Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.392
Filter
1.
Biol Reprod ; 111(1): 28-42, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38438135

ABSTRACT

Preimplantation embryos undergo a series of important biological events, including epigenetic reprogramming and lineage differentiation, and the key genes and specific mechanisms that regulate these events are critical to reproductive success. Ubiquitin-specific protease 7 (USP7) is a deubiquitinase involved in the regulation of a variety of cellular functions, yet its precise function and mechanism in preimplantation embryonic development remain unknown. Our results showed that RNAi-mediated silencing of USP7 in mouse embryos or treatment with P5091, a small molecule inhibitor of USP7, significantly reduced blastocyst rate and blastocyst quality, and decreased total and trophectoderm cell numbers per blastocyst, as well as destroyed normal lineage differentiation. The results of single-cell RNA-seq, reverse transcription-quantitative polymerase chain reaction, western blot, and immunofluorescence staining indicated that interference with USP7 caused failure of the morula-to-blastocyst transition and was accompanied by abnormal expression of key genes (Cdx2, Oct4, Nanog, Sox2) for lineage differentiation, decreased transcript levels, increased global DNA methylation, elevated repressive histone marks (H3K27me3), and decreased active histone marks (H3K4me3 and H3K27ac). Notably, USP7 may regulate the transition from the morula to blastocyst by stabilizing the target protein YAP through the ubiquitin-proteasome pathway. In conclusion, our results suggest that USP7 may play a crucial role in preimplantation embryonic development by regulating lineage differentiation and key epigenetic modifications.


Subject(s)
Blastocyst , Cell Differentiation , Ubiquitin-Specific Peptidase 7 , Animals , Mice , Blastocyst/metabolism , Blastocyst/drug effects , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin-Specific Peptidase 7/genetics , Cell Differentiation/drug effects , Female , Embryonic Development/drug effects , Embryonic Development/physiology , Gene Expression Regulation, Developmental/drug effects , Cell Lineage
2.
Biol Reprod ; 111(3): 567-579, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-38857381

ABSTRACT

Choline is a vital micronutrient. In this study, we aimed to confirm, and expand on previous findings, how choline impacts embryos from the first 7 days of development to affect postnatal phenotype. Bos indicus embryos were cultured in a choline-free medium (termed vehicle) or medium supplemented with 1.8 mM choline. Blastocyst-stage embryos were transferred into crossbred recipients. Once born, calves were evaluated at birth, 94 days, 178 days, and at weaning (average age = 239 days). Following weaning, all calves were enrolled into a feed efficiency trial before being separated by sex, with males being slaughtered at ~580 days of age. Results confirm that exposure of 1.8 mM choline chloride during the first 7 days of development alters postnatal characteristics of the resultant calves. Calves of both sexes from choline-treated embryos were consistently heavier through weaning and males had heavier testes at 3 months of age. There were sex-dependent alterations in DNA methylation in whole blood caused by choline treatment. After weaning, feed efficiency was affected by an interaction with sex, with choline calves being more efficient for females and less efficient for males. Calves from choline-treated embryos were heavier, or tended to be heavier, than calves from vehicle embryos at all observations after weaning. Carcass weight was heavier for choline calves and the cross-sectional area of the longissimus thoracis muscle was increased by choline.


Subject(s)
Blastocyst , Choline , DNA Methylation , Animals , Choline/pharmacology , Choline/administration & dosage , Cattle , Female , DNA Methylation/drug effects , Male , Blastocyst/drug effects , Blastocyst/metabolism , Body Size/drug effects , Animals, Newborn , Embryo Transfer/veterinary , Embryo Culture Techniques/veterinary
3.
Biol Reprod ; 111(1): 43-53, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38519105

ABSTRACT

A high incidence of pregnancy failures occurs in cattle during the second week of pregnancy as blastocysts transition into an elongated conceptus. This work explored whether interleukin-6 supplementation during in vitro embryo production would improve subsequent conceptus development. Bovine embryos were treated with 0 or 100 ng/mL recombinant bovine interleukin-6 beginning on day 5 post-fertilization. At day 7.5 post-fertilization, blastocysts were transferred into estrus synchronized beef cows (n = 5 recipients/treatment, 10 embryos/recipient). Seven days after transfer (day 14.5), cows were euthanized to harvest reproductive tracts and collect conceptuses. Individual conceptus lengths and stages were recorded before processing for RNA sequencing. Increases in conceptus recovery, length, and the proportion of tubular and filamentous conceptuses were detected in conceptuses derived from interleukin-6-treated embryos. The interleukin-6 treatment generated 591 differentially expressed genes in conceptuses (n = 9-10/treatment). Gene ontology enrichment analyses revealed changes in transcriptional regulation, DNA-binding, and antiviral actions. Only a few differentially expressed genes were associated with extraembryonic development, but several differentially expressed genes were associated with embryonic regulation of transcription, mesoderm and ectoderm development, organogenesis, limb formation, and somatogenesis. To conclude, this work provides evidence that interleukin-6 treatment before embryo transfer promotes pre-implantation conceptus development and gene expression in ways that resemble the generation of a robust conceptus containing favorable abilities to survive this critical period of pregnancy.


