Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 339
Filter
1.
PLoS Pathog ; 20(6): e1011777, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38913740

ABSTRACT

COVID-associated coagulopathy seemly plays a key role in post-acute sequelae of SARS- CoV-2 infection. However, the underlying pathophysiological mechanisms are poorly understood, largely due to the lack of suitable animal models that recapitulate key clinical and pathological symptoms. Here, we fully characterized AC70 line of human ACE2 transgenic (AC70 hACE2 Tg) mice for SARS-CoV-2 infection. We noted that this model is highly permissive to SARS-CoV-2 with values of 50% lethal dose and infectious dose as ~ 3 and ~ 0.5 TCID50 of SARS-CoV-2, respectively. Mice infected with 105 TCID50 of SARS-CoV-2 rapidly succumbed to infection with 100% mortality within 5 days. Lung and brain were the prime tissues harboring high viral titers, accompanied by histopathology. However, viral RNA and inflammatory mediators could be detectable in other organs, suggesting the nature of a systemic infection. Lethal challenge of AC70 hACE2 Tg mice caused acute onset of leukopenia, lymphopenia, along with an increased neutrophil-to-lymphocyte ratio (NLR). Importantly, infected animals recapitulated key features of COVID-19-associated coagulopathy. SARS-CoV-2 could induce the release of circulating neutrophil extracellular traps (NETs), along with activated platelet/endothelium marker. Immunohistochemical staining with anti-platelet factor-4 (PF4) antibody revealed profound platelet aggregates especially within blocked veins of the lungs. We showed that acute SARS-CoV-2 infection triggered a hypercoagulable state coexisting with ill-regulated fibrinolysis. Finally, we highlighted the potential role of Annexin A2 (ANXA2) in fibrinolytic failure. ANXA2 is a calcium-dependent phospholipid-binding protein that forms a heterotertrameric complexes localized at the extracellular membranes with two S100A10 small molecules acting as a co-receptor for tissue-plasminogen activator (t-PA), tightly involved in cell surface fibrinolysis. Thus, our results revealing elevated IgG type anti-ANXA2 antibody production, downregulated de novo ANXA2/S100A10 synthesis, and reduced ANXA2/S100A10 association in infected mice, this protein might serve as druggable targets for development of antithrombotic and/or anti-fibrinolytic agents to attenuate pathogenesis of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Disease Models, Animal , Mice, Transgenic , SARS-CoV-2 , Animals , COVID-19/pathology , COVID-19/complications , COVID-19/virology , COVID-19/metabolism , Mice , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Humans , Blood Coagulation Disorders/virology , Blood Coagulation Disorders/pathology , Pneumonia, Viral/virology , Pneumonia, Viral/pathology , Pneumonia, Viral/metabolism , Betacoronavirus , Lung/virology , Lung/pathology , Lung/metabolism , Coronavirus Infections/virology , Coronavirus Infections/pathology , Coronavirus Infections/complications , Pandemics , Extracellular Traps/metabolism
2.
Blood ; 136(11): 1317-1329, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32573711

ABSTRACT

There is an urgent need to understand the pathogenesis of coronavirus disease 2019 (COVID-19). In particular, thrombotic complications in patients with COVID-19 are common and contribute to organ failure and mortality. Patients with severe COVID-19 present with hemostatic abnormalities that mimic disseminated intravascular coagulopathy associated with sepsis, with the major difference being increased risk of thrombosis rather than bleeding. However, whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alters platelet function to contribute to the pathophysiology of COVID-19 remains unknown. In this study, we report altered platelet gene expression and functional responses in patients infected with SARS-CoV-2. RNA sequencing demonstrated distinct changes in the gene-expression profile of circulating platelets of COVID-19 patients. Pathway analysis revealed differential gene-expression changes in pathways associated with protein ubiquitination, antigen presentation, and mitochondrial dysfunction. The receptor for SARS-CoV-2 binding, angiotensin-converting enzyme 2 (ACE2), was not detected by messenger RNA (mRNA) or protein in platelets. Surprisingly, mRNA from the SARS-CoV-2 N1 gene was detected in platelets from 2 of 25 COVID-19 patients, suggesting that platelets may take-up SARS-COV-2 mRNA independent of ACE2. Resting platelets from COVID-19 patients had increased P-selectin expression basally and upon activation. Circulating platelet-neutrophil, -monocyte, and -T-cell aggregates were all significantly elevated in COVID-19 patients compared with healthy donors. Furthermore, platelets from COVID-19 patients aggregated faster and showed increased spreading on both fibrinogen and collagen. The increase in platelet activation and aggregation could partially be attributed to increased MAPK pathway activation and thromboxane generation. These findings demonstrate that SARS-CoV-2 infection is associated with platelet hyperreactivity, which may contribute to COVID-19 pathophysiology.


Subject(s)
Betacoronavirus/isolation & purification , Blood Coagulation Disorders/pathology , Blood Platelets/pathology , Coronavirus Infections/complications , Pneumonia, Viral/complications , Transcriptome , Biomarkers , Blood Coagulation Disorders/genetics , Blood Coagulation Disorders/metabolism , Blood Coagulation Disorders/virology , Blood Platelets/metabolism , Blood Platelets/virology , COVID-19 , Case-Control Studies , Coronavirus Infections/genetics , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Female , Follow-Up Studies , Gene Expression Profiling , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Prognosis , Prospective Studies , SARS-CoV-2
3.
Blood ; 136(11): 1330-1341, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32678428

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent pathogen responsible for the coronavirus disease 2019 (COVID-19). Since its emergence, the novel coronavirus has rapidly achieved pandemic proportions causing remarkably increased morbidity and mortality around the world. A hypercoagulability state has been reported as a major pathologic event in COVID-19, and thromboembolic complications listed among life-threatening complications of the disease. Platelets are chief effector cells of hemostasis and pathological thrombosis. However, the participation of platelets in the pathogenesis of COVID-19 remains elusive. This report demonstrates that increased platelet activation and platelet-monocyte aggregate formation are observed in severe COVID-19 patients, but not in patients presenting mild COVID-19 syndrome. In addition, exposure to plasma from severe COVID-19 patients increased the activation of control platelets ex vivo. In our cohort of COVID-19 patients admitted to the intensive care unit, platelet-monocyte interaction was strongly associated with tissue factor (TF) expression by the monocytes. Platelet activation and monocyte TF expression were associated with markers of coagulation exacerbation as fibrinogen and D-dimers, and were increased in patients requiring invasive mechanical ventilation or patients who evolved with in-hospital mortality. Finally, platelets from severe COVID-19 patients were able to induce TF expression ex vivo in monocytes from healthy volunteers, a phenomenon that was inhibited by platelet P-selectin neutralization or integrin αIIb/ß3 blocking with the aggregation inhibitor abciximab. Altogether, these data shed light on new pathological mechanisms involving platelet activation and platelet-dependent monocyte TF expression, which were associated with COVID-19 severity and mortality.


Subject(s)
Betacoronavirus/immunology , Blood Coagulation Disorders/pathology , Blood Platelets/pathology , Coronavirus Infections/complications , Monocytes/pathology , Pneumonia, Viral/complications , Thromboplastin/metabolism , Adult , Biomarkers/metabolism , Blood Coagulation Disorders/immunology , Blood Coagulation Disorders/metabolism , Blood Coagulation Disorders/virology , Blood Platelets/metabolism , Blood Platelets/virology , COVID-19 , Case-Control Studies , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Monocytes/metabolism , Monocytes/virology , P-Selectin/metabolism , Pandemics , Platelet Activation , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Prognosis , Prospective Studies , SARS-CoV-2 , Survival Rate
4.
Acta Pharmacol Sin ; 43(3): 520-528, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34040166

ABSTRACT

High mobility group box 1 (HMGB1) is a ubiquitous nuclear protein that is present in almost all cells and regulates the activity of innate immune responses in both intracellular and extracellular settings. Current evidence suggests that HMGB1 plays a pivotal role in human pathological and pathophysiological processes such as the inflammatory response, immune reactions, cell migration, aging, and cell death. Sepsis is a systemic inflammatory response syndrome (SIRS) that occurs in hosts in response to microbial infections with a proven or suspected infectious etiology and is the leading cause of death in intensive care units worldwide, particularly in the aging population. Dysregulated systemic inflammation is a classic characteristic of sepsis, and suppression of HMGB1 may ameliorate inflammation and improve patient outcomes. Here, we focus on the latest breakthroughs regarding the roles of HMGB1 in sepsis and sepsis-related organ injury, the ways by which HMGB1 are released, and the signaling pathways and therapeutics associated with HMGB1. This review highlights recent advances related to HMGB1: the regulation of HMBG1 might be helpful for both basic research and drug development for the treatment of sepsis and sepsis-related organ injury.


Subject(s)
HMGB1 Protein/metabolism , Multiple Organ Failure/pathology , Sepsis/pathology , Autophagy/physiology , Blood Coagulation Disorders/pathology , Cytokine Release Syndrome/pathology , Endoplasmic Reticulum Stress/physiology , Humans , Inflammation/pathology , Inflammation Mediators/metabolism , Mitochondria/pathology , Multiple Organ Failure/drug therapy , Receptor for Advanced Glycation End Products/metabolism , Sepsis/drug therapy , Signal Transduction/physiology , Toll-Like Receptors/metabolism
5.
Clin Exp Pharmacol Physiol ; 49(4): 483-491, 2022 04.
Article in English | MEDLINE | ID: mdl-35066912

ABSTRACT

Progress in the study of Covid-19 disease in rodents has been hampered by the lack of angiotensin-converting enzyme 2 (ACE2; virus entry route to the target cell) affinities for the virus spike proteins across species. Therefore, we sought to determine whether a modified protocol of lipopolysaccharide (LPS)-induced acute respiratory distress syndrome in rats can mimic both cell signalling pathways as well as severe disease phenotypes of Covid-19 disease. Rats were injected via intratracheal (IT) instillation with either 15 mg/kg of LPS (model group) or saline (control group) before being killed after 3 days. A severe acute respiratory syndrome (SARS)-like effect was observed in the model group as demonstrated by the development of a "cytokine storm" (>2.7 fold increase in blood levels of IL-6, IL-17A, GM-CSF, and TNF-α), high blood ferritin, demonstrable coagulopathy, including elevated D-dimer (approximately 10-fold increase), PAI-1, PT, and APTT (p < 0.0001). In addition, LPS increased the expression of lung angiotensin II type I receptor (AT1R)-JAK-STAT axis (>4 fold increase). Chest imaging revealed bilateral small patchy opacities of the lungs. Severe lung injury was noted by the presence of both, alveolar collapse and haemorrhage, desquamation of epithelial cells in the airway lumen, infiltration of inflammatory cells (CD45+ leukocytes), widespread thickening of the interalveolar septa, and ultrastructural alterations similar to Covid-19. Thus, these findings demonstrate that IT injection of 15 mg/kg LPS into rats, induced an AT1R/JAK/STAT-mediated cytokine storm with resultant pneumonia and coagulopathy that was commensurate with moderate and severe Covid-19 disease noted in humans.


Subject(s)
Acute Lung Injury/etiology , Blood Coagulation Disorders/etiology , COVID-19/pathology , Cytokine Release Syndrome/etiology , Hemorrhage/etiology , Lipopolysaccharides/adverse effects , Lung Diseases/etiology , Receptor, Angiotensin, Type 1/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , Acute Lung Injury/pathology , Animals , Blood Coagulation Disorders/pathology , COVID-19/etiology , Cytokine Release Syndrome/pathology , Disease Models, Animal , Hemorrhage/pathology , Janus Kinases , Lung Diseases/pathology , Male , Rats , Rats, Wistar
6.
Curr Opin Hematol ; 28(6): 445-453, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34232139

ABSTRACT

PURPOSE OF REVIEW: Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2. Over the past year, COVID-19 has posed a significant threat to global health. Although the infection is associated with mild symptoms in many patients, a significant proportion of patients develop a prothrombotic state due to a combination of alterations in coagulation and immune cell function. The purpose of this review is to discuss the pathophysiological characteristics of COVID-19 that contribute to the immunothrombosis. RECENT FINDINGS: Endotheliopathy during COVID-19 results in increased multimeric von Willebrand factor release and the potential for increased platelet adhesion to the endothelium. In addition, decreased anticoagulant proteins on the surface of endothelial cells further alters the hemostatic balance. Soluble coagulation markers are also markedly dysregulated, including plasminogen activator inhibitor-1 and tissue factor, leading to COVID-19 induced coagulopathy. Platelet hyperreactivity results in increased platelet-neutrophil and -monocyte aggregates further exacerbating the coagulopathy observed during COVID-19. Finally, the COVID-19-induced cytokine storm primes neutrophils to release neutrophil extracellular traps, which trap platelets and prothrombotic proteins contributing to pulmonary thrombotic complications. SUMMARY: Immunothrombosis significantly contributes to the pathophysiology of COVID-19. Understanding the mechanisms behind COVID-19-induced coagulopathy will lead to future therapies for patients.


Subject(s)
Blood Coagulation Disorders/pathology , COVID-19/complications , SARS-CoV-2/isolation & purification , Thrombosis/pathology , Blood Coagulation Disorders/epidemiology , Blood Coagulation Disorders/virology , COVID-19/transmission , COVID-19/virology , Humans , Prognosis , Thrombosis/epidemiology , Thrombosis/virology
7.
Am J Respir Cell Mol Biol ; 64(6): 687-697, 2021 06.
Article in English | MEDLINE | ID: mdl-33740387

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly become a global pandemic. In addition to the acute pulmonary symptoms of coronavirus disease (COVID-19) (the disease associated with SARS-CoV-2 infection), pulmonary and distal coagulopathies have caused morbidity and mortality in many patients. Currently, the molecular pathogenesis underlying COVID-19-associated coagulopathies are unknown. Identifying the molecular basis of how SARS-CoV-2 drives coagulation is essential to mitigating short- and long-term thrombotic risks of sick and recovered patients with COVID-19. We aimed to perform coagulation-focused transcriptome analysis of in vitro infected primary respiratory epithelial cells, patient-derived bronchial alveolar lavage cells, and circulating immune cells during SARS-CoV-2 infection. Our objective was to identify transcription-mediated signaling networks driving coagulopathies associated with COVID-19. We analyzed recently published experimentally and clinically derived bulk or single-cell RNA sequencing datasets of SARS-CoV-2 infection to identify changes in transcriptional regulation of blood coagulation. We also confirmed that the transcriptional expression of a key coagulation regulator was recapitulated at the protein level. We specifically focused our analysis on lung tissue-expressed genes regulating the extrinsic coagulation cascade and the plasminogen activation system. Analyzing transcriptomic data of in vitro infected normal human bronchial epithelial cells and patient-derived bronchial alveolar lavage samples revealed that SARS-CoV-2 infection induces the extrinsic blood coagulation cascade and suppresses the plasminogen activation system. We also performed in vitro SARS-CoV-2 infection experiments on primary human lung epithelial cells to confirm that transcriptional upregulation of tissue factor, the extrinsic coagulation cascade master regulator, manifested at the protein level. Furthermore, infection of normal human bronchial epithelial cells with influenza A virus did not drive key regulators of blood coagulation in a similar manner as SARS-CoV-2. In addition, peripheral blood mononuclear cells did not differentially express genes regulating the extrinsic coagulation cascade or plasminogen activation system during SARS-CoV-2 infection, suggesting that they are not directly inducing coagulopathy through these pathways. The hyperactivation of the extrinsic blood coagulation cascade and the suppression of the plasminogen activation system in SARS-CoV-2-infected epithelial cells may drive diverse coagulopathies in the lung and distal organ systems. Understanding how hosts drive such transcriptional changes with SARS-CoV-2 infection may enable the design of host-directed therapeutic strategies to treat COVID-19 and other coronaviruses inducing hypercoagulation.


Subject(s)
Alveolar Epithelial Cells/metabolism , Blood Coagulation Disorders/metabolism , COVID-19/metabolism , Gene Expression Regulation , SARS-CoV-2/metabolism , Signal Transduction , Transcription, Genetic , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/pathology , COVID-19/complications , COVID-19/pathology , Cell Line , Female , Humans , Influenza A virus/metabolism , Influenza, Human/complications , Influenza, Human/metabolism , Influenza, Human/pathology , Male
8.
Clin Immunol ; 232: 108852, 2021 11.
Article in English | MEDLINE | ID: mdl-34520860

ABSTRACT

BACKGROUND: The majority of the coronavirus disease 2019 (COVID-19) non-survivors meet the criteria for disseminated intravascular coagulation (DIC). Although timely monitoring of clotting hemorrhagic development during the natural course of COVID-19 is critical for understanding pathogenesis, diagnosis, and treatment of the disease, however, limited data are available on the dynamic processes of inflammation/coagulopathy/fibrinolysis (ICF). METHODS: We monitored the dynamic progression of ICF in patients with moderate COVID-19. Out of 694 COVID-19 inpatients from 10 hospitals in Wenzhou, China, we selected 293 adult patients without comorbidities. These patients were divided into different daily cohorts according to the COVID-19 onset-time. Furthermore, data of 223 COVID-19 patients with comorbidities and 22 critical cases were analyzed. Retrospective data were extracted from electronic medical records. RESULTS: The virus-induced damages to pre-hospitalization patients triggered two ICF fluctuations during the 14-day course of the disease. C-reactive protein (CRP), fibrinogen, and D-dimer levels increased and peaked at day 5 (D) 5 and D9 during the 1st and 2nd fluctuations, respectively. The ICF activities were higher during the 2nd fluctuation. Although 12-day medication returned high CRP concentrations to normal and blocked fibrinogen increase, the D-dimer levels remained high on days 17 ±â€¯2 and 23 ±â€¯2 days of the COVID-19 course. Notably, although the oxygenation index, prothrombin time and activated partial thromboplastin time were within the normal range in critical COVID-19 patients at administration, 86% of these patients had a D-dimer level > 500 µg/L. CONCLUSION: COVID-19 is linked with chronic DIC, which could be responsible for the progression of the disease. Understanding and monitoring ICF progression during COVID-19 can help clinicians in identifying the stage of the disease quickly and accurately and administering suitable treatment.


Subject(s)
Blood Coagulation/physiology , COVID-19/complications , Fibrinolysis/physiology , Inflammation/etiology , Inflammation/virology , Adult , Anticoagulants/pharmacology , Blood Coagulation/drug effects , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/metabolism , Blood Coagulation Disorders/pathology , Blood Coagulation Disorders/virology , COVID-19/metabolism , COVID-19/pathology , China , Disease Progression , Disseminated Intravascular Coagulation/etiology , Disseminated Intravascular Coagulation/metabolism , Disseminated Intravascular Coagulation/pathology , Disseminated Intravascular Coagulation/virology , Female , Fibrin Fibrinogen Degradation Products/metabolism , Fibrinogen/metabolism , Hemorrhage/etiology , Hemorrhage/pathology , Hemorrhage/virology , Humans , Inflammation/pathology , Male , Middle Aged , Prothrombin Time , SARS-CoV-2/pathogenicity
9.
Blood ; 133(9): 902-905, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30655273

ABSTRACT

Recent multistate outbreaks of coagulopathy caused by brodifacoum-tainted synthetic cannabinoids or "fake weed" highlight the public health impact of long-acting anticoagulant rodenticides (LAARs). Patients presenting with this syndrome have had recent exposure to synthetic cannabinoids, evidence of isolated vitamin K antagonism with or without bleeding, and detectable levels of brodifacoum and other LAARs in circulation. This article will provide information on synthetic cannabinoids, LAARs, and coagulopathic manifestations arising from use of adulterated synthetic cannabinoids and their management.


Subject(s)
4-Hydroxycoumarins/poisoning , Anticoagulants/poisoning , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/pathology , Cannabinoids/poisoning , Drug Contamination , Blood Coagulation Disorders/chemically induced , Disease Management , Humans
10.
Acta Haematol ; 144(2): 166-175, 2021.
Article in English | MEDLINE | ID: mdl-32506056

ABSTRACT

BACKGROUND/AIMS: The newly adapted generic KINDL-A(dult)B(rief) questionnaire showed satisfactory cross-sectional psychometric properties in adults with bleeding disorders or thrombophilia. This investigation aimed to evaluate its cross-sectional and longitudinal construct validity. METHODS: After ethical committee approval and written informed consent, 335 patients (mean age 51.8 ± 16.6 years, 60% women) with either predominant thrombophilia (n = 260) or predominant bleeding disorders (n = 75) participated. At baseline, patients answered the KINDL-AB, the MOS 36-item Short-Form Health Survey (SF-36), and the EQ-5D-3L. A subgroup of 117 patients repeated the questionnaire after a median follow-up of 2.6 years (range: 0.4-3.5). A priori hypotheses were evaluated regarding convergent correlations between KINDL-AB overall well-being and specific subscales, EQ-5D-3L index values (EQ-IV), EQ-5D visual analog scale (EQ-VAS), and SF-36 subscales. RESULTS: Contrary to hypothesis, baseline correlations between the KINDL-AB and EQ-IV/EQ-VAS were all moderate while, as hypothesized, several KINDL-AB subscales and SF-36 subscales correlated strongly. At follow-up, no significant changes in all three instruments occurred. Correlations between instruments over the follow-up were mostly moderate and partially strong. Contrary to hypothesis but consistent with no significant changes in health-related quality of life, convergent correlations between changes in KINDL-AB overall well-being, physical and psychological well-being, and EQ-IV/EQ-VAS were all weak. CONCLUSIONS: While repeated measures of KINDL-AB showed moderate to strong correlations, changes in KINDL-AB overall well-being and subscales correlated more weakly than expected with changes involving two established instruments of generic health status.


Subject(s)
Blood Coagulation Disorders/psychology , Quality of Life , Thrombophilia/psychology , Adult , Aged , Blood Coagulation Disorders/pathology , Cross-Sectional Studies , Female , Health Surveys , Humans , Longitudinal Studies , Male , Middle Aged , Psychometrics , Thrombophilia/pathology
11.
Bull Math Biol ; 83(5): 50, 2021 03 27.
Article in English | MEDLINE | ID: mdl-33772645

ABSTRACT

Blood coagulation represents one of the most studied processes in biomedical modelling. However, clinical applications of this modelling remain limited because of the complexity of this process and because of large inter-patient variation of the concentrations of blood factors, kinetic constants and physiological conditions. Determination of some of these patients-specific parameters is experimentally possible, but it would be related to excessive time and material costs impossible in clinical practice. We propose in this work a methodological approach to patient-specific modelling of blood coagulation. It begins with conventional thrombin generation tests allowing the determination of parameters of a reduced kinetic model. Next, this model is used to study spatial distributions of blood factors and blood coagulation in flow, and to evaluate the results of medical treatment of blood coagulation disorders.


Subject(s)
Blood Coagulation , Models, Biological , Patient-Specific Modeling , Blood Coagulation Disorders/diagnosis , Blood Coagulation Disorders/pathology , Humans
12.
Br J Haematol ; 189(6): 1044-1049, 2020 06.
Article in English | MEDLINE | ID: mdl-32330308

ABSTRACT

Although the pathophysiology underlying severe COVID19 remains poorly understood, accumulating data suggest that a lung-centric coagulopathy may play an important role. Elevated D-dimer levels which correlated inversely with overall survival were recently reported in Chinese cohort studies. Critically however, ethnicity has major effects on thrombotic risk, with a 3-4-fold lower risk in Chinese compared to Caucasians and a significantly higher risk in African-Americans. In this study, we investigated COVID19 coagulopathy in Caucasian patients. Our findings confirm that severe COVID19 infection is associated with a significant coagulopathy that correlates with disease severity. Importantly however, Caucasian COVID19 patients on low molecular weight heparin thromboprophylaxis rarely develop overt disseminated intravascular coagulation (DIC). In rare COVID19 cases where DIC does develop, it tends to be restricted to late-stage disease. Collectively, these data suggest that the diffuse bilateral pulmonary inflammation observed in COVID19 is associated with a novel pulmonary-specific vasculopathy termed pulmonary intravascular coagulopathy (PIC) as distinct to DIC. Given that thrombotic risk is significantly impacted by race, coupled with the accumulating evidence that coagulopathy is important in COVID19 pathogenesis, our findings raise the intriguing possibility that pulmonary vasculopathy may contribute to the unexplained differences that are beginning to emerge highlighting racial susceptibility to COVID19 mortality.


Subject(s)
Betacoronavirus , Blood Coagulation Disorders/etiology , Coronavirus Infections/complications , Pneumonia, Viral/complications , White People , Blood Coagulation Disorders/ethnology , Blood Coagulation Disorders/pathology , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/ethnology , Disseminated Intravascular Coagulation/prevention & control , Female , Heparin, Low-Molecular-Weight/therapeutic use , Humans , Lung/blood supply , Male , Middle Aged , Pandemics , Pneumonia/blood , Pneumonia/pathology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/ethnology , SARS-CoV-2 , Thrombosis/prevention & control
13.
BMC Med Genet ; 21(1): 9, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31914974

ABSTRACT

BACKGROUND: Coagulation factor XIII (FXIII) plays an essential role in maintaining hemostasis by crosslinking fibrin. Deficiency in FXIII affects clot stability and increases the risk of severe bleeding. Congenital FXIII deficiency is a rare disease. Recently, we identified a Chinese family with FXIII deficiency and investigated the pathogenesis of congenital FXIII deficiency, contributing non-coding pathogenic variants. METHODS: We performed common tests, coding sequencing by targeted next-generation sequencing (NGS), whole-genome sequencing and splice-sites prediction algorithms. The pathogenesis was investigated via minigene and nonsense-mediated mRNA decay (NMD) by experiments in vitro. RESULTS: The proband is homozygote for a novel deep intronic c.799-12G > A mutation in the F13A1 gene. Through direct sequencing of the minigenes mRNA, we found 10 bases of intron 6 insert in the mRNA of mutant minigenes mRNA. The relative expression of EGFP-F13A1 was higher by suppression of NMD in vitro. Furthermore, we found the proband with enhanced thrombin generation (TG). CONCLUSION: We reported a novel deep intronic c.799-12G > A mutation of F13A1 which produced a new acceptor site and frame shifting during translation introducing a premature termination codon. Our results support the premature termination codon triggered NMD. We need to pay attention to the position of potential alterable splicing sites while counselling and genetic test. The finding of enhanced TG indicated that we should be aware of the risk of thrombosis in patients with FXIII deficiency during replacement therapy.


Subject(s)
Blood Coagulation Disorders/genetics , Factor XIII Deficiency/genetics , Factor XIII/genetics , Adolescent , Adult , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/pathology , Child, Preschool , Factor XIII Deficiency/blood , Factor XIII Deficiency/pathology , Female , Humans , Introns/genetics , Male , Mutation , Nonsense Mediated mRNA Decay/genetics , Pedigree , RNA Splicing , RNA, Messenger/genetics
14.
Blood ; 132(10): 1075-1084, 2018 09 06.
Article in English | MEDLINE | ID: mdl-29941674

ABSTRACT

von Willebrand factor (VWF) is an adhesive ligand, and its activity is proteolytically regulated by the metalloprotease ADAMTS-13 (a disintegrin and metalloprotease with thrombospondin type 1 repeat 13). An elevated level of plasma VWF has been widely considered a marker for endothelial cell activation in trauma and inflammation, but its causal role in these pathological conditions remains poorly defined. Using a fluid percussion injury mouse model, we demonstrated that VWF released during acute traumatic brain injury (TBI) was activated and became microvesicle-bound. The VWF-bound microvesicles promoted vascular leakage and systemic coagulation. Recombinant ADAMTS-13 given either before or after TBI reduced the VWF reactivity with minimal influence on VWF secretion. rADAMTS-13 protected the integrity of endothelial cell barriers and prevented TBI-induced coagulopathy by enhancing VWF cleavage without impairing basal hemostasis. Promoting microvesicle clearance by lactadherin had efficacy similar to that of rADAMTS-13. This study uncovers a novel synergistic action between VWF and cellular microvesicles in TBI-induced vascular leakage and coagulopathy and demonstrates protective effects of rADAMTS-13.


Subject(s)
Blood Coagulation Disorders/metabolism , Brain Injuries/metabolism , Endothelial Cells/metabolism , Microvessels/metabolism , von Willebrand Factor/metabolism , Animals , Blood Coagulation Disorders/genetics , Blood Coagulation Disorders/pathology , Brain Injuries/genetics , Brain Injuries/pathology , Disease Models, Animal , Endothelial Cells/pathology , Male , Mice , Mice, Knockout , Microvessels/pathology , von Willebrand Factor/genetics
15.
Transfusion ; 60 Suppl 3: S158-S166, 2020 06.
Article in English | MEDLINE | ID: mdl-32478907

ABSTRACT

The endothelial exocytosis of high-molecular-weight multimeric von Willebrand factor (vWF) may occur in critical illness states, including trauma and sepsis, leading to the sustained elevation and altered composition of plasma vWF. These critical illnesses involve the common process of sympathoadrenal activation and loss of the endothelial glycocalyx. As a prothrombotic and proinflammatory molecule that interacts with the endothelium, the alterations exhibited by vWF in critical illness have been implicated in the development and damaging effects of downstream pathologies, such as disseminated intravascular coagulation and systemic inflammatory response syndrome. Given the role of vWF in these pathologies, there has been a recent push to further understand how the molecule may be involved in the pathophysiology of related diseases, such as trauma-induced coagulopathy and acute renal injury, which are also known to develop secondarily to critical illness states. Elucidation of the role of vWF across the broader spectrum of generalized pathologies may provide a basis for the development of novel preventative and restorative measures, while also bolstering the scaffold of more widely used treatments, such as the administration of plasma-containing blood products.


Subject(s)
Critical Illness , Inflammation Mediators/metabolism , von Willebrand Factor/metabolism , ADAMTS13 Protein/metabolism , Acute Kidney Injury/blood , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Blood Coagulation , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/pathology , Endothelium, Vascular/metabolism , Humans , Sepsis/blood , Sepsis/complications , Sepsis/pathology , Wounds and Injuries/blood , Wounds and Injuries/pathology , von Willebrand Factor/chemistry
16.
Pediatr Blood Cancer ; 67(1): e28016, 2020 01.
Article in English | MEDLINE | ID: mdl-31556233

ABSTRACT

BACKGROUND: L-asparaginase (L-Asp)-associated thromboembolisms are serious complications in pediatrics patients with acute lymphoblastic leukemia (ALL), especially at ≥10.0 years old, but the pathogenesis remains to be clarified. PROCEDURE: We conducted a multicenter, prospective study of 72 patients with ALL aged 1.0 to 15.2 years treated with either a Berlin-Frankfurt-Münster (BFM) 95-ALL oriented regimen or Japan Association of Childhood Leukemia Study ALL-02 protocol. We divided patients into each treatment protocol and investigated the dynamic changes in coagulation and fibrinolysis using simultaneous thrombin and plasmin generation assay. Patients' plasma samples were collected at the prephase (T0), intermittent phase (T1), and postphase of L-Asp therapy (T2), and postinduction phase (T3). Measurements of endogenous thrombin potential (T-EP) and plasmin peak height (P-Peak) were compared to normal plasma. RESULTS: None of the cases developed thromboembolisms. Median ratios of T-EP and P-Peak for the controls in the JACLS group were 1.06 and 0.87 (T0), 1.04 and 0.71 (T1), 1.02 and 0.69 (T2), and 1.20 and 0.92 (T3), respectively, while those in the BFM group were 1.06 and 1.00 (T0), 1.04 and 0.64 (T1), 1.16 and 0.58 (T2), and 1.16 and 0.85 (T3), respectively. In particular, P-Peak ratios were depressed at T1 and T2 compared to T0 in the BFM group (P < .01). Moreover, P-Peak ratios in patients ≥10.0 years old were lower at T1 in the BFM group (P = .02). CONCLUSIONS: The results demonstrated that hemostatic dynamics appeared to shift to a hypercoagulable state with marked hypofibrinolysis associated with L-Asp therapy, especially in patients ≥10.0 years old following the BFM regimen.


Subject(s)
Asparaginase/adverse effects , Blood Coagulation Disorders/pathology , Fibrinolysin/metabolism , Fibrinolysis/drug effects , Hemostasis/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Thrombin/metabolism , Adolescent , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Asparaginase/administration & dosage , Blood Coagulation Disorders/chemically induced , Blood Coagulation Disorders/metabolism , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Induction Chemotherapy , Infant , Japan , Male , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Prognosis , Prospective Studies
17.
Vet Pathol ; 57(1): 6-23, 2020 01.
Article in English | MEDLINE | ID: mdl-31342866

ABSTRACT

Immunothrombosis is a potentially beneficial physiological process that aids innate immunity and host defense against pathogen invasion. However, this process can also be damaging when it occurs to excess or in critical blood vessels. Formation of extracellular traps by leukocytes, particularly neutrophils, is central to our understanding of immunothrombosis. In addition to degranulation and phagocytosis, extracellular traps are the third mechanism by which neutrophils combat potential pathogens. These traps consist of extracellular DNA decorated with bactericidal cellular proteins, including elastase, myeloperoxidase, and cathepsins. Neutrophils can release these structures as part of a controlled cell-death process or via a process termed vital NETosis that enables the cells to extrude DNA but remain viable. There is accumulating evidence that NETosis occurs in companion animals, including dogs, horses, and cats, and that it actively contributes to pathogenesis. Numerous studies have been published detailing various methods for identification and quantification of extracellular trap formation, including cell-free DNA, measurements of histones and proteins such as high-mobility group box-1, and techniques involving microscopy and flow cytometry. Here, we outline the present understanding of these phenomena and the mechanisms of extracellular trap formation. We critically review the data regarding measurement of NETosis in companion animals, summarize the existing literature on NETosis in veterinary species, and speculate on what therapeutic options these insights might present to clinicians in the future.


Subject(s)
Anemia, Hemolytic/veterinary , Blood Coagulation Disorders/veterinary , Extracellular Traps/immunology , Immunity, Innate , Sepsis/veterinary , Thrombosis/veterinary , Anemia, Hemolytic/immunology , Anemia, Hemolytic/pathology , Animals , Blood Coagulation Disorders/immunology , Blood Coagulation Disorders/pathology , Cats , Cell-Free Nucleic Acids , Dogs , Flow Cytometry/veterinary , Horses , Neutrophils/immunology , Pets , Sepsis/immunology , Sepsis/pathology , Thrombosis/immunology , Thrombosis/pathology
18.
Haematologica ; 104(7): 1460-1472, 2019 07.
Article in English | MEDLINE | ID: mdl-30655368

ABSTRACT

Dominant-negative mutations in the transcription factor Growth Factor Independence-1B (GFI1B), such as GFI1BQ287*, cause a bleeding disorder characterized by a plethora of megakaryocyte and platelet abnormalities. The deregulated molecular mechanisms and pathways are unknown. Here we show that both normal and Q287* mutant GFI1B interacted most strongly with the lysine specific demethylase-1 - REST corepressor - histone deacetylase (LSD1-RCOR-HDAC) complex in megakaryoblasts. Sequestration of this complex by GFI1BQ287* and chemical separation of GFI1B from LSD1 induced abnormalities in normal megakaryocytes comparable to those seen in patients. Megakaryocytes derived from GFI1BQ287*-induced pluripotent stem cells also phenocopied abnormalities seen in patients. Proteome studies on normal and mutant-induced pluripotent stem cell-derived megakaryocytes identified a multitude of deregulated pathways downstream of GFI1BQ287* including cell division and interferon signaling. Proteome studies on platelets from GFI1BQ287* patients showed reduced expression of proteins implicated in platelet function, and elevated expression of proteins normally downregulated during megakaryocyte differentiation. Thus, GFI1B and LSD1 regulate a broad developmental program during megakaryopoiesis, and GFI1BQ287* deregulates this program through LSD1-RCOR-HDAC sequestering.


Subject(s)
Blood Coagulation Disorders/pathology , Blood Platelets/pathology , Gene Expression Regulation , Induced Pluripotent Stem Cells/pathology , Megakaryocytes/pathology , Mutation , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Blood Coagulation Disorders/genetics , Blood Coagulation Disorders/metabolism , Blood Platelets/metabolism , Cell Differentiation , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Megakaryocytes/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Phenotype , Protein Interaction Maps , Proteome/analysis , Proto-Oncogene Proteins/metabolism , Repressor Proteins/metabolism
19.
PLoS Genet ; 12(5): e1006082, 2016 05.
Article in English | MEDLINE | ID: mdl-27227676

ABSTRACT

Mutations that result in amino acid changes can affect both pre-mRNA splicing and protein function. Understanding the combined effect is essential for correct diagnosis and for establishing the most appropriate therapeutic strategy at the molecular level. We have identified a series of disease-causing splicing mutations in coagulation factor IX (FIX) exon 5 that are completely recovered by a modified U1snRNP particle, through an SRSF2-dependent enhancement mechanism. We discovered that synonymous mutations and missense substitutions associated to a partial FIX secretion defect represent targets for this therapy as the resulting spliced-corrected proteins maintains normal FIX coagulant specific activity. Thus, splicing and protein alterations contribute to define at the molecular level the disease-causing effect of a number of exonic mutations in coagulation FIX exon 5. In addition, our results have a significant impact in the development of splicing-switching therapies in particular for mutations that affect both splicing and protein function where increasing the amount of a correctly spliced protein can circumvent the basic functional defects.


Subject(s)
Blood Coagulation Disorders/genetics , Factor IX/genetics , RNA Splicing/genetics , Blood Coagulation Disorders/pathology , Cell Culture Techniques , Exons/genetics , Genetic Vectors , Humans , Mutation , RNA Precursors/genetics , RNA Splice Sites/genetics , Ribonucleoproteins, Small Nuclear/genetics , Serine-Arginine Splicing Factors/genetics , Transfection
20.
Blood ; 127(19): 2281-8, 2016 05 12.
Article in English | MEDLINE | ID: mdl-26851291

ABSTRACT

Severe Plasmodium falciparum malaria remains a leading cause of mortality, particularly in sub-Saharan Africa where it accounts for up to 1 million deaths per annum. In spite of the significant mortality and morbidity associated with cerebral malaria (CM), the molecular mechanisms involved in the pathophysiology of severe malaria remain surprisingly poorly understood. Previous studies have demonstrated that sequestration of P falciparum-infected erythrocytes within the microvasculature of the brain plays a key role in the development of CM. In addition, there is convincing evidence that both endothelial cell activation and platelets play critical roles in the modulating the pathogenesis of severe P falciparum malaria. In this review, we provide an overview of recent studies that have identified novel roles through which hemostatic dysfunction may directly influence malaria pathogenesis. In particular, we focus on emerging data suggesting that von Willebrand factor, coagulation cascade activation, and dysfunction of the protein C pathway may be of specific importance in this context. These collective insights underscore a growing appreciation of the important, but poorly understood, role of hemostatic dysfunction in malaria progression and, importantly, illuminate potential approaches for novel therapeutic strategies. Given that the mortality rate associated with CM remains on the order of 20% despite the availability of effective antimalarial therapy, development of adjunctive therapies that can attenuate CM progression clearly represents a major unmet need. These emerging data are thus not only of basic scientific interest, but also of direct clinical significance.


Subject(s)
Blood Coagulation Disorders , Blood Coagulation , Malaria, Falciparum , Plasmodium falciparum , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/pathology , Blood Coagulation Disorders/therapy , Blood Platelets/metabolism , Blood Platelets/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Erythrocytes/metabolism , Erythrocytes/pathology , Humans , Malaria, Cerebral/blood , Malaria, Cerebral/complications , Malaria, Cerebral/pathology , Malaria, Cerebral/therapy , Malaria, Falciparum/blood , Malaria, Falciparum/complications , Malaria, Falciparum/pathology , Malaria, Falciparum/therapy , Protein C/metabolism , von Willebrand Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL