Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.318
Filter
1.
Nature ; 606(7916): 1015-1020, 2022 06.
Article in English | MEDLINE | ID: mdl-35545671

ABSTRACT

The liver takes up bile salts from blood to generate bile, enabling absorption of lipophilic nutrients and excretion of metabolites and drugs1. Human Na+-taurocholate co-transporting polypeptide (NTCP) is the main bile salt uptake system in liver. NTCP is also the cellular entry receptor of human hepatitis B and D viruses2,3 (HBV/HDV), and has emerged as an important target for antiviral drugs4. However, the molecular mechanisms underlying NTCP transport and viral receptor functions remain incompletely understood. Here we present cryo-electron microscopy structures of human NTCP in complexes with nanobodies, revealing key conformations of its transport cycle. NTCP undergoes a conformational transition opening a wide transmembrane pore that serves as the transport pathway for bile salts, and exposes key determinant residues for HBV/HDV binding to the outside of the cell. A nanobody that stabilizes pore closure and inward-facing states impairs recognition of the HBV/HDV receptor-binding domain preS1, demonstrating binding selectivity of the viruses for open-to-outside over inward-facing conformations of the NTCP transport cycle. These results provide molecular insights into NTCP 'gated-pore' transport and HBV/HDV receptor recognition mechanisms, and are expected to help with development of liver disease therapies targeting NTCP.


Subject(s)
Bile Acids and Salts , Cryoelectron Microscopy , Liver , Organic Anion Transporters, Sodium-Dependent , Sodium , Symporters , Bile/metabolism , Bile Acids and Salts/metabolism , Hepatitis B virus/metabolism , Hepatitis Delta Virus/metabolism , Hepatocytes/metabolism , Humans , Liver/metabolism , Organic Anion Transporters, Sodium-Dependent/chemistry , Organic Anion Transporters, Sodium-Dependent/metabolism , Organic Anion Transporters, Sodium-Dependent/ultrastructure , Protein Conformation , Receptors, Virus/metabolism , Single-Domain Antibodies , Sodium/metabolism , Symporters/chemistry , Symporters/metabolism , Symporters/ultrastructure , Virus Internalization
2.
Hepatology ; 79(2): 307-322, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37140231

ABSTRACT

BACKGROUND AIMS: Cholangiocarcinoma (CCA) is a highly lethal malignancy originating from the biliary ducts. Current CCA diagnostic and prognostic assessments cannot satisfy the clinical requirement. Bile detection is rarely performed, and herein, we aim to estimate the clinical significance of bile liquid biopsy by assessing bile exosomal concentrations and components. APPROACH RESULTS: Exosomes in bile and sera from CCA, pancreatic cancer, and common bile duct stone were identified and quantified by transmission electronmicroscopy, nanoparticle tracking analysis, and nanoFCM. Exosomal components were assessed by liquid chromatography with tandem mass spectrometry and microRNA sequencing (miRNA-seq). Bile exosomal concentration in different diseases had no significant difference, but miR-182-5p and miR-183-5p were ectopically upregulated in CCA bile exosomes. High miR-182/183-5p in both CCA tissues and bile indicates a poor prognosis. Bile exosomal miR-182/183-5p is secreted by CCA cells and can be absorbed by biliary epithelium or CCA cells. With xenografts in humanized mice, we showed that bile exosomal miR-182/183-5p promotes CCA proliferation, invasion, and epithelial-mesenchymal transition (EMT) by targeting hydroxyprostaglandin dehydrogenase in CCA cells and mast cells (MCs), and increasing prostaglandin E2 generation, which stimulates PTGER1 and increases CCA stemness. In single-cell mRNA-seq, hydroxyprostaglandin dehydrogenase is predominantly expressed in MCs. miR-182/183-5p prompts MC to release VEGF-A release from MC by increasing VEGF-A expression, which facilitates angiogenesis. CONCLUSIONS: CCA cells secret exosomal miR-182/183-5p into bile, which targets hydroxyprostaglandin dehydrogenase in CCA cells and MCs and increases prostaglandin E2 and VEGF-A release. Prostaglandin E2 promotes stemness by activating PTGER1. Our results reveal a type of CCA self-driven progression dependent on bile exosomal miR-182/183-5p and MCs, which is a new interplay pattern of CCA and bile.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , MicroRNAs , Humans , Animals , Mice , Dinoprostone , MicroRNAs/genetics , Bile/metabolism , Vascular Endothelial Growth Factor A/metabolism , Bile Duct Neoplasms/pathology , Cell Line, Tumor , Cholangiocarcinoma/pathology , Bile Ducts, Intrahepatic/pathology , Hydroxyprostaglandin Dehydrogenases/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic
3.
EMBO Rep ; 24(12): e57972, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37962001