Subject(s)
Embryonic Development , Interleukin-6 , Transcriptome , Animals , Cattle , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/pharmacology , Embryonic Development/drug effects , Female , Transcriptome/drug effects , Embryo Culture Techniques/veterinary , Pregnancy , Fertilization in Vitro/veterinary , Blastocyst/drug effects , Blastocyst/metabolism , Embryo Transfer/veterinary , Gene Expression Regulation, Developmental/drug effects , Embryo, Mammalian/drug effects
4.
Biol Reprod ; 111(1): 63-75, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38702845

ABSTRACT

Betaine has important roles in preimplantation mouse embryos, including as an organic osmolyte that functions in cell volume regulation in the early preimplantation stages and as a donor to the methyl pool in blastocysts. The origin of betaine in oocytes and embryos was largely unknown. Here, we found that betaine was present from the earliest stage of growing oocytes. Neither growing oocytes nor early preantral follicles could take up betaine, but antral follicles were able to transport betaine and supply the enclosed oocyte. Betaine is synthesized by choline dehydrogenase, and female mice lacking Chdh did not have detectable betaine in their oocytes or early embryos. Supplementing betaine in their drinking water restored betaine in the oocyte only when supplied during the final stages of antral follicle development but not earlier in folliculogenesis. Together with the transport results, this implies that betaine can only be exogenously supplied during the final stages of oocyte growth. Previous work showed that the amount of betaine in the oocyte increases sharply during meiotic maturation due to upregulated activity of choline dehydrogenase within the oocyte. This betaine present in mature eggs was retained after fertilization until the morula stage. There was no apparent role for betaine uptake via the SIT1 (SLC6A20) betaine transporter that is active at the 1- and 2-cell stages. Instead, betaine was apparently retained because its major route of efflux, the volume-sensitive organic osmolyte - anion channel, remained inactive, even though it is expressed and capable of being activated by a cell volume increase.


Subject(s)
Betaine , Blastocyst , Oocytes , Animals , Betaine/metabolism , Oocytes/drug effects , Oocytes/metabolism , Female , Mice , Blastocyst/metabolism , Blastocyst/drug effects , Embryonic Development/drug effects , Embryonic Development/physiology , Ovarian Follicle/metabolism , Ovarian Follicle/drug effects , Choline Dehydrogenase/metabolism
5.
Hum Reprod ; 39(5): 1098-1104, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38498835

ABSTRACT

STUDY QUESTION: Is there any difference in ovarian response and embryo ploidy following progesterone-primed ovarian stimulation (PPOS) using micronized progesterone or GnRH antagonist protocol? SUMMARY ANSWER: Pituitary downregulation with micronized progesterone as PPOS results in higher number of oocytes retrieved and a comparable number of euploid blastocysts to a GnRH antagonist protocol. WHAT IS KNOWN ALREADY: Although the GnRH antagonist is considered by most the gold standard protocol for controlling the LH surge during ovarian stimulation (OS) for IVF/ICSI, PPOS protocols are being increasingly used in freeze-all protocols. Still, despite the promising results of PPOS protocols, an early randomized trial reported potentially lower live births in recipients of oocytes resulting following downregulation with medroxyprogesterone acetate as compared with a GnRH antagonist protocol. The scope of the current prospective study was to investigate whether PPOS with micronized progesterone results in an equivalent yield of euploid blastocysts to a GnRH antagonist protocol. STUDY DESIGN, SIZE, DURATION: In this prospective study, performed between September 2019 to January 2022, 44 women underwent two consecutive OS protocols within a period of 6 months in a GnRH antagonist protocol or in a PPOS protocol with oral micronized progesterone. PARTICIPANTS/MATERIALS, SETTING, METHODS: Overall, 44 women underwent two OS cycles with an identical fixed dose of rFSH (225 or 300 IU) in both cycles. Downregulation in the first cycles was performed with the use of a flexible GnRH antagonist protocol (0.25 mg per day as soon as one follicle of 14 mm) and consecutively, after a washout period of 1 month, control of LH surge was performed with 200 mg of oral micronized progesterone from stimulation Day 1. After the completion of both cycles, all generated blastocysts underwent genetic analysis for aneuploidy screening (preimplantation genetic testing for aneuplody, PGT-A). MAIN RESULTS AND THE ROLE OF CHANCE: Comparisons between protocols did not reveal differences between the duration of OS. The hormonal profile on the day of trigger revealed statistically significant differences between protocols in all the tested hormones except for FSH: with significantly higher serum E2 levels, more elevated LH levels and higher progesterone levels in PPOS cycles as compared with antagonist cycles, respectively. Compared with the GnRH antagonist protocol, the PPOS protocol resulted in a significantly higher number of oocytes (12.7 ± 8.09 versus 10.3 ± 5.84; difference between means [DBM] -2.4 [95% CI -4.1 to -0.73]), metaphase II (9.1 ± 6.12 versus 7.3 ± 4.15; DBM -1.8 [95% CI -3.1 to -0.43]), and 2 pronuclei (7.1 ± 4.99 versus 5.7 ± 3.35; DBM -1.5 [95% CI -2.6.1 to -0.32]), respectively. Nevertheless, no differences were observed regarding the mean number of blastocysts between the PPOS and GnRH antagonist protocols (2.9 ± 2.11 versus 2.8 ± 2.12; DBM -0.07 [95% CI -0.67 to 0.53]) and the mean number of biopsied blastocysts (2.9 ± 2.16 versus 2.9 ± 2.15; DBM -0.07 [95% CI -0.70 to 0.56]), respectively. Concerning the euploidy rates per biopsied embryo, a 29% [95% CI 21.8-38.1%] and a 35% [95% CI 26.6-43.9%] were noticed in the PPOS and antagonist groups, respectively. Finally, no difference was observed for the primary outcome, with a mean number of euploid embryos of 0.86 ± 0.90 versus 1.00 ± 1.12 for the comparison of PPOS versus GnRh antagonist. LIMITATIONS, REASONS FOR CAUTION: The study was powered to detect differences in the mean number of euploid embryos and not in terms of pregnancy outcomes. Additionally, per protocol, there was no randomization, the first cycle was always a GnRH antagonist cycle and the second a PPOS with 1 month of washout period in between. WIDER IMPLICATIONS OF THE FINDINGS: In case of a freeze-all protocol, clinicians may safely consider oral micronized progesterone to control the LH surge and patients could benefit from the advantages of a medication of oral administration, with a potentially higher number of oocytes retrieved at a lower cost, without any compromise in embryo ploidy rates. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by an unrestricted grant from Theramex. N.P.P. has received Research grants from Merck Serono, Organon, Ferring Pharmaceutical, Roche, Theramex, IBSA, Gedeon Richter, and Besins Healthcare; honoraria for lectures from: Merck Serono, Organon, Ferring Pharmaceuticals, Besins International, Roche Diagnostics, IBSA, Theramex, and Gedeon Richter; consulting fees from Merck Serono, Organon, Besins Healthcare, and IBSA. M.d.M.V., F.M., and I.R. declared no conflicts of interest. TRIAL REGISTRATION NUMBER: The study was registered at Clinical Trials Gov. (NCT04108039).


Subject(s)
Gonadotropin-Releasing Hormone , Ovulation Induction , Ploidies , Progesterone , Female , Humans , Ovulation Induction/methods , Progesterone/administration & dosage , Gonadotropin-Releasing Hormone/antagonists & inhibitors , Adult , Prospective Studies , Pregnancy , Hormone Antagonists/administration & dosage , Hormone Antagonists/pharmacology , Blastocyst/drug effects , Pregnancy Rate , Oocyte Retrieval , Embryo Transfer/methods , Administration, Oral , Sperm Injections, Intracytoplasmic/methods
6.
Reproduction ; 167(6)2024 06 01.
Article in English | MEDLINE | ID: mdl-38552309

ABSTRACT

In brief: In silico predictions validated in this study demonstrate the potential for designing shorter equilibration protocols that improve post-warming re-expansion and hatching rates of D7 and D8 in vitro-produced bovine embryos. Our results benefit the livestock industry by providing a refined and reproducible approach to cryopreserving bovine embryos, which, in addition, could be useful for other mammalian species. Abstract: The cryopreservation of in vitro-produced (IVP) embryos is vital in the cattle industry for genetic selection and crossbreeding programs. Despite its importance, there is no standardized protocol yielding pregnancy rates comparable to fresh embryos. Current approaches often neglect the osmotic tolerance responses to cryoprotectants based on temperature and time. Hereby, we propose improved vitrification methods using shorter dehydration-based protocols. Blastocysts cultured for 7 (D7) or 8 days (D8) were exposed to standard equilibration solution (ES) at 25ºC and 38.5ºC. Optimized exposure times for each temperature and their impact on post-warming re-expansion, hatching rates, cell counts, and apoptosis rate were determined. In silico predictions aligned with in vitro observations, showing original volume recovery within 8 min 30 s at 25ºC or 3 min 40 s at 38.5ºC (D7 blastocysts) and 4 min 25 s at 25ºC and 3 min 15 s at 38.5ºC (D8 blastocysts) after exposure to ES. Vitrification at 38.5ºC resulted in D7 blastocysts re-expansion and hatching rates (93.1% and 38.1%, respectively) comparable to fresh embryos (100.0% and 32.4%, respectively), outperforming the 25ºC protocol (86.2% and 24.4%, respectively; P < 0.05). No differences were observed between D7 and D8 blastocysts using the 38.5ºC protocol. Total cell number was maintained for D7 and D8 blastocysts vitrified at 38.5ºC but decreased at 25ºC (P < 0.05). Apoptosis rates increased post-warming (P < 0.05), except for D8 blastocysts vitrified at 38.5ºC, resembling fresh controls. In conclusion, based on biophysical permeability data, new ES incubation times of 3 min 40 s for D7 blastocysts and 3 min 15 s for D8 blastocysts at 38.5ºC were validated for optimizing vitrification/warming methods for bovine IVP blastocysts.


Subject(s)
Cryopreservation , Embryo Culture Techniques , Fertilization in Vitro , Vitrification , Animals , Cattle/embryology , Cryopreservation/methods , Cryopreservation/veterinary , Fertilization in Vitro/veterinary , Fertilization in Vitro/methods , Female , Embryo Culture Techniques/veterinary , Embryo Culture Techniques/methods , Blastocyst/cytology , Blastocyst/physiology , Blastocyst/drug effects , Computer Simulation , Pregnancy , Cryoprotective Agents/pharmacology , Embryo, Mammalian/cytology , Apoptosis , Embryonic Development
7.
Reproduction ; 168(3)2024 09 01.
Article in English | MEDLINE | ID: mdl-38917030

ABSTRACT

In brief: In the present study the sustainable effect of L-carnitine during the culture period on the post-transfer development was investigated. Taken together, we uncovered direct effects of L-carnitine on the bioenergetic profile of day 7 blastocysts along with sustainable effects on mtDNA copy numbers and transcriptome profile of bovine day 14 embryos. Abstract: L-Carnitine (LC) is known to play key roles in lipid metabolism and antioxidative activity, implicating enhanced cryotolerance of bovine blastocysts. However, sustainability of LC supplementation during culture period on preimplantation development beyond the blastocyst stage has not been investigated so far. Therefore, all embryos were cultured under fatty acid-free conditions, one group with LC (LC embryos) and the control group without LC (control) supplementation. Transfer to recipients was conducted on day 6. Elongation-stage embryos were recovered on day 14; metrics of embryo recollection, developmental rates as regards early elongation-stage as well as mean embryo length did not differ between the groups. Gene expression analyses via NGS revealed 341 genes to be differentially regulated between elongation-stage embryos derived from LC supplementation compared to controls. These played mainly a role in molecular functions and biological processes like oxidoreductase activity, ATP-dependent activity, cellular stress, and respiration. Pathways like oxidative phosphorylation and thermogenesis, extracellular matrix receptor signaling, PI3K-Akt, and focal adhesion were affected by differentially regulated genes. Moreover, all DEGs located on the mitochondria were significantly downregulated in LC embryos, being in line with lower mitochondrial copy number and mtDNA integrity compared to the control group. Finally, we uncovered alterations of the bioenergetic profile on day 7 as a consequence of LC supplementation for the first time, revealing significantly higher oxygen consumption rates, ATP linked respiration and spare capacity for LC embryos. In summary, we uncovered direct effects of LC supplementation during the culture period on the bioenergetic profile along with sustainable effects on mtDNA copy numbers and transcriptome profile of bovine day 14 embryos.


Subject(s)
Blastocyst , Carnitine , Embryonic Development , Energy Metabolism , Transcriptome , Animals , Cattle , Blastocyst/metabolism , Blastocyst/drug effects , Carnitine/pharmacology , Transcriptome/drug effects , Energy Metabolism/drug effects , Female , Embryonic Development/drug effects , Embryo Culture Techniques/veterinary , Gene Expression Regulation, Developmental/drug effects , Pregnancy , Gene Expression Profiling , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , Embryo Transfer/veterinary , Fertilization in Vitro/veterinary
8.
Mol Reprod Dev ; 91(9): e23775, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39350355

ABSTRACT

Diosmetin (DIOS), a natural flavonoid monomer derived from lemons and present in various plants such as spearmint and spider moss, exhibits antioxidant, anti-inflammatory, and antiaging properties. Nonetheless, its impact on early embryonic development in pigs remains unexplored. This study aimed to determine the influence of DIOS supplementation in an in vitro culture (IVC) medium on porcine embryo development and to elucidate the underlying mechanisms. Findings revealed that embryos cultured in IVC medium with 0.1 µM DIOS demonstrated an increased blastocyst formation rate, higher total cell number, reduced LC3B and CASPASE3 levels, elevated Nrf2 levels, decreased ROS, and enhanced GSH and mitochondrial membrane potential at the 4-cell embryonic stage. Additionally, the expression of proapoptotic genes (CAS3, CAS8, and BAX) and autophagy-related genes (BECLIN1, ATG5, LC3B, and P62) was downregulated, whereas the expression of embryonic development-related genes (CDK1 and CDK2), antioxidant-related genes (SOD1 and SOD2), and mitochondrial biogenesis-related genes (NRF2) was upregulated. These findings suggest that DIOS promotes early embryonic development in pigs by mitigating oxidative stress and enhancing mitochondrial function, thereby reducing autophagy and apoptosis levels.


Subject(s)
Embryonic Development , Flavonoids , Oxidative Stress , Animals , Oxidative Stress/drug effects , Flavonoids/pharmacology , Embryonic Development/drug effects , Swine , Apoptosis/drug effects , Female , Autophagy/drug effects , Gene Expression Regulation, Developmental/drug effects , Embryo Culture Techniques , Antioxidants/pharmacology , Antioxidants/metabolism , Blastocyst/metabolism , Blastocyst/drug effects , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism
9.
Reprod Biol Endocrinol ; 22(1): 78, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987797

ABSTRACT

OBJECTIVE: To explore the optimal models for predicting the formation of high-quality embryos in Poor Ovarian Response (POR) Patients with Progestin-Primed Ovarian Stimulation (PPOS) using machine learning algorithms. METHODS: A retrospective analysis was conducted on the clinical data of 4,216 POR cycles who underwent in vitro fertilization (IVF) / intracytoplasmic sperm injection (ICSI) at Sichuan Jinxin Xinan Women and Children's Hospital from January 2015 to December 2021. Based on the presence of high-quality cleavage embryos 72 h post-fertilization, the samples were divided into the high-quality cleavage embryo group (N = 1950) and the non-high-quality cleavage embryo group (N = 2266). Additionally, based on whether high-quality blastocysts were observed following full blastocyst culture, the samples were categorized into the high-quality blastocyst group (N = 124) and the non-high-quality blastocyst group (N = 1800). The factors influencing the formation of high-quality embryos were analyzed using logistic regression. The predictive models based on machine learning methods were constructed and evaluated accordingly. RESULTS: Differential analysis revealed that there are statistically significant differences in 14 factors between high-quality and non-high-quality cleavage embryos. Logistic regression analysis identified 14 factors as influential in forming high-quality cleavage embryos. In models excluding three variables (retrieved oocytes, MII oocytes, and 2PN fertilized oocytes), the XGBoost model performed slightly better (AUC = 0.672, 95% CI = 0.636-0.708). Conversely, in models including these three variables, the Random Forest model exhibited the best performance (AUC = 0.788, 95% CI = 0.759-0.818). In the analysis of high-quality blastocysts, significant differences were found in 17 factors. Logistic regression analysis indicated that 13 factors influence the formation of high-quality blastocysts. Including these variables in the predictive model, the XGBoost model showed the highest performance (AUC = 0.813, 95% CI = 0.741-0.884). CONCLUSION: We developed a predictive model for the formation of high-quality embryos using machine learning methods for patients with POR undergoing treatment with the PPOS protocol. This model can help infertility patients better understand the likelihood of forming high-quality embryos following treatment and help clinicians better understand and predict treatment outcomes, thus facilitating more targeted and effective interventions.


Subject(s)
Machine Learning , Ovulation Induction , Progestins , Humans , Female , Ovulation Induction/methods , Retrospective Studies , Adult , Pregnancy , Progestins/pharmacology , Fertilization in Vitro/methods , Embryonic Development/drug effects , Embryonic Development/physiology , Sperm Injections, Intracytoplasmic/methods , Blastocyst/drug effects , Blastocyst/physiology , Embryo Transfer/methods , Pregnancy Rate
10.
Mol Biol Rep ; 51(1): 692, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796562

ABSTRACT

BACKGROUND: Resveratrol, a potent antioxidant, is known to induce the up-regulation of the internal antioxidant system. Therefore, it holds promise as a method to mitigate cryopreservation-induced injuries in bovine oocytes and embryos. This study aimed to (i) assess the enhancement in the quality of in vitro produced bovine embryos following resveratrol supplementation and (ii) monitor changes in the expression of genes associated with oxidative stress (GPX4, SOD, CPT2, NFE2L2), mitochondrial function (ATP5ME), endoplasmic reticulum function (ATF6), and embryo quality (OCT4, DNMT1, CASP3, ELOVL5). METHODS AND RESULTS: Three groups of in vitro bovine embryos were cultured with varying concentrations of resveratrol (0.01, 0.001, and 0.0001 µM), with a fourth group serving as a control. Following the vitrification process, embryos were categorized as either good or poor quality. Blastocysts were then preserved at - 80 °C for RNA isolation, followed by qRT-PCR analysis of selected genes. The low concentrations of resveratrol (0.001 µM, P < 0.05 and 0.0001 µM, P < 0.01) significantly improved the blastocyst rate compared to the control group. Moreover, the proportion of good quality vitrified embryos increased significantly (P < 0.05) in the groups treated with 0.001 and 0.0001 µM resveratrol compared to the control group. Analysis of gene expression showed a significant increase in OCT4 and DNMT1 transcripts in both good and poor-quality embryos treated with resveratrol compared to untreated embryos. Additionally, CASP3 expression was decreased in treated good embryos compared to control embryos. Furthermore, ELOVL5 and ATF6 transcripts were down-regulated in treated good embryos compared to the control group. Regarding antioxidant-related genes, GPX4, SOD, and CPT2 transcripts increased in the treated embryos, while NFE2L2 mRNA decreased in treated good embryos compared to the control group. CONCLUSIONS: Resveratrol supplementation at low concentrations effectively mitigated oxidative stress and enhanced the cryotolerance of embryos by modulating the expression of genes involved in oxidative stress response.


Subject(s)
Antioxidants , Blastocyst , Cryopreservation , Oxidative Stress , Resveratrol , Vitrification , Animals , Cattle , Resveratrol/pharmacology , Vitrification/drug effects , Oxidative Stress/drug effects , Oxidative Stress/genetics , Cryopreservation/methods , Antioxidants/pharmacology , Antioxidants/metabolism , Blastocyst/drug effects , Blastocyst/metabolism , Gene Expression Regulation, Developmental/drug effects , Fertilization in Vitro/veterinary , Fertilization in Vitro/methods , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Embryo Culture Techniques/methods , Embryonic Development/drug effects , Embryonic Development/genetics , Oocytes/drug effects , Oocytes/metabolism , Female
11.
Cryobiology ; 115: 104902, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734365

ABSTRACT

In this clinical study, we investigated the potential of melatonin (MT) supplementation in the freeze-thaw medium used for cryopreserved human oocytes. In total, 152 patients who underwent in vitro fertilization between January 2020 and December 2022 were included and categorized into different groups as follows: the donor group, comprising 108 patients who donated their oocytes, with 34 patients using a vitrification and warming medium supplemented with MT (D-MT subgroup) and 74 patients using conventional medium without MT (D-0 subgroup); and the autologous group, comprising 38 patients who used their own oocytes, with 19 patients using medium supplemented with MT (A-MT subgroup) and 19 patients using medium without MT (A-0 subgroup). After thawing, the surviving oocytes in the D-MT and A-MT subgroups and D-0 and A-0 subgroups were cultured in a fertilization media with and without 10-9 MMT for 2.5 h, respectively, followed by intracytoplasmic sperm injection insemination, embryo culture, and transfer. The survival, cleavage, high-quality embryo, clinical pregnancy, ongoing pregnancy, and implantation rates were significantly higher in the D-MT subgroup than in the D-0 subgroup (all P < 0.05). Similarly, the survival, fertilization, high-quality embryo, and high-quality blastocyst rates were significantly higher in the A-MT subgroup than in the A-0 subgroup (all P < 0.05). These findings indicate that MT addition during cryopreservation can enhance the development of vitrified-warmed human oocytes and improve clinical outcomes.


Subject(s)
Cryopreservation , Melatonin , Oocytes , Vitrification , Humans , Melatonin/pharmacology , Cryopreservation/methods , Oocytes/drug effects , Vitrification/drug effects , Female , Adult , Pregnancy , Pregnancy Rate , Fertilization in Vitro/methods , Sperm Injections, Intracytoplasmic/methods , Cryoprotective Agents/pharmacology , Embryo Transfer , Embryo Culture Techniques/methods , Blastocyst/drug effects
12.
J Reprod Dev ; 70(4): 223-228, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38763744

ABSTRACT

Embryonic transfer of bovine blastocysts produced by in vitro fertilization is widely utilized-despite a compromised conception rate. It has been suggested that a set of four evaluation criteria for judging the quality of embryos, based on the timing of early cleavages and proper morphologies of embryos, can effectively predict pregnancy success. These blastocysts are hereafter referred to as four-criteria-compliant blastocysts. The same criteria should be used to modify the culture media to improve embryo quality. For example, culture media is often supplemented with nonessential amino acids (NEAA) at a uniform concentration despite the major variation in their concentration in the oviductal fluid. In the present study, the effects of the embryo culture medium, namely CR1, supplemented with all seven MEM NEAA or six of them, excluding one at a time, were examined. All media, except for the medium that did not contain proline and serine, tended to improve the efficiency of producing four-criteria-compliant blastocysts, and excluding alanine was particularly effective. The absence of alanine resulted in the rapid occurrence of the first cleavage and pronuclear formation of fertilized oocytes in the alanine-free medium compared to that in the medium containing alanine. These results suggested that alanine hinders certain events involved in the progression of early embryogenesis, which is necessary to achieve the four criteria that provide a benchmark for pregnancy. Therefore, a significantly higher percentage of embryos satisfied the recommended criteria and developed into four-criteria-compliant blastocysts when developed in alanine-free medium than in alanine-containing medium.


Subject(s)
Alanine , Blastocyst , Culture Media , Embryo Culture Techniques , Embryonic Development , Fertilization in Vitro , Oocytes , Animals , Cattle , Female , Fertilization in Vitro/veterinary , Fertilization in Vitro/methods , Alanine/pharmacology , Embryo Culture Techniques/veterinary , Embryo Culture Techniques/methods , Oocytes/drug effects , Oocytes/metabolism , Embryonic Development/drug effects , Blastocyst/drug effects , Pregnancy , Amino Acids/pharmacology , Amino Acids/metabolism
13.
J Reprod Dev ; 70(5): 279-285, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39010149

ABSTRACT

Cryopreservation adversely affects embryo quality and viability in vitro. We investigated the effects of cryopreservation solutions supplemented with the antioxidant carnosine on frozen-thawed bovine embryo viability. Bovine blastocysts were produced in vitro and cryopreserved using slow freezing. The rates of re-expanded and hatched blastocysts in the 50 µg/ml carnosine-supplemented group at 4, 24, and 48 h after thawing were higher than those in the control (P < 0.05) group. In frozen-thawed embryos, cryopreservation solution supplemented with carnosine (50 µg/ml) significantly reduced reactive oxygen species (ROS) production (P < 0.05), decreased TUNEL-positive apoptotic cells (P < 0.05), and increased the mRNA expression of BCL2 (P < 0.05), an apoptosis suppressor gene. The expression of translocase of outer mitochondrial membrane 20 (TOMM20), which is involved in protein mitochondrial transport, in the carnosine (50 µg/ml)-treated embryos was significantly higher than that in the control group (P < 0.05). ATP production in frozen-thawed embryos in the 50 µg/ml carnosine-supplemented group was significantly higher than that in the control group (P < 0.05), however no significant difference in the total number of cells per embryo among the groups was observed. These results suggest that supplementing the cryopreservation solution with carnosine can improve the viability of frozen-thawed bovine embryos by reducing oxidative damage.


Subject(s)
Blastocyst , Carnosine , Cryopreservation , Cryoprotective Agents , Reactive Oxygen Species , Animals , Cattle , Cryopreservation/veterinary , Carnosine/pharmacology , Blastocyst/drug effects , Blastocyst/metabolism , Reactive Oxygen Species/metabolism , Female , Cryoprotective Agents/pharmacology , Embryo Culture Techniques/veterinary , Fertilization in Vitro/veterinary , Fertilization in Vitro/methods , Embryonic Development/drug effects , Apoptosis/drug effects , Antioxidants/pharmacology , Cell Survival/drug effects , Embryo, Mammalian/drug effects
14.
J Reprod Dev ; 70(5): 303-308, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39010241

ABSTRACT

Gellan gum (GG) is a soft, tractable, and natural polysaccharide substrate used for cell incubation. In this study, we examined the effects of GG on porcine oocyte maturation. Cumulus cells and oocyte complexes (COCs) were collected from slaughterhouse-derived porcine ovaries and cultured on plastic plates containing 0.05% or 0.1% GG gels. The 0.1% GG gel improved the maturation rate and quality of blastocysts, as determined by the total cell number and the rate of abnormally condensed nuclei. GG gels have antioxidant abilities and oocytes cultured on GG gels (0.05% and 0.1%) have reduced reactive oxygen species (ROS) content. Furthermore, GG gels (0.05% and 0.1%) increased F-actin formation, whereas treatment of oocytes with H2O2 reduced F-actin levels. GG gels increased the ATP content in oocytes but did not affect the mitochondrial DNA copy number or mitochondrial membrane potential. In addition, the medium cultured on 0.05% GG increased the glucose consumption of COCs. In conclusion, GG gel reduced ROS content, increased energy content, and improved subsequent embryonic development in pigs.


Subject(s)
Embryonic Development , In Vitro Oocyte Maturation Techniques , Oocytes , Polysaccharides, Bacterial , Reactive Oxygen Species , Animals , Oocytes/drug effects , Oocytes/metabolism , Polysaccharides, Bacterial/pharmacology , Swine , Female , Embryonic Development/drug effects , Reactive Oxygen Species/metabolism , In Vitro Oocyte Maturation Techniques/veterinary , In Vitro Oocyte Maturation Techniques/methods , Gels , Blastocyst/drug effects , Membrane Potential, Mitochondrial/drug effects , Cumulus Cells/drug effects , Actins/metabolism
15.
J Reprod Dev ; 70(4): 247-253, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38945863

ABSTRACT

The present study examined whether male resveratrol intake affected mitochondrial DNA copy number (mt-cn) and telomere length (TL) in blastocysts fathered by young and aged male mice. C57BL/6N male mice supplied with water or water containing 0.1 mM resveratrol were used for embryo production at 14-23 and 48-58 weeks of age. Two-cell-stage embryos were collected from the oviducts of superovulated female mice (8-15 weeks old) and cultured for 3 days until the blastocyst stage. Mt-cn and TL levels were measured by real-time polymerase chain reaction. Resveratrol intake did not affect body weight or water consumption. Resveratrol intake increased the expression levels of SIRT1 in the liver, the antioxidative ability of serum, and extended TL in the heart, whereas there was no significant difference in mt-cn in the heart or TL in sperm. The rate of blastocyst development was significantly lower in aged male mice than in younger mice, and resveratrol intake increased the total number of blastocysts derived from both young and aged males. Resveratrol intake did not affect mt-cn or TL in blastomeres of blastocyst-stage embryos derived from young mice, but significantly increased both mt-cn and TL in blastomeres of blastocysts derived from aged fathers. In conclusion, resveratrol intake increased mt-cn and TL levels in blastocysts derived from aged male mice.


Subject(s)
Blastocyst , DNA, Mitochondrial , Mice, Inbred C57BL , Resveratrol , Telomere , Animals , Resveratrol/pharmacology , Male , Blastocyst/drug effects , Blastocyst/metabolism , Female , Mice , DNA, Mitochondrial/metabolism , Telomere/drug effects , Telomere/metabolism , Telomere Homeostasis/drug effects , Embryonic Development/drug effects , Spermatozoa/drug effects , Spermatozoa/metabolism , Sirtuin 1/metabolism , Sirtuin 1/genetics , DNA Copy Number Variations/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , Aging , Stilbenes/pharmacology , Paternal Age
16.
Anim Biotechnol ; 35(1): 2404043, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39306701

ABSTRACT

Mammalian embryos often suffer from oxidative stress in vitro, as the oxygen in the atmosphere is higher than that in the oviductal environment. Vitamin C (Vc) has been proven to enhance early embryonic development in vitro, but the underlying mechanism remains unclear. In this study, we investigated the pathways of action by which Vc promotes the in vitro development of porcine embryos. Comparative analysis of in vitro and in vivo gene expression profiles of morula found that most of the differentially expressed genes were enriched in pathways related to mitochondrial function. The addition of 12.5 µg/mL Vc to the culture medium significantly increased blastocyst production in a dose- and duration-dependent manner. Moreover, ROS levels were significantly higher in embryos cultured in the air (21% oxygen) than cultured in a hypoxic condition (5% oxygen) and were reduced by Vc supplementation. Vc also significantly increased the mitochondrial membrane potential levels and the expression levels of mitochondrial function-related genes (MFN1 and OPA1) and TCA cycle-related genes (PDHA1 and OGDH) in embryos cultured in vitro. These results suggest that the addition of Vc to the in vitro culture medium can increase the developmental potential and improve the mitochondrial function of early porcine embryos.


Subject(s)
Ascorbic Acid , Embryo Culture Techniques , Embryonic Development , Membrane Potential, Mitochondrial , Mitochondria , Animals , Ascorbic Acid/pharmacology , Swine/embryology , Mitochondria/drug effects , Embryonic Development/drug effects , Embryo Culture Techniques/veterinary , Membrane Potential, Mitochondrial/drug effects , Blastocyst/drug effects , Reactive Oxygen Species/metabolism , Culture Media/chemistry , Culture Media/pharmacology , Gene Expression Regulation, Developmental/drug effects , Female , Embryo, Mammalian/drug effects
17.
J Obstet Gynaecol Res ; 50(10): 1891-1901, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39192493

ABSTRACT

AIM: The binding of integrin αvß3 with endometrial fibronectin (FN) promotes the migration of preimplantation embryos in mice. We have previously shown that cyclosporine A (CsA) improves the adhesion and invasion of mouse preimplantation embryos. In this study, we evaluated the roles of calcium ions and downstream signaling factors in the binding of integrin αvß3 to FN. METHODS: Female Institute of Cancer Research (ICR) mice were superovulated and mated, and two-cell embryos were harvested from the oviducts and cultured to the blastocyst stage The adhesion and stretching growth of hatched embryos in laminin-coated dishes were evaluated, and integrinß3 expression was determined using qPCR. Blastocytes were cultured with 0 or 1 µM cyclosporine A (CsA) and the attachment of embryonic integrin αvß3 to FN120 was observed using a fluorescent bead. To further determine the mechanism, the cells were also incubated with calcium ions and protein kinase C and calmodulin antagonists. The binding of integrin αvß3 to FN120 was examined via confocal laser scanning microscopy. RESULTS: The adhesion and stretching growth of peri-implantation embryos were greater and integrinß3 expression was higher in the 1 µM CsA group than in the 0 µM CsA group (p < 0.05). When incubated with calcium ions and protein kinase C and calmodulin antagonists, the ability of peri-implantation embryos to bind to FN decreased; CsA treatment promoted this binding. CONCLUSION: This study revealed that CsA up - regulates integrinß3 expression in peri - implantation embryos and promotes binding to FN via calcium ions, and protein kinase C, and calmodulin. These findings provide evidence supporting the beneficial effect of CsA on the peri - implantation embryo adhesion.


Subject(s)
Cyclosporine , Fibronectins , Animals , Mice , Fibronectins/metabolism , Cyclosporine/pharmacology , Female , Mice, Inbred ICR , Blastocyst/drug effects , Blastocyst/metabolism , Integrin alphaVbeta3/metabolism
18.
J Assist Reprod Genet ; 41(4): 979-987, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38381391

ABSTRACT

PURPOSE: To explore whether letrozole improved outcomes in subsequent controlled ovarian hyperstimulation (COH) cycles. METHODS: This was a retrospective repeated measures cohort study examining COH cycles. Patients were included if they underwent two cycles for unexplained infertility, male factor infertility, or planned oocyte/embryo cryopreservation. The first cycles for all patients implemented a non-letrozole, conventional gonadotropin protocol. Second cycles for the study group included letrozole (2.5-7.5 mg for 5 days) with no medication change to second cycles amongst controls. Our primary objective was to compare oocyte yield. Cohorts were then subdivided by pursuit of oocyte (OC) or embryo (IVF) cryopreservation. Secondary outcome amongst the OC subgroup was oocyte maturation index (metaphase II (MII)/total oocytes). Secondary outcomes amongst the IVF subgroup were normal fertilization rate (2-pronuclear zygotes (2PN)/oocytes exposed to sperm), blastocyst formation rate (blastocysts/2PNs), and embryo ploidy (%euploid and aneuploid). RESULTS: Fifty-four cycles (n = 27) were included in letrozole and 108 cycles (n = 54) were included in control. Oocyte yield was higher in second cycles (p < 0.008) in the letrozole group but similar in second cycles (p = 0.26) amongst controls. Addition of letrozole did not impact MII index (p = 0.90); however, MII index improved in second cycles amongst controls (p < 0.001). Both groups had similar rates of normal fertilization (letrozole: p = 0.52; control: p = 0.61), blast formation (letrozole: p = 0.61; control: p = 0.84), euploid (letrozole: p = 0.29; control: p = 0.47), and aneuploid embryos (letrozole: p = 0.17; control: p = 0.78) between cycles. CONCLUSIONS: Despite improved oocyte yield, letrozole did not yield any difference in oocyte maturation or embryo outcomes.


Subject(s)
Cryopreservation , Fertilization in Vitro , Letrozole , Oocytes , Ovulation Induction , Pregnancy Rate , Humans , Letrozole/administration & dosage , Letrozole/therapeutic use , Ovulation Induction/methods , Female , Adult , Cryopreservation/methods , Oocytes/drug effects , Oocytes/growth & development , Fertilization in Vitro/methods , Pregnancy , Male , Retrospective Studies , Embryo Transfer/methods , Blastocyst/drug effects , Oocyte Retrieval/methods
19.
J Assist Reprod Genet ; 41(6): 1577-1584, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38676842

ABSTRACT

PURPOSE: This study aims to evaluate whether the clinical outcomes of cycles with frozen embryo transfer (FET) in hormonal replacement treatment supplemented with dydrogesterone (DYD) following detection of low circulating levels of progesterone (P4) were comparable to the results of cycles with otherwise normal serum P4 values. METHODS: Extended analyses of a retrospective cohort that included FET cycles performed between July 2019 and March 2022 after a cycle of artificial endometrial preparation using valerate-estradiol and micronized vaginal P4 (400 mg twice daily). Whenever the serum P4 value was considered low on the morning of the planned transfer, 10 mg of DYD three times a day was added as a supplement. Only single-embryo transfers of a blastocyst were considered. The primary endpoint was live birth rate. RESULTS: Five-hundred thirty-five FET cycles were analyzed, of which 136 (25.4%) underwent treatment with DYD. There were 337 pregnancies (63%), 207 live births (38.6%), and 130 miscarriages (38.5%). The P4 values could be modeled by a gamma distribution, with a mean of 14.5 ng/ml and a standard deviation of 1.95 ng/ml. The variables female age on the day of FET, ethnicity, and weight were associated with a variation in the serum P4 values. There were no differences in the results between cycles with or without the indication for DYD supplementation. CONCLUSIONS: Live birth rate did not vary significantly in females with low and normal serum P4 levels on the day of FET when DYD was used as rescue therapy.


Subject(s)
Birth Rate , Cryopreservation , Dydrogesterone , Embryo Transfer , Live Birth , Pregnancy Rate , Progesterone , Humans , Dydrogesterone/administration & dosage , Dydrogesterone/therapeutic use , Female , Progesterone/blood , Pregnancy , Embryo Transfer/methods , Adult , Cryopreservation/methods , Live Birth/epidemiology , Retrospective Studies , Fertilization in Vitro/methods , Blastocyst/metabolism , Blastocyst/drug effects , Progestins/administration & dosage , Progestins/therapeutic use
20.
J Assist Reprod Genet ; 41(9): 2385-2396, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39001951

ABSTRACT

BACKGROUND: To evaluate whether increasing total gonadotropin (Gn) dose is associated with changes in euploid blastocyst rate in preimplantation genetic testing (PGT) oocytes. METHODS: This retrospective cohort study was conducted between 2017 and 2022, and 19,246 oocytes were grouped and analyzed based on tri-sectional quantiles of total Gn doses. SETTING: Single reproductive medical center. SUBJECTS: All the patients who underwent PGT cycles, including PGT for aneuploidy, monogenic disorders, and structural rearrangements, were included. EXPOSURE: Next-generation sequencing platforms for chromosomal analysis. MAIN OUTCOME MEASURES: Blastocyst formation and euploid blastocyst rates. RESULTS: In total, 19,246 oocytes and 5375 PGT blastocysts were analyzed. There were significant differences in blastocyst formation and euploid blastocyst rates among the groups classified according to tri-sectional quantiles of total Gn doses. Significant differences in age, body mass index (BMI), proportion of primary infertility, anti-Müllerian hormone (AMH) levels, number of oocytes retrieved, controlled ovarian stimulation (COS) regimen, type of Gn, and PGT category were observed among the three groups. After stratifying the analysis by age, BMI, infertility diagnosis, AMH levels, number of oocytes retrieved, PGT category, type of Gn, and COS regimen, significant differences were only seen in a small number of specific subgroups. Furthermore, the results of the multiple logistic regression analysis showed that the blastocyst formation and euploid blastocyst rates did not significantly increase or decrease with the total Gn dose, whether treated as a continuous variable or divided into three Gn groups as categorical variables. Notably, advancing age was a risk factor for blastocyst formation and euploid blastocyst rates. PGT for structural rearrangements was a risk factor for blastocyst formation and euploid blastocyst rates as compared with PGT for aneuploidy. CONCLUSION: In the total PGT cycles, advancing age, and preimplantation genetic testing for structural rearrangements negatively affected blastocyst formation and euploid blastocyst rates; however, the total Gn dose did not affect blastocyst formation and euploid blastocyst rates.


Subject(s)
Aneuploidy , Blastocyst , Fertilization in Vitro , Gonadotropins , Oocytes , Ovulation Induction , Preimplantation Diagnosis , Humans , Female , Blastocyst/metabolism , Blastocyst/drug effects , Preimplantation Diagnosis/methods , Adult , Oocytes/growth & development , Oocytes/drug effects , Pregnancy , Ovulation Induction/methods , Gonadotropins/administration & dosage , Fertilization in Vitro/methods , Retrospective Studies , Embryo Transfer/methods , Oocyte Retrieval/methods , Pregnancy Rate , Genetic Testing/methods , Anti-Mullerian Hormone/blood
SELECTION OF CITATIONS
SEARCH DETAIL