and the absorbance increased in the presence of BAC, suggesting that BAC inhibited the self-aggregation of the photosensitizer. In conclusion, the combination of BAC or EDTA and TONS504-mediated photodynamic antimicrobial chemotherapy exhibits a synergistic antimicrobial effect on S. aureus and P. aeruginosa. The optimal additive to enhance the PAE may differ between bacterial strains.


Subject(s)
Anti-Infective Agents , Photochemotherapy , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacteria , Benzalkonium Compounds/pharmacology , Edetic Acid/pharmacology , Photosensitizing Agents/pharmacology , Pseudomonas aeruginosa , Staphylococcus aureus
17.
Environ Sci Technol ; 56(21): 15054-15063, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36069710

ABSTRACT

Antibiotic resistance genes (ARGs) are global pollutants that pose a potential risk to human health. Benzalkonium chloride (C12) (BC) disinfectants are thought to exert selection pressure on antibiotic resistance. However, evidence of BC-induced changes in antibiotic resistance in the soil environment is lacking. Here, we established short-term soil microcosms to investigate ARG profile dynamics in agricultural soils amended with sulfamethazine (SMZ, 10 mg kg-1) and gradient concentrations of BC (0-100 mg kg-1), using high-throughput quantitative PCR and Illumina sequencing. With the increase in BC concentration, the number of ARGs detected in the soil increased, but the normalized ARG abundance decreased. The added SMZ had a limited impact on ARG profiles. Compared to broad-spectrum fungicidal BC, the specificity of SMZ significantly affected the microbial community. Network analysis found that low-medium BC exposure concentrations resulted in the formation of small but strong ARG co-occurrence clusters in the soil, while high BC exposure concentration led to a higher incidence of ARGs. Variation partitioning analysis suggested that BC stress was the major driver shaping the ARG profile. Overall, this study highlighted the emergence and spread of BC-induced ARGs, potentially leading to the antimicrobial resistance problem in agricultural soils.


Subject(s)
Benzalkonium Compounds , Soil , Humans , Benzalkonium Compounds/pharmacology , Soil Microbiology , Genes, Bacterial , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/pharmacology , Manure
18.
J Appl Microbiol ; 133(6): 3322-3346, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35882500

ABSTRACT

This review examined 3655 articles on benzalkonium chloride (BKC), benzethonium chloride (BZT) and chloroxylenol (CHO) aiming to understand their impact on antimicrobial resistance. Following the application of inclusion/exclusion criteria, only 230 articles were retained for analysis; 212 concerned BKC, with only 18 for CHO and BZT. Seventy-eight percent of studies used MIC to measure BKC efficacy. Very few studies defined the term 'resistance' and 85% of studies defined 'resistance' as <10-fold increase (40% as low as 2-fold) in MIC. Only a few in vitro studies reported on formulated products and when they did, products performed better. In vitro studies looking at the impact of BKC exposure on bacterial resistance used either a stepwise training protocol or exposure to constant BKC concentrations. In these, BKC exposure resulted in elevated MIC or/and MBC, often associated with efflux, and at time, a change in antibiotic susceptibility profile. The clinical relevance of these findings was, however, neither reported nor addressed. Of note, several studies reported that bacterial strains with an elevated MIC or MBC remained susceptible to the in-use BKC concentration. BKC exposure was shown to reduce bacterial diversity in complex microbial microcosms, although the clinical significance of such a change has not been established. The impact of BKC exposure on the dissemination of resistant genes (notably efflux) remains speculative, although it manifests that clinical, veterinary and food isolates with elevated BKC MIC carried multiple efflux pump genes. The correlation between BKC usage and gene carriage, maintenance and dissemination has also not been established. The lack of clinical interpretation and significance in these studies does not allow to establish with certainty the role of BKC on AMR in practice. The limited literature and BZT and CHO do not allow to conclude that these will impact negatively on emerging bacterial resistance in practice.


Subject(s)
Anti-Infective Agents , Benzalkonium Compounds , Benzalkonium Compounds/pharmacology , Benzethonium/pharmacology , Anti-Bacterial Agents/pharmacology , Chlorides , Drug Resistance, Bacterial , Microbial Sensitivity Tests
19.
Food Microbiol ; 106: 103757, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35690455

ABSTRACT

In response to the massive use of biocides for controlling Listeria monocytogenes (hereafter Lm) contaminations along the food chain, strains showing biocide tolerance emerged. Here, accessory genomic elements were associated with biocide tolerance through pangenome-wide associations performed on 197 Lm strains from different lineages, ecological, geographical and temporal origins. Mobile elements, including prophage-related loci, the Tn6188_qacH transposon and pLMST6_emrC plasmid, were widespread across lineage I and II food strains and associated with tolerance to benzalkonium-chloride (BC), a quaternary ammonium compound (QAC) widely used in food processing. The pLMST6_emrC was also associated with tolerance to another QAC, the didecyldimethylammonium-chloride, displaying a pleiotropic effect. While no associations were detected for chemically reactive biocides (alcohols and chlorines), genes encoding for cell-surface proteins were associated with BC or polymeric biguanide tolerance. The latter was restricted to lineage I strains from animal and the environment. In conclusion, different genetic markers, with polygenic nature or not, appear to have driven the Lm adaptation to biocide, especially in food strains but also from animal and the environment. These markers could aid to monitor and predict the spread of biocide tolerant Lm genotypes across different ecological niches, finally reducing the risk of such strains in food industrial settings.


Subject(s)
Disinfectants , Listeria monocytogenes , Animals , Benzalkonium Compounds/pharmacology , Chlorides , Disinfectants/pharmacology , Drug Resistance, Bacterial/genetics , Ecosystem , Genomics
20.
Int J Mol Sci ; 23(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36077001

ABSTRACT

Meibomian gland orifices (MGOs) are located along the eyelid margin and secrete meibum into the tear film. The profile of resident innate immune cells (ICs) at this site is not well understood. The distribution and phenotype of resident ICs around MGOs in mice was investigated and herein defined as MGO-associated immune cells (MOICs). The effect of topical 0.1% benzalkonium chloride (BAK) on MOICs was also assessed. Eyelids from healthy CD11ceYFP and Cx3cr1gfp/gfp mice aged three or seven months were compared. ICs were identified as CD11c+, Cx3cr1+, and MHC-II+ using four-colour immunostaining and confocal microscopy. MOIC density was variable but clustered around MGOs. There were more CD11c+ MOICs in three-month-old compared with seven-month-old mice (three-month-old: 893 ± 449 cells/mm2 vs. seven-month-old: 593 ± 493 cells/mm2, p = 0.004). Along the eyelid margin, there was a decreasing gradient of CD11c+ MOIC density in three-month-old mice (nasal: 1003 ± 369 cells/mm2, vs. central: 946 ± 574 cells/mm2, vs. temporal: 731 ± 353 cells/mm2, p = 0.044). Cx3cr1-deficient mice had two-fold fewer MHC-II+ MOICs, suggesting a role for Cx3cr1 receptor signaling in meibomian gland surveillance. CD11c+ MOIC density was lower in BAK-exposed eyes compared to saline-treated controls, suggesting a change in homeostasis. This study provides novel insight into resident ICs located at MGOs, and their contribution to MG homeostasis.


Subject(s)
Eyelid Diseases , Meibomian Glands , Animals , Benzalkonium Compounds/pharmacology , Mice , Phenotype , Tears
SELECTION OF CITATIONS
SEARCH DETAIL