ABSTRACT

Mitochondrial and peroxisomal anchored protein ligase (MAPL) is a dual ubiquitin and small ubiquitin-like modifier (SUMO) ligase with roles in mitochondrial quality control, cell death and inflammation in cultured cells. Here, we show that MAPL function in the organismal context converges on metabolic control, as knockout mice are viable, insulin-sensitive, and protected from diet-induced obesity. MAPL loss leads to liver-specific activation of the integrated stress response, inducing secretion of stress hormone FGF21. MAPL knockout mice develop fully penetrant spontaneous hepatocellular carcinoma. Mechanistically, the peroxisomal bile acid transporter ABCD3 is a primary MAPL interacting partner and SUMOylated in a MAPL-dependent manner. MAPL knockout leads to increased bile acid production coupled with defective regulatory feedback in liver in vivo and in isolated primary hepatocytes, suggesting cell-autonomous function. Together, our findings establish MAPL function as a regulator of bile acid synthesis whose loss leads to the disruption of bile acid feedback mechanisms. The consequences of MAPL loss in liver, along with evidence of tumor suppression through regulation of cell survival pathways, ultimately lead to hepatocellular carcinogenesis.


Subject(s)
Bile , Mitochondrial Proteins , Ubiquitin-Protein Ligases , Animals , Mice , Bile/metabolism , Bile Acids and Salts , Liver/metabolism , Mice, Knockout , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitins
4.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Article in English | MEDLINE | ID: mdl-35145026

ABSTRACT

Bacteroides thetaiotaomicron is a gut symbiont that inhabits the mucus layer and adheres to and metabolizes food particles, contributing to gut physiology and maturation. Although adhesion and biofilm formation could be key features for B. thetaiotaomicron stress resistance and gut colonization, little is known about the determinants of B. thetaiotaomicron biofilm formation. We previously showed that the B. thetaiotaomicron reference strain VPI-5482 is a poor in vitro biofilm former. Here, we demonstrated that bile, a gut-relevant environmental cue, triggers the formation of biofilm in many B. thetaiotaomicron isolates and common gut Bacteroidales species. We determined that bile-dependent biofilm formation involves the production of the DNase BT3563 or its homologs, degrading extracellular DNA (eDNA) in several B. thetaiotaomicron strains. Our study therefore shows that, although biofilm matrix eDNA provides a biofilm-promoting scaffold in many studied Firmicutes and Proteobacteria, BT3563-mediated eDNA degradation is required to form B. thetaiotaomicron biofilm in the presence of bile.


Subject(s)
Bacterial Proteins/metabolism , Bacteroides thetaiotaomicron/enzymology , Bile/metabolism , Biofilms/growth & development , Deoxyribonucleases/metabolism , Gene Expression Regulation, Bacterial/physiology , Bacterial Proteins/genetics , Bacteroides thetaiotaomicron/genetics , Bacteroides thetaiotaomicron/physiology , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Deoxyribonucleases/genetics , Gene Expression Regulation, Enzymologic/physiology
5.
Genomics ; 116(5): 110916, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147332

ABSTRACT

Bile cell-free DNA (cfDNA) has been reported as a promising liquid biopsy tool for cholangiocarcinoma (CCA), however, the whole-genome mutation landscape and structural variants (SVs) of bile cfDNA remains unknown. Here we performed whole-genome sequencing on bile cfDNA and analyzed the correlation between mutation characteristics of bile cfDNA and clinical prognosis. TP53 and KRAS were the most frequently mutated genes, and the RTK/RAS, homologous recombination (HR), and HIPPO were top three pathways containing most gene mutations. Ten overlapping putative driver genes were found in bile cfDNA and tumor tissue. SVs such as chromothripsis and kataegis were identified. Moreover, the hazard ratio of HR pathway mutations were 15.77 (95% CI: 1.571-158.4), patients with HR pathway mutations in bile cfDNA exhibited poorer overall survival (P = 0.0049). Our study suggests that bile cfDNA contains genome mutations and SVs, and HR pathway mutations in bile cfDNA can predict poor outcomes of CCA patients.


Subject(s)
Bile Duct Neoplasms , Cell-Free Nucleic Acids , Cholangiocarcinoma , Mutation , Humans , Cholangiocarcinoma/genetics , Bile Duct Neoplasms/genetics , Male , Female , Middle Aged , Cell-Free Nucleic Acids/genetics , Aged , Whole Genome Sequencing , Genome, Human , Bile/chemistry , Bile/metabolism , Prognosis , Adult
6.
Gut ; 73(8): 1350-1363, 2024 07 11.
Article in English | MEDLINE | ID: mdl-38458750

ABSTRACT

OBJECTIVE: The correlation between cholangiocarcinoma (CCA) progression and bile is rarely studied. Here, we aimed to identify differential metabolites in benign and malignant bile ducts and elucidate the generation, function and degradation of bile metabolites. DESIGN: Differential metabolites in the bile from CCA and benign biliary stenosis were identified by metabonomics. Biliary molecules able to induce mast cell (MC) degranulation were revealed by in vitro and in vivo experiments, including liquid chromatography-mass spectrometry (MS)/MS and bioluminescence resonance energy transfer assays. Histamine (HA) receptor expression in CCA was mapped using a single-cell mRNA sequence. HA receptor functions were elucidated by patient-derived xenografts (PDX) in humanised mice and orthotopic models in MC-deficient mice. Genes involved in HA-induced proliferation were screened by CRISPR/Cas9. RESULTS: Bile HA was elevated in CCA and indicated poorer prognoses. Cancer-associated fibroblasts (CAFs)-derived stem cell factor (SCF) recruited MCs, and bile N,N-dimethyl-1,4-phenylenediamine (DMPD) stimulated MCs to release HA through G protein-coupled receptor subtype 2 (MRGPRX2)-Gαq signalling. Bile-induced MCs released platelet-derived growth factor subunit B (PDGF-B) and angiopoietin 1/2 (ANGPT1/2), which enhanced CCA angiogenesis and lymphangiogenesis. Histamine receptor H1 (HRH1) and HRH2 were predominantly expressed in CCA cells and CAFs, respectively. HA promoted CCA cell proliferation by activating HRH1-Gαq signalling and hastened CAFs to secrete hepatocyte growth factor by stimulating HRH2-Gαs signalling. Solute carrier family 22 member 3 (SLC22A3) inhibited HA-induced CCA proliferation by importing bile HA into cells for degradation, and SLC22A3 deletion resulted in HA accumulation. CONCLUSION: Bile HA is released from MCs through DMPD stimulation and degraded via SLC22A3 import. Different HA receptors exhibit a distinct expression profile in CCA and produce different oncogenic effects. MCs promote CCA progression in a CCA-bile interplay pattern.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Mast Cells , Tumor Microenvironment , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Cholangiocarcinoma/genetics , Mast Cells/metabolism , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Animals , Humans , Mice , Bile/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, Histamine/metabolism , Histamine/metabolism , Cell Proliferation , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Degranulation
7.
EMBO J ; 39(20): e104231, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32882062

ABSTRACT

Bile salts are secreted into the gastrointestinal tract to aid in the absorption of lipids. In addition, bile salts show potent antimicrobial activity in part by mediating bacterial protein unfolding and aggregation. Here, using a protein folding sensor, we made the surprising discovery that the Escherichia coli periplasmic glycerol-3-phosphate (G3P)-binding protein UgpB can serve, in the absence of its substrate, as a potent molecular chaperone that exhibits anti-aggregation activity against bile salt-induced protein aggregation. The substrate G3P, which is known to accumulate in the later compartments of the digestive system, triggers a functional switch between UgpB's activity as a molecular chaperone and its activity as a G3P transporter. A UgpB mutant unable to bind G3P is constitutively active as a chaperone, and its crystal structure shows that it contains a deep surface groove absent in the G3P-bound wild-type UgpB. Our work illustrates how evolution may be able to convert threats into signals that first activate and then inactivate a chaperone at the protein level in a manner that bypasses the need for ATP.


Subject(s)
Bile/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Glycerophosphates/metabolism , Molecular Chaperones/metabolism , Ampicillin/pharmacology , Carrier Proteins/genetics , Circular Dichroism , Crystallography, X-Ray , DNA Transposable Elements/genetics , Escherichia coli Proteins/genetics , Gene Deletion , High-Throughput Nucleotide Sequencing , Hydrogen-Ion Concentration , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Molecular Conformation , Molecular Docking Simulation , Mutation , Protein Binding , Protein Conformation , Protein Folding , Proteome/metabolism
8.
Am J Physiol Gastrointest Liver Physiol ; 327(3): G424-G437, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38917324

ABSTRACT

Ischemia-reperfusion injury (IRI) is an intrinsic risk associated with liver transplantation. Ex vivo hepatic machine perfusion (MP) is an emerging organ preservation technique that can mitigate IRI, especially in livers subjected to prolonged warm ischemia time (WIT). However, a method to quantify the biological response to WIT during MP has not been established. Previous studies used physiologically based pharmacokinetic (PBPK) modeling to demonstrate that a decrease in hepatic transport and biliary excretion of the tracer molecule sodium fluorescein (SF) could correlate with increasing WIT in situ. Furthermore, these studies proposed intracellular sequestration of the hepatocyte canalicular membrane transporter multidrug resistance-associated protein 2 (MRP2) leading to decreased MRP2 activity (maximal transport velocity; Vmax) as the potential mechanism for decreased biliary SF excretion. We adapted an extant PBPK model to account for ex vivo hepatic MP and fit a six-parameter version of this model to control time-course measurements of SF in MP perfusate and bile. We then identified parameters whose values were likely insensitive to changes in WIT and fixed them to generate a reduced model with only three unknown parameters. Finally, we fit the reduced model to each individual biological replicate SF time course with differing WIT, found the mean estimated value for each parameter, and compared them using a one-way ANOVA. We demonstrated that there was a significant decrease in the estimated value of Vmax for MRP2 at the 30-min WIT. These studies provide the foundation for future studies investigating real-time assessment of liver viability during ex vivo MP.NEW & NOTEWORTHY We developed a computational model of sodium fluorescein (SF) biliary excretion in ex vivo machine perfusion and used this model to assess changes in model parameters associated with the activity of MRP2, a hepatocyte membrane transporter, in response to increasing warm ischemia time. We found a significant decrease in the parameter value describing MRP2 activity, consistent with a role of decreased MRP2 function in ischemia-reperfusion injury leading to decreased secretion of SF into bile.


Subject(s)
Fluorescein , Liver , Models, Biological , Reperfusion Injury , Reperfusion Injury/metabolism , Liver/metabolism , Animals , Fluorescein/pharmacokinetics , Fluorescein/metabolism , Perfusion , Warm Ischemia , Bile/metabolism , Liver Transplantation , Multidrug Resistance-Associated Protein 2 , Organ Preservation/methods , Hepatobiliary Elimination , ATP-Binding Cassette Transporters
9.
Anal Chem ; 96(36): 14393-14404, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39186690

ABSTRACT

BACKGROUND: Bile's potential to reflect the health of the biliary system has led to increased attention, with proteomic analysis offering deeper understanding of biliary diseases and potential biomarkers. With the emergence of normothermic machine perfusion (NMP), bile can be easily collected and analyzed. However, the composition of bile can make the application of proteomics challenging. This study systematically evaluated various trypsin digestion methods to optimize proteomics of bile from human NMP livers. METHODS: Bile was collected from 12 human donor livers that were accepted for transplantation after the NMP viability assessment. We performed tryptic digestion using six different methods: in-gel, in-solution, S-Trap, SMART, EasyPep, and filter-aided sample purification, with or without additional precipitation before digestion. Proteins were analyzed using untargeted proteomics. Methods were assessed for total protein IDs, variation, and protein characteristics to determine the most optimal method. RESULTS: Methods involving precipitation surpassed crude methods in protein identifications (4500 vs 3815) except for in-gel digestion. Filtered data (40%) resulted in 3192 versus 2469 for precipitated and crude methods, respectively. We found minimal differences in mass, cellular components, or hydrophobicity of proteins between methods. Intermethod variability was notably diverse, with in-gel, in-solution, and EasyPep outperforming others. Age-related biological comparisons revealed upregulation of metabolic-related processes in younger donors and immune response and cell cycle-related processes in older donors. CONCLUSIONS: Variability between methods emphasizes the importance of cross-validation across multiple analytical approaches to ensure robust analysis. We recommend the in-gel crude method for its simplicity and efficiency, avoiding additional precipitation steps. Sample processing speed, cost, cleanliness, and reproducibility should be considered when a digestion method is selected for bile proteomics.


Subject(s)
Bile , Biomarkers , Proteomics , Humans , Proteomics/methods , Bile/chemistry , Bile/metabolism , Biomarkers/analysis , Biomarkers/metabolism , Trypsin/metabolism , Trypsin/chemistry , Middle Aged , Male
10.
BMC Gastroenterol ; 24(1): 330, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39350090

ABSTRACT

BACKGROUND: To explore the pathogenesis of different subtypes of gallstones in high-altitude populations from a molecular perspective. METHODS: We collected bile samples from 20 cholesterol gallstone disease (CGD) patients and 20 pigment gallstone disease (PGD) patients. Proteomics analysis was performed by LC/MS DIA, while metabolomics analysis was performed by UPLC- Q-TOF/MS. RESULTS: We identified 154 up-regulated and 196 down-regulated differentially expressed proteins, which were significantly enriched in neurodegenerative diseases, energy metabolism, amino acid metabolism etc. In metabolomics analysis, 20 up-regulated and 63 down-regulated differentially expressed metabolites were identified, and they were significantly enriched in vitamin B6 metabolism. Three pathways of integrated proteomics and metabolomics were significantly enriched: porphyrin and chlorophyll metabolism, riboflavin metabolism and aminoacyl-tRNA biosynthesis. Remarkably, 7 differentially expressed proteins and metabolites showed excellent predictive performance and were selected as potential biomarkers. CONCLUSION: The findings of our metabolomics and proteomics analyses help to elucidate the underlying mechanisms of gallstone formation in high-altitude populations.


Subject(s)
Altitude , Bile , Biomarkers , Gallstones , Metabolomics , Proteomics , Humans , Bile/metabolism , Bile/chemistry , Female , Gallstones/metabolism , Male , Middle Aged , Biomarkers/metabolism , Adult , Up-Regulation , Cholesterol/metabolism , Down-Regulation , Aged
11.
Environ Res ; 250: 118347, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38309567

ABSTRACT

The accidental spill of petroleum asphalt cement (PAC) in São Raimundo (SR Harbor, located on the Rio Negro (Manaus, Amazonas, Brazil) was monitored through the analysis of polyciclic aromatic hydrocarbons (PAHs) in water and a set of biomarkers in fishes (exposure biomarkes: PAHs-type metabolites concentrations in bile; the activities of ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in liver. Effect biomarkers: lipid peroxidation concentration (LPO) in liver, acetylcholinesterase activity in brain, and genotoxic DNA damage in erythrocytes). Two fish species, Acarichthys heckelii and Satanoperca jurupari, were collected 10, 45, and 90 days after the PAC spill in São Raimundo. At the same time, fish were collected from the Tupé Sustainable Development Reserve (Tupé) which served as a reference area. The sampling periods were related to the rising waters of the natural flood pulse of the Rio Negro. Higher concentrations of PAHs in water were observed at 10 and 45 days and returned to the values of TP 90 days after the PAC spill, a period in which harbor waters rose about 0.2 m. Unlike the PAHs in water, biomarker responses in both fish species significantly increased following the PAC spill in SR. Hepatic ethoxyresorufin-O-deethylase (EROD), PAH-like metabolites in bile, and erythrocyte DNA damage increases, together with inhibition of acetylcholinesterase (AChE) activity in the brain were the most evident responses for both fish species. The calculated pyrolytic index showed mixed sources of PAHs (petrogenic and pyrolytic). The applied PCA-FA indicated important relationships between dissolved organic carbon (DOC) and PAHs concentrations in water, where DOC and PAHs concentrations contributed to biomarkers responses for both fish species in all collection periods.


Subject(s)
Biomarkers , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Brazil , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Biomarkers/metabolism , Petroleum Pollution/adverse effects , Cytochrome P-450 CYP1A1/metabolism , DNA Damage/drug effects , Liver/drug effects , Liver/metabolism , Glutathione Transferase/metabolism , Environmental Monitoring , Fishes/metabolism , Acetylcholinesterase/metabolism , Lipid Peroxidation/drug effects , Bile/chemistry , Bile/metabolism
12.
Arch Toxicol ; 98(5): 1533-1542, 2024 May.
Article in English | MEDLINE | ID: mdl-38466352

ABSTRACT

Acetaminophen (APAP) is known to cause a breach of the blood-bile barrier in mice that, via a mechanism called futile bile acid (BA) cycling, increases BA concentrations in hepatocytes above cytotoxic thresholds. Here, we compared this mechanism in mice and rats, because both species differ massively in their susceptibility to APAP and compared the results to available human data. Dose and time-dependent APAP experiments were performed in male C57BL6/N mice and Wistar rats. The time course of BA concentrations in liver tissue and in blood was analyzed by MALDI-MSI and LC-MS/MS. APAP and its derivatives were measured in the blood by LC-MS. APAP-induced liver damage was analyzed by histopathology, immunohistochemistry, and by clinical chemistry. In mice, a transient increase of BA in blood and in peri-central hepatocytes preceded hepatocyte death. The BA increase coincided with oxidative stress in liver tissue and a compromised morphology of bile canaliculi and immunohistochemically visualized tight junction proteins. Rats showed a reduced metabolic activation of APAP compared to mice. However, even at very high doses that caused cell death of hepatocytes, no increase of BA concentrations was observed neither in liver tissue nor in the blood. Correspondingly, no oxidative stress was detectable, and the morphology of bile canaliculi and tight junction proteins remained unaltered. In conclusion, different mechanisms cause cell death in rats and mice, whereby oxidative stress and a breach of the blood-bile barrier are seen only in mice. Since transient cholestasis also occurs in human patients with APAP overdose, mice are a clinically relevant species to study APAP hepatotoxicity but not rats.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Mice , Rats , Humans , Male , Animals , Acetaminophen/toxicity , Acetaminophen/metabolism , Bile/metabolism , Chromatography, Liquid , Chemical and Drug Induced Liver Injury/pathology , Rats, Wistar , Tandem Mass Spectrometry , Liver/metabolism , Hepatocytes/metabolism , Mice, Inbred C57BL , Tight Junction Proteins/metabolism
13.
Arch Toxicol ; 98(10): 3289-3298, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38955864

ABSTRACT

Many fatal intoxications have been reported in connection with the consumption of newer, highly potent synthetic cannabinoids. Yet, a possible postmortem redistribution (PMR) might complicate reliable interpretation of analytical results. Thus, it is necessary to investigate the PMR-potential of new synthetic cannabinoids. The pig model has already proven to be suitable for this purpose. Hence, the aim of this study was to study the PMR of the synthetic cannabinoid 5F-MDMB-P7AICA and its main metabolite 5F-MDMB-P7AICA-dimethylbutanoic acid (DBA). 5F-MDMB-P7AICA (200 µg/kg body weight) was administered by inhalation to anesthetized and ventilated pigs. At the end of the experiment, the animals were euthanized and stored at room temperature for 3 days. Tissue and body fluid samples were taken daily. Specimens were analyzed after solid phase extraction using a standard addition method and LC-MS/MS, blood was quantified after protein precipitation using a validated method. In perimortem samples, 5F-MDMB-P7AICA was found mainly in adipose tissue, bile fluid, and duodenum contents. Small amounts of 5F-MDMB-P7AICA were found in blood, muscle, brain, liver, and lung. High concentrations of DBA were found primarily in bile fluid, duodenum contents, urine, and kidney/perirenal fat tissue. In the remaining tissues, rather low amounts could be found. In comparison to older synthetic cannabinoids, PMR of 5F-MDMB-P7AICA was less pronounced. Concentrations in blood also appear to remain relatively stable at a low level postmortem. Muscle, kidney, fat, and duodenum content are suitable alternative matrices for the detection of 5F-MDMB-P7AICA and DBA, if blood specimens are not available. In conclusion, concentrations of 5F-MDMB-P7AICA and its main metabolite DBA are not relevantly affected by PMR.


Subject(s)
Body Fluids , Cannabinoids , Postmortem Changes , Animals , Cannabinoids/pharmacokinetics , Cannabinoids/administration & dosage , Swine , Tissue Distribution , Body Fluids/chemistry , Body Fluids/metabolism , Administration, Inhalation , Tandem Mass Spectrometry , Male , Indoles/pharmacokinetics , Indoles/administration & dosage , Indoles/blood , Bile/metabolism , Bile/chemistry , Female , Adipose Tissue/metabolism , Chromatography, Liquid , Lung/metabolism , Lung/drug effects
14.
Pediatr Surg Int ; 40(1): 215, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102122

ABSTRACT

PURPOSE: We investigated the relationship between bile amylase (AMY) levels and biliary epithelial changes in pancreaticobiliary maljunction (PBM), a congenital anomaly characterized by pancreaticobiliary reflux due to duct fusion outside the duodenal wall. METHODS: We enrolled 43 children with congenital biliary dilatation (CBD) of Todani types Ia, Ic, and IVa who underwent surgery at the Hokkaido Medical Center for Child Health and Rehabilitation between November 2007 and June 2023. We defined total AMY exposure in bile as bile AMY levels multiplied by the patient's age (months), representing amount of estimated AMY exposure until surgery. We retrospectively investigated the relationships between bile AMY levels and clinicopathological findings. RESULTS: All patients exhibited hyperplasia in the gallbladder and bile duct epithelium, with dysplasia observed in 13 cases, but no carcinoma. Exposure to bile AMY ≥ 662,400 IU/L × months was an independent risk factor for dysplasia. CONCLUSION: The amount of estimated AMY exposure in bile rather than AMY levels in the bile is an independent risk factor for dysplasia in the biliary mucosa.


Subject(s)
Amylases , Gallbladder , Humans , Male , Female , Gallbladder/pathology , Gallbladder/abnormalities , Retrospective Studies , Infant , Amylases/metabolism , Dilatation, Pathologic , Child, Preschool , Bile/metabolism , Pancreaticobiliary Maljunction , Mucous Membrane/pathology , Child , Bile Ducts/abnormalities , Bile Ducts/pathology , Infant, Newborn , Risk Factors
15.
Int J Mol Sci ; 25(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39273408

ABSTRACT

Despite advancements in radiologic, laboratory, and pathological evaluations, differentiating between benign and malignant bile duct strictures remains a diagnostic challenge. Recent developments in massive parallel sequencing (MPS) have introduced new opportunities for early cancer detection and management, but these techniques have not yet been rigorously applied to biliary samples. We prospectively evaluated the Oncomine Comprehensive Assay (OCA) and the Oncomine Pan-Cancer Cell-Free Assay (OPCCFA) using biliary brush cytology and bile fluid obtained via endoscopic retrograde cholangiopancreatography from patients with bile duct strictures. The diagnostic performance of MPS testing was assessed and compared to the pathological findings of biliary brush cytology and primary tissue. Mutations in TP53, BRAF, CTNNB1, SMAD4, and K-/N-RAS identified in biliary brush cytology samples were also detected in the corresponding bile fluid samples from patients with extrahepatic cholangiocarcinoma. These mutations were also identified in the bile fluid samples, but with variant allele frequencies lower than those in the corresponding biliary brush cytology samples. In control patients diagnosed with gallstones, neither the biliary brush cytology samples nor the bile fluid samples showed any pathogenic mutations classified as tier 1 or 2. Our study represents a prospective investigation into the role of MPS-based molecular testing in evaluating bile duct strictures. MPS-based molecular testing shows promise in identifying actionable genomic alterations, potentially enabling the stratification of patients for targeted chemotherapeutic treatments. Future research should focus on integrating OCA and OPCCFA testing, as well as similar MPS-based assays, into existing surveillance and management protocols for patients with bile duct strictures.


Subject(s)
Bile Duct Neoplasms , Cholangiopancreatography, Endoscopic Retrograde , High-Throughput Nucleotide Sequencing , Mutation , Humans , Cholangiopancreatography, Endoscopic Retrograde/methods , High-Throughput Nucleotide Sequencing/methods , Male , Female , Middle Aged , Aged , Constriction, Pathologic/genetics , Constriction, Pathologic/diagnosis , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/diagnosis , Bile Duct Neoplasms/pathology , Prospective Studies , Bile/metabolism , Aged, 80 and over , Adult , Cholangiocarcinoma/genetics , Cholangiocarcinoma/diagnosis , Cholangiocarcinoma/pathology , Bile Ducts/pathology
16.
Curr Opin Organ Transplant ; 29(4): 239-247, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38764406

ABSTRACT

PURPOSE OF REVIEW: In an attempt to reduce waiting list mortality in liver transplantation, less-than-ideal quality donor livers from extended criteria donors are increasingly accepted. Predicting the outcome of these organs remains a challenge. Machine perfusion provides the unique possibility to assess donor liver viability pretransplantation and predict postreperfusion organ function. RECENT FINDINGS: Assessing liver viability during hypothermic machine perfusion remains challenging, as the liver is not metabolically active. Nevertheless, the levels of flavin mononucleotide, transaminases, lactate dehydrogenase, glucose and pH in the perfusate have proven to be predictors of liver viability. During normothermic machine perfusion, the liver is metabolically active and in addition to the perfusate levels of pH, transaminases, glucose and lactate, the production of bile is a crucial criterion for hepatocyte viability. Cholangiocyte viability can be determined by analyzing bile composition. The differences between perfusate and bile levels of pH, bicarbonate and glucose are good predictors of freedom from ischemic cholangiopathy. SUMMARY: Although consensus is lacking regarding precise cut-off values during machine perfusion, there is general consensus on the importance of evaluating both hepatocyte and cholangiocyte compartments. The challenge is to reach consensus for increased organ utilization, while at the same time pushing the boundaries by expanding the possibilities for viability testing.


Subject(s)
Liver Transplantation , Liver , Organ Preservation , Perfusion , Humans , Perfusion/methods , Perfusion/adverse effects , Liver Transplantation/adverse effects , Liver/surgery , Liver/metabolism , Organ Preservation/methods , Organ Preservation/adverse effects , Tissue Survival , Tissue Donors , Hepatocytes/metabolism , Hepatocytes/transplantation , Animals , Donor Selection , Bile/metabolism , Cell Survival , Biomarkers/metabolism , Predictive Value of Tests , Cold Ischemia/adverse effects
17.
J Bacteriol ; 205(7): e0005923, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37367303

ABSTRACT

YciF (STM14_2092) is a member of the domain of unknown function (DUF892) family. It is an uncharacterized protein involved in stress responses in Salmonella Typhimurium. In this study, we investigated the significance of YciF and its DUF892 domain during bile and oxidative stress responses of S. Typhimurium. Purified wild-type YciF forms higher order oligomers, binds to iron, and displays ferroxidase activity. Studies on the site-specific mutants revealed that the ferroxidase activity of YciF is dependent on the two metal binding sites present within the DUF892 domain. Transcriptional analysis displayed that the ΔcspE strain, which has compromised expression of YciF, encounters iron toxicity due to dysregulation of iron homeostasis in the presence of bile. Utilizing this observation, we demonstrate that the bile mediated iron toxicity in ΔcspE causes lethality, primarily through the generation of reactive oxygen species (ROS). Expression of wild-type YciF, but not the three mutants of the DUF892 domain, in ΔcspE alleviate ROS in the presence of bile. Our results establish the role of YciF as a ferroxidase that can sequester excess iron in the cellular milieu to counter ROS-associated cell death. This is the first report of biochemical and functional characterization of a member of the DUF892 family. IMPORTANCE The DUF892 domain has a wide taxonomic distribution encompassing several bacterial pathogens. This domain belongs to the ferritin-like superfamily; however, it has not been biochemically and functionally characterized. This is the first report of characterization of a member of this family. In this study, we demonstrate that S. Typhimurium YciF is an iron binding protein with ferroxidase activity, which is dependent on the metal binding sites present within the DUF892 domain. YciF combats iron toxicity and oxidative damage caused due to exposure to bile. The functional characterization of YciF delineates the significance of the DUF892 domain in bacteria. In addition, our studies on S. Typhimurium bile stress response divulged the importance of comprehensive iron homeostasis and ROS in bacteria.


Subject(s)
Bile , Salmonella typhimurium , Salmonella typhimurium/metabolism , Reactive Oxygen Species/metabolism , Bile/metabolism , Ceruloplasmin/metabolism , Bacterial Proteins/metabolism , Oxidative Stress , Iron/metabolism
18.
Carcinogenesis ; 44(8-9): 671-681, 2023 12 02.
Article in English | MEDLINE | ID: mdl-37696683

ABSTRACT

Extracellular vesicles (EVs) are bilayered membrane vesicles produced by living cells and secreted into the extracellular matrix. Bile is a special body fluid that is secreted by the liver cells, and extracellular vesicles long RNAs (exLRs) have not been explored in bile. In this study, exLR sequencing (exLR-seq) was performed on 19 bile samples from patients with malignant cancer or patients with biliary stones. A total of 8649 mRNAs, 13 823 circRNAs and 1105 lncRNAs were detected. The KEGG pathway analysis revealed that differentially expressed exLRs were enriched in mTOR and AMPK signaling pathway. We identified five mRNAs (EID2, LLPH, ATP6V0A2, RRP9 and MTRNR2L10), three lncRNAs (AC015922.2, AL135905.1 and LINC00921) and six circRNAs (circASH1L, circATP9A, circCLIP1, circRNF138, circTIMMDC1 and circANKRD12) were enriched in bile EV samples with cancer, and these exLRs may be potential markers used to distinguish malignant cancers from benign biliary diseases. Moreover, the tissue/cellular source components of EVs were analyzed using the EV-origin algorithm. The absolute abundance of CD4_naive and Th1 cell source in bile EVs from cancer patients were significantly increased. In summary, our study presented abundant exLRs in human bile EVs and provides some basis for the selection of tumor diagnostic markers.


Subject(s)
Extracellular Vesicles , MicroRNAs , Neoplasms , RNA, Long Noncoding , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Bile/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , MicroRNAs/genetics
19.
Lab Invest ; 103(6): 100105, 2023 06.
Article in English | MEDLINE | ID: mdl-36842278

ABSTRACT

Patient-derived tumor organoids have considerable potential as an in vitro diagnostic tool for drug susceptibility testing. In the present study, we investigated whether bile collected for diagnostic purposes could be a potential source for the establishment of biliary cancer organoids. Among 68 cases of biliary cancer, we successfully generated 60 bile-derived organoids (BDOs) from individual patients. Consistent with previous reports that described biliary cancer organoids from surgical tissues, the BDOs showed diverse morphologies such as simple cysts, multiloculated cysts, thick capsulated cysts, and solid masses. They also harbored mutations in KRAS and TP53 at frequencies of 15% and 55%, respectively. To enrich the cancer organoids by removing contaminated noncancerous components of BDOs, we attempted to verify the effectiveness of 3 different procedures, including repeat passage, xenografting, and selection with an MDM2 inhibitor for TP53 mutation-harboring BDOs. By monitoring the sequence and expression of mutated TP53, we found that all these procedures successfully enriched the cancer organoids. Our data suggest that BDOs can be established with minimal invasiveness from almost all patients with biliary cancers, including inoperable cases. Thus, despite some limitations with respect to the characterization of BDOs and methods for the enrichment of cancer cell-derived organoids, our data suggest that BDOs could have potential applications in personalized medicine.


Subject(s)
Cysts , Mycobacterium tuberculosis , Humans , Bile/metabolism , Microbial Sensitivity Tests , Organoids/pathology , Cysts/metabolism , Cysts/pathology
20.
Cancer Sci ; 114(1): 295-305, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36168845

ABSTRACT

Sampling of bile juice during endoscopic retrograde cholangiopancreatography (ERCP) has potential benefit of being amenable to the identification of novel biomarkers in liquid biopsy. This study reports the results of a global investigation of exosomal microRNAs (miRNAs) in bile to identify potential biomarkers for biliary tract cancers (BTCs). Eighty-eight bile samples collected during ERCP (45 BTC and 43 noncancer control samples) were enrolled in this study. Eleven BTC samples and nine control samples were assigned as the discovery set. Exosomes in bile and serum samples were collected using a glass membrane column with size-controlled macroporous glass (MPG), and exosomal miRNA expression profiles were evaluated using comprehensive miRNA microarray analysis (3D-Gene). For validation, exosomal miRNA in the bile samples of 34 BTCs and 34 controls were comprehensively evaluated using 3D-Gene. In the discovery set, eight exosomal miRNAs in bile were identified as significant aberrant expression markers, while no miRNA with aberrant expression in serum was identified. In a comparison of the discovery and validation sets, miR-451a and miR-3619-3p were identified as reproducible upregulated markers, and the combination of the two bile miRNAs showed an excellent area under the curve (0.819) value for diagnosing BTCs. In addition, high miR-3619-3p expression in bile reflects poorer prognosis of BTCs (hazard ratio = 2.89). The MPG-extracted exosomal miRNAs in bile aspirated during ERCP provide a convenient new approach for diagnosing biliary diseases. Bile-derived miRNA analysis with miR-451a and miR-3619-3p represents a potentially valuable diagnostic strategy for identifying BTCs as well as a predictive indicator of BTC prognosis.


Subject(s)
Biliary Tract Neoplasms , Exosomes , MicroRNAs , Humans , MicroRNAs/metabolism , Prognosis , Bile/metabolism , Gene Expression Profiling/methods , Biomarkers, Tumor/genetics , Biliary Tract Neoplasms/diagnosis , Biliary Tract Neoplasms/genetics , Biomarkers , Exosomes/genetics , Exosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL