Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
J Med Virol ; 96(10): e29945, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39370874

ABSTRACT

Borna disease virus 1 (BoDV-1) is a neurotropic RNA virus that has been linked to fatal BoDV-1 encephalitis (BVE) in humans. Ferroptosis represents a newly recognized kind of programmed cell death that marked by iron overload and lipid peroxidation. Various viral infections are closely related to ferroptosis. However, the link between BoDV-1 infection and ferroptosis, as well as its role in BVE pathogenesis, remains inadequately understood. Herein, we used primary rat cortical neurons, human microglial HMC3 cells, and SpragueĆ¢Ā€Ā’Dawley rats as models. BoDV-1 infection induced ferroptosis, as ferroptosis characteristics were detected (iron overload, reactive oxygen species buildup, decreased antioxidant capacity, lipid peroxidation, and mitochondrial damage). Analysis via qRT-PCR and Western blot demonstrated that BoDV-1-induced ferroptosis was mediated through Nrf2/HO-1/SLC7a11/GPX4 antioxidant pathway suppression. Nrf2 downregulation was due to BoDV-1 infection promoting Nrf2 ubiquitination and degradation. Following BoDV-1-induced ferroptosis, the PTGS2/PGE2 signaling pathway was activated, and various intracellular lipid peroxidation products and damage-associated molecular patterns were released, contributing to BVE occurrence and progression. More importantly, inhibiting ferroptosis or the ubiquitinĆ¢Ā€Ā’proteasome system effectively alleviated BVE. Collectively, these findings demonstrate the interaction between BoDV-1 infection and ferroptosis and reveal BoDV-1-induced ferroptosis as an underlying pathogenic mechanism of BVE.


Subject(s)
Borna Disease , Borna disease virus , Ferroptosis , Lipid Peroxidation , NF-E2-Related Factor 2 , Neurons , Rats, Sprague-Dawley , Borna disease virus/physiology , Animals , Rats , Humans , Neurons/virology , Neurons/pathology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Borna Disease/virology , Borna Disease/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Microglia/virology , Microglia/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Cell Line , Encephalitis/virology , Encephalitis/pathology , Cells, Cultured
2.
J Gen Virol ; 103(12)2022 12.
Article in English | MEDLINE | ID: mdl-36748530

ABSTRACT

Borna disease virus 1 (BoDV-1) is a highly neurotropic RNA virus that can establish persistent infection in the central nervous system and cause cognitive dysfunction in neonatally infected rats. However, the mechanisms that lead to this cognitive impairment remain unclear. DNA double-strand breaks (DSBs) and their repair are associated with brain development and cognition. If DNA repair in the brain is reduced or delayed and DNA damage accumulates, abnormal cognitive function may result. We generated a rat model of BoDV-1 infection during the neonatal period and assessed behavioural changes using the open field test and Morris water maze. The levels of DSBs were determined by immunofluorescence and comet assays. Western blotting assessed proteins associated with DNA repair pathways. The results showed that BoDV-1 downregulated the ATR/Chk1 signalling pathway in the brain, impairing DNA damage repair and increasing the number of DSBs, which ultimately leads to cognitive dysfunction. Our findings suggest a molecular mechanism by which BoDV-1 interferes with DNA damage repair to cause learning and memory impairment. This provides a theoretical basis for elucidating BoDV-1-induced neurodevelopmental impairment.


Subject(s)
Borna Disease , Borna disease virus , DNA Breaks, Double-Stranded , Animals , Rats , Borna disease virus/physiology , Brain/metabolism , DNA Repair , Signal Transduction , Memory Disorders
3.
J Gen Virol ; 103(1)2022 01.
Article in English | MEDLINE | ID: mdl-35060474

ABSTRACT

Borna disease virus 1 (BoDV-1) is a highly neurotropic RNA virus which was recently demonstrated to cause deadly human encephalitis. Viruses can modulate microRNA expression, in turn modulating cellular immune responses and regulating viral replication. A previous study indicated that BoDV-1 infection down-regulated the expression of miR-505 in rats. However, the underlying mechanism of miR-505 during BoDV-1 infection remains unknown. In this study, we found that miR-505 can inhibit autophagy activation by down-regulating the expression of its target gene HMGB1, and ultimately inhibit the replication of BoDV-1. Specifically, we found that the expression of miR-505 was significantly down-regulated in rat primary neurons stably infected with BoDV-1. Overexpression of miR-505 can inhibit the replication of BoDV-1 in cells. Bioinformatics analysis and dual luciferase reporter gene detection confirmed that during BoDV-1 infection, the high-mobility group protein B1 (HMGB1) that mediates autophagy is the direct target gene of miR-505. The expression of HMGB1 was up-regulated after BoDV-1 infection, and overexpression of miR-505 could inhibit the expression of HMGB1. Autophagy-related detection found that after infection with BoDV-1, the expression of autophagy-related proteins and autophagy-related marker LC3 in neuronal cells was significantly up-regulated. Autophagy flow experiments and transmission electron microscopy also further confirmed that BoDV-1 infection activated HMGB1-mediated autophagy. Further regulating the expression of miR-505 found that overexpression of miR-505 significantly inhibited HMGB1-mediated autophagy. The discovery of this mechanism may provide new ideas and directions for the prevention and treatment of BoDV-1 infection in the future.


Subject(s)
Borna Disease/genetics , Borna Disease/virology , Borna disease virus/physiology , HMGB1 Protein/genetics , MicroRNAs/genetics , Animals , Autophagy , Borna Disease/metabolism , HEK293 Cells , HMGB1 Protein/metabolism , Humans , MicroRNAs/metabolism , Rats , Rats, Sprague-Dawley , Virus Replication
4.
J Gen Virol ; 102(7)2021 07.
Article in English | MEDLINE | ID: mdl-34227935

ABSTRACT

Members of the family Bornaviridae produce enveloped virions containing a linear negative-sense non-segmented RNA genome of about 9 kb. Bornaviruses are found in mammals, birds, reptiles and fish. The most-studied viruses with public health and veterinary impact are Borna disease virus 1 and variegated squirrel bornavirus 1, both of which cause fatal encephalitis in humans. Several orthobornaviruses cause neurological and intestinal disorders in birds, mostly parrots. Endogenous bornavirus-like sequences occur in the genomes of various animals. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Bornaviridae, which is available at ictv.global/report/bornaviridae.


Subject(s)
Borna disease virus/classification , Bornaviridae/classification , Animals , Borna Disease/virology , Borna disease virus/genetics , Borna disease virus/physiology , Borna disease virus/ultrastructure , Bornaviridae/genetics , Bornaviridae/physiology , Bornaviridae/ultrastructure , Genome, Viral , Host Specificity , Humans , Virion/ultrastructure , Virus Replication
5.
J Virol ; 94(6)2020 02 28.
Article in English | MEDLINE | ID: mdl-31852792

ABSTRACT

Cells sense pathogen-derived double-stranded RNA (dsRNA) as nonself. To avoid autoimmune activation by self dsRNA, cells utilize A-to-I editing by adenosine deaminase acting on RNA 1 (ADAR1) to disrupt dsRNA structures. Considering that viruses have evolved to exploit host machinery, A-to-I editing could benefit innate immune evasion by viruses. Borna disease virus (BoDV), a nuclear-replicating RNA virus, may require escape from nonself RNA-sensing and immune responses to establish persistent infection in the nucleus; however, the strategy by which BoDV evades nonself recognition is unclear. Here, we evaluated the involvement of ADARs in BoDV infection. The infection efficiency of BoDV was markedly decreased in both ADAR1 and ADAR2 knockdown cells at the early phase of infection. Microarray analysis using ADAR2 knockdown cells revealed that ADAR2 reduces immune responses even in the absence of infection. Knockdown of ADAR2 but not ADAR1 significantly reduced the spread and titer of BoDV in infected cells. Furthermore, ADAR2 knockout decreased the infection efficiency of BoDV, and overexpression of ADAR2 rescued the reduced infectivity in ADAR2 knockdown cells. However, the growth of influenza A virus, which causes acute infection in the nucleus, was not affected by ADAR2 knockdown. Moreover, ADAR2 bound to BoDV genomic RNA and induced A-to-G mutations in the genomes of persistently infected cells. We finally demonstrated that BoDV produced in ADAR2 knockdown cells induces stronger innate immune responses than those produced in wild-type cells. Taken together, our results suggest that BoDV utilizes ADAR2 to edit its genome to appear as "self" RNA in order to maintain persistent infection in the nucleus.IMPORTANCE Cells use the editing activity of adenosine deaminase acting on RNA proteins (ADARs) to prevent autoimmune responses induced by self dsRNA, but viruses can exploit this process to their advantage. Borna disease virus (BoDV), a nuclear-replicating RNA virus, must escape nonself RNA sensing by the host to establish persistent infection in the nucleus. We evaluated whether BoDV utilizes ADARs to prevent innate immune induction. ADAR2 plays a key role throughout the BoDV life cycle. ADAR2 knockdown reduced A-to-I editing of BoDV genomic RNA, leading to the induction of a strong innate immune response. These data suggest that BoDV exploits ADAR2 to edit nonself genomic RNA to appear as self RNA for innate immune evasion and establishment of persistent infection.


Subject(s)
Adenosine Deaminase/metabolism , Borna disease virus/physiology , Cell Nucleus/metabolism , Genome, Viral , RNA Editing , RNA, Viral/biosynthesis , RNA-Binding Proteins/metabolism , Adenosine Deaminase/genetics , Animals , Borna Disease/genetics , Borna Disease/metabolism , Cell Nucleus/genetics , Cell Nucleus/virology , Dogs , Humans , Madin Darby Canine Kidney Cells , RNA, Viral/genetics , RNA-Binding Proteins/genetics
6.
J Med Virol ; 93(11): 6163-6171, 2021 11.
Article in English | MEDLINE | ID: mdl-34260072

ABSTRACT

Borna disease virus (BoDV-1) can infect the hippocampus and limbic lobes of newborn rodents, causing cognitive deficits and abnormal behavior. Studies have found that neuroinflammation caused by viral infection in early life can affect brain development and impair learning and memory function, revealing the important role of neuroinflammation in cognitive impairment caused by viral infection. However, there is no research to explore the pathogenic mechanism of BoDV-1 in cognition from the direction of neuroinflammation.Ā We established a BoDV-1 infection model in rats, and tested the learning and memory impairment by Morris water maze (MWM) experiment. RNAseq was introduced to detect changes in the gene expression profile of BoDV-1 infection, focusing on inflammation factors and related signaling pathways.Ā BoDV-1 infection impairs the learning and memory of Sprague-Dawley rats in the MWM test and increases the expression of inflammatory cytokines in the hippocampus. RNAseq analysis found 986 differentially expressed genes (DEGs), of which 845 genes were upregulated and 141 genes were downregulated, and 28 genes were found to be enriched in the toll-like receptor (TLR) pathway. The expression of TLR4, MyD88, and IRF5 in the hippocampus was significantly changed in the BoDV-1 group.Ā Our results indicate that BoDV-1 infection stimulates TLR4/MyD88/IRF5 pathway activation, causing the release of downstream inflammatory factors, which leads to neuroinflammation in rats. Neuroinflammation may play a significant role in learning and memory impairment caused by BoDV-1 infection.


Subject(s)
Borna Disease/pathology , Borna disease virus/physiology , Interferon Regulatory Factors/metabolism , Memory/physiology , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 4/metabolism , Animals , Base Sequence , Borna Disease/virology , Disease Models, Animal , Hippocampus/metabolism , Inflammation/metabolism , Interferon Regulatory Factors/genetics , Maze Learning , Myeloid Differentiation Factor 88/genetics , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 4/genetics
7.
Scand J Immunol ; 93(1): e12974, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32910495

ABSTRACT

High expression of suppressors of cytokine signalling (SOCS) has been detected during various viral infections. As a negative feedback regulator, SOCS participates in the regulation of multiple signalling pathways. In this study, to study the related mechanism between SOCS and BDV and to explore the effect of SOCS on IFN pathways in nerve cells, downregulated of SOCS1/3 in oligodendroglial (OL) cells and OL cells persistently infected with BDV (OL/BDV) were constructed with RNA interference technology. An interferon inducer (poly I:C, PIC) and an IFN-α/Ɵ R1 antibody were used as stimulation in the SOCS1/3 low-expression cell models, qRT-PCR was used to detect type I IFN and BDV nucleic acid expression, Western blot was used to detect the expression of BDV P40 protein. After BDV acute infection with OL cells which with downregulated SOCS expression, the virus accounting was not detected, and the viral protein expression was lower than that of OL/BDV cells; the OL/BDV cells with downregulated SOCS expression had lower virus nucleic acid and protein expression than OL/BDV cells. Stimulated by IFN-α/Ɵ R1 antibody, the expression of type I interferon in OL/BDV cells decreased, and the content of BDV nucleic acid and protein increased, which was higher than that of OL/BDV cells. From the results, it was concluded that downregulating SOCS1/3 can inhibit the formation of acute BDV infection and virus replication in persistent BDV infection by promoting the expression of IFN-α/Ɵ and that SOCS can be used as a new target for antiviral therapy.


Subject(s)
Borna Disease/genetics , Borna Disease/virology , Borna disease virus/physiology , Gene Expression Regulation , Suppressor of Cytokine Signaling Proteins/genetics , Biomarkers , Borna Disease/metabolism , Cell Line , Cells, Cultured , Host-Pathogen Interactions , Humans , Interferon-alpha/genetics , Interferon-beta/genetics , RNA, Messenger/genetics , Suppressor of Cytokine Signaling Proteins/metabolism , Virus Replication
8.
Microbiol Immunol ; 65(11): 492-504, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34324219

ABSTRACT

Persistent intranuclear infection is an uncommon infection strategy among RNA viruses. However, Borna disease virus 1 (BoDV-1), a nonsegmented, negative-strand RNA virus, maintains viral infection in the cell nucleus by forming structured aggregates of viral ribonucleoproteins (vRNPs), and by tethering these vRNPs onto the host chromosomes. To better understand the nuclear infection strategy of BoDV-1, we determined the host protein interactors of the BoDV-1 large (L) protein. By proximity-dependent biotinylation, we identified several nuclear host proteins interacting with BoDV-1 L, one of which is TRMT112, a partner of several methyltransferases (MTases). TRMT112 binds with BoDV-1 L at the RNA-dependent RNA polymerase domain, together with BUD23, an 18S ribosomal RNA MTase and 40S ribosomal maturation factor. We then discovered that BUD23-TRMT112 mediates the chromosomal tethering of BoDV-1 vRNPs, and that the MTase activity is necessary in the tethering process. These findings provide us a better understanding on how nuclear host proteins assist the chromosomal tethering of BoDV-1, as well as new prospects of host-viral interactions for intranuclear infection strategy of orthobornaviruses.


Subject(s)
Borna disease virus , Methyltransferases/metabolism , Ribonucleoproteins/metabolism , Viral Proteins/metabolism , Virus Replication , Animals , Borna disease virus/genetics , Borna disease virus/physiology , Cell Nucleus , Chromosomes
9.
Proc Natl Acad Sci U S A ; 115(7): 1611-1616, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29378968

ABSTRACT

The analysis of the biology of neurotropic viruses, notably of their interference with cellular signaling, provides a useful tool to get further insight into the role of specific pathways in the control of behavioral functions. Here, we exploited the natural property of a viral protein identified as a major effector of behavioral disorders during infection. We used the phosphoprotein (P) of Borna disease virus, which acts as a decoy substrate for protein kinase C (PKC) when expressed in neurons and disrupts synaptic plasticity. By a lentiviral-based strategy, we directed the singled-out expression of P in the dentate gyrus of the hippocampus and we examined its impact on mouse behavior. Mice expressing the P protein displayed increased anxiety and impaired long-term memory in contextual and spatial memory tasks. Interestingly, these effects were dependent on P protein phosphorylation by PKC, as expression of a mutant form of P devoid of its PKC phosphorylation sites had no effect on these behaviors. We also revealed features of behavioral impairment induced by P protein expression but that were independent of its phosphorylation by PKC. Altogether, our findings provide insight into the behavioral correlates of viral infection, as well as into the impact of virus-mediated alterations of the PKC pathway on behavioral functions.


Subject(s)
Borna Disease/virology , Borna disease virus/physiology , Cognition Disorders/etiology , Hippocampus/virology , Memory, Long-Term/physiology , Phosphoproteins/metabolism , Protein Kinase C/metabolism , Viral Structural Proteins/metabolism , Animals , Borna Disease/metabolism , Borna Disease/pathology , Cells, Cultured , Cognition Disorders/metabolism , Cognition Disorders/pathology , Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Dentate Gyrus/virology , Hippocampus/metabolism , Hippocampus/pathology , Mice , Mutation , Neuronal Plasticity , Neurons/metabolism , Neurons/pathology , Neurons/virology , Phosphoproteins/genetics , Phosphorylation , Protein Kinase C/genetics , Viral Structural Proteins/genetics
10.
Cell Physiol Biochem ; 49(1): 381-394, 2018.
Article in English | MEDLINE | ID: mdl-30138929

ABSTRACT

BACKGROUND/AIMS: Borna disease virus 1 (BoDV-1) infection induces cognitive impairment in rodents. Emerging evidence has demonstrated that Chromatin remodeling through histone acetylation can regulate cognitive function. In the present study, we investigated the epigenetic regulation of chromatin that underlies BoDV-1-induced cognitive changes in the hippocampus. METHODS: Immunofluorescence assay was applied to detect BoDV-1 infection in hippocampal neurons and Sprague-Dawley rats models. The histone acetylation levels both in vivo and vitro were assessed by western blots. The acetylation-regulated genes were identified by ChIP-seq and verified by RT-qPCR. Cognitive functions were evaluated with Morris Water Maze test. In addition, Golgi staining, and electrophysiology were used to study changes in synaptic structure and function. RESULTS: BoDV-1 infection of hippocampal neurons significantly decreased H3K9 histone acetylation level and inhibited transcription of several synaptic genes, including postsynaptic density 95 (PSD95) and brain-derived neurotrophic factor (BDNF). Furthermore, BoDV-1 infection of Sprague Dawley rats disrupted synaptic plasticity and caused spatial memory impairment. These rats also exhibited dysregulated hippocampal H3K9 acetylation and decreased PSD95 and BDNF protein expression. Treatment with the HDAC inhibitor, suberanilohydroxamic acid (SAHA), attenuated the negative effects of BoDV-1. CONCLUSION: Our results demonstrate that regulation of H3K9 histone acetylation may play an important role in BoDV-1-induced memory impairment, whereas SAHA may confer protection against BoDV-1-induced cognitive impairments. This study finds important mechanism of BoDV-1 infection disturbing neuronal synaptic plasticity and inducing cognitive dysfunction from the perspective of histone modification.


Subject(s)
Borna Disease/pathology , Borna disease virus/physiology , Histones/metabolism , Memory/physiology , Acetylation/drug effects , Animals , Borna Disease/virology , Brain-Derived Neurotrophic Factor/metabolism , Cells, Cultured , Chromatin Immunoprecipitation , Disease Models, Animal , Disks Large Homolog 4 Protein/metabolism , Hydroxamic Acids/pharmacology , Maze Learning , Memory/drug effects , Neuronal Plasticity/genetics , Neurons/cytology , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Vorinostat
11.
PLoS Pathog ; 11(4): e1004859, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25923687

ABSTRACT

It is well established that persistent viral infection may impair cellular function of specialized cells without overt damage. This concept, when applied to neurotropic viruses, may help to understand certain neurologic and neuropsychiatric diseases. Borna disease virus (BDV) is an excellent example of a persistent virus that targets the brain, impairs neural functions without cell lysis, and ultimately results in neurobehavioral disturbances. Recently, we have shown that BDV infects human neural progenitor cells (hNPCs) and impairs neurogenesis, revealing a new mechanism by which BDV may interfere with brain function. Here, we sought to identify the viral proteins and molecular pathways that are involved. Using lentiviral vectors for expression of the bdv-p and bdv-x viral genes, we demonstrate that the phosphoprotein P, but not the X protein, diminishes human neurogenesis and, more particularly, GABAergic neurogenesis. We further reveal a decrease in pro-neuronal factors known to be involved in neuronal differentiation (ApoE, Noggin, TH and Scg10/Stathmin2), demonstrating that cellular dysfunction is associated with impairment of specific components of the molecular program that controls neurogenesis. Our findings thus provide the first evidence that a viral protein impairs GABAergic human neurogenesis, a process that is dysregulated in several neuropsychiatric disorders. They improve our understanding of the mechanisms by which a persistent virus may interfere with brain development and function in the adult.


Subject(s)
Borna disease virus/physiology , Down-Regulation , GABAergic Neurons/metabolism , Host-Pathogen Interactions , Neurogenesis , Phosphoproteins/metabolism , Viral Structural Proteins/metabolism , Active Transport, Cell Nucleus , Apolipoproteins E/antagonists & inhibitors , Apolipoproteins E/metabolism , Biomarkers/chemistry , Biomarkers/metabolism , Borna Disease/metabolism , Borna Disease/pathology , Borna Disease/virology , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/metabolism , Cell Proliferation , Cells, Cultured , France , GABAergic Neurons/cytology , GABAergic Neurons/pathology , GABAergic Neurons/virology , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/pathology , Human Embryonic Stem Cells/virology , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Phosphoproteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/toxicity , Stathmin , Tyrosine 3-Monooxygenase/antagonists & inhibitors , Tyrosine 3-Monooxygenase/metabolism , Viral Structural Proteins/genetics
12.
Virol J ; 14(1): 126, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28693611

ABSTRACT

BACKGROUND: Borna disease virus (BoDV), which has a negative-sense, single-stranded RNA genome, causes persistent infection in the cell nucleus. The nuclear export signal (NES) of the viral nucleoprotein (N) consisting of leucine at positions 128 and 131 and isoleucine at positions 133 and 136 overlaps with one of two predicted binding sites for the viral phosphoprotein (P). A previous study demonstrated that higher expression of BoDV-P inhibits nuclear export of N; however, the function of N NES in the interaction with P remains unclear. We examined the subcellular localization, viral polymerase activity, and P-binding ability of BoDV-N NES mutants. We also characterized a recombinant BoDV (rBoDV) harboring an NES mutation of N. RESULTS: BoDV-N with four alanine-substitutions in the leucine and isoleucine residues of the NES impaired its cytoplasmic localization and abolished polymerase activity and P-binding ability. Although an alanine-substitution at position 131 markedly enhanced viral polymerase activity as determined by a minigenome assay, rBoDV harboring this mutation showed expression of viral RNAs and proteins relative to that of wild-type rBoDV. CONCLUSIONS: Our results demonstrate that BoDV-N NES has a dual function in BoDV replication, i.e., nuclear export of N and an interaction with P, affecting viral polymerase activity in the nucleus.


Subject(s)
Borna disease virus/physiology , Nuclear Export Signals , Nucleoproteins/metabolism , Phosphoproteins/metabolism , Viral Structural Proteins/metabolism , Virus Replication , Active Transport, Cell Nucleus , DNA Mutational Analysis , HEK293 Cells , Humans , Mutant Proteins/genetics , Mutant Proteins/metabolism , Nucleoproteins/genetics , Protein Binding
13.
Proc Natl Acad Sci U S A ; 111(36): 13175-80, 2014 Sep 09.
Article in English | MEDLINE | ID: mdl-25157155

ABSTRACT

Animal genomes contain endogenous viral sequences, such as endogenous retroviruses and retrotransposons. Recently, we and others discovered that nonretroviral viruses also have been endogenized in many vertebrate genomes. Bornaviruses belong to the Mononegavirales and have left endogenous fragments, called "endogenous bornavirus-like elements" (EBLs), in the genomes of many mammals. The striking features of EBLs are that they contain relatively long ORFs which have high sequence homology to the extant bornavirus proteins. Furthermore, some EBLs derived from bornavirus nucleoprotein (EBLNs) have been shown to be transcribed as mRNA and probably are translated into proteins. These features lead us to speculate that EBLs may function as cellular coopted genes. An EBLN element in the genome of the thirteen-lined ground squirrel (Ictidomys tridecemlineatus), itEBLN, encodes an ORF with 77% amino acid sequence identity to the current bornavirus nucleoprotein. In this study, we cloned itEBLN from the ground squirrel genome and investigated its involvement in Borna disease virus (BDV) replication. Interestingly, itEBLN, but not a human EBLN, colocalized with the viral factory in the nucleus and appeared to affect BDV polymerase activity by being incorporated into the viral ribonucleoprotein. Our data show that, as do certain endogenous retroviruses, itEBLN potentially may inhibit infection by related exogenous viruses in vivo.


Subject(s)
Borna disease virus/physiology , Genome/genetics , Sciuridae/genetics , Sciuridae/virology , Virus Replication/genetics , Amino Acid Sequence , Animals , Base Sequence , Borna Disease/transmission , Borna Disease/virology , Chlorocebus aethiops , Conserved Sequence/genetics , DNA-Directed DNA Polymerase/metabolism , HEK293 Cells , Humans , Molecular Sequence Data , Protein Structure, Tertiary , Replicon/genetics , Ribonucleoproteins/metabolism , Transfection , Vero Cells , Viral Proteins/chemistry , Viral Proteins/metabolism
14.
J Virol ; 89(11): 5996-6008, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25810554

ABSTRACT

UNLABELLED: Understanding the modalities of interaction of neurotropic viruses with their target cells represents a major challenge that may improve our knowledge of many human neurological disorders for which viral origin is suspected. Borna disease virus (BDV) represents an ideal model to analyze the molecular mechanisms of viral persistence in neurons and its consequences for neuronal homeostasis. It is now established that BDV ensures its long-term maintenance in infected cells through a stable interaction of viral components with the host cell chromatin, in particular, with core histones. This has led to our hypothesis that such an interaction may trigger epigenetic changes in the host cell. Here, we focused on histone acetylation, which plays key roles in epigenetic regulation of gene expression, notably for neurons. We performed a comparative analysis of histone acetylation patterns of neurons infected or not infected by BDV, which revealed that infection decreases histone acetylation on selected lysine residues. We showed that the BDV phosphoprotein (P) is responsible for these perturbations, even when it is expressed alone independently of the viral context, and that this action depends on its phosphorylation by protein kinase C. We also demonstrated that BDV P inhibits cellular histone acetyltransferase activities. Finally, by pharmacologically manipulating cellular acetylation levels, we observed that inhibiting cellular acetyl transferases reduces viral replication in cell culture. Our findings reveal that manipulation of cellular epigenetics by BDV could be a means to modulate viral replication and thus illustrate a fascinating example of virus-host cell interaction. IMPORTANCE: Persistent DNA viruses often subvert the mechanisms that regulate cellular chromatin dynamics, thereby benefitting from the resulting epigenetic changes to create a favorable milieu for their latent and persistent states. Here, we reasoned that Borna disease virus (BDV), the only RNA virus known to durably persist in the nucleus of infected cells, notably neurons, might employ a similar mechanism. In this study, we uncovered a novel modality of virus-cell interaction in which BDV phosphoprotein inhibits cellular histone acetylation by interfering with histone acetyltransferase activities. Manipulation of cellular histone acetylation is accompanied by a modulation of viral replication, revealing a perfect adaptation of this "ancient" virus to its host that may favor neuronal persistence and limit cellular damage.


Subject(s)
Borna disease virus/physiology , Epigenesis, Genetic , Host-Pathogen Interactions , Neurons/virology , Phosphoproteins/metabolism , Viral Structural Proteins/metabolism , Virus Replication , Acetylation , Animals , Cells, Cultured , Histones/metabolism , Protein Processing, Post-Translational , Rats, Sprague-Dawley
15.
Nature ; 463(7277): 84-7, 2010 Jan 07.
Article in English | MEDLINE | ID: mdl-20054395

ABSTRACT

Retroviruses are the only group of viruses known to have left a fossil record, in the form of endogenous proviruses, and approximately 8% of the human genome is made up of these elements. Although many other viruses, including non-retroviral RNA viruses, are known to generate DNA forms of their own genomes during replication, none has been found as DNA in the germline of animals. Bornaviruses, a genus of non-segmented, negative-sense RNA virus, are unique among RNA viruses in that they establish persistent infection in the cell nucleus. Here we show that elements homologous to the nucleoprotein (N) gene of bornavirus exist in the genomes of several mammalian species, including humans, non-human primates, rodents and elephants. These sequences have been designated endogenous Borna-like N (EBLN) elements. Some of the primate EBLNs contain an intact open reading frame (ORF) and are expressed as mRNA. Phylogenetic analyses showed that EBLNs seem to have been generated by different insertional events in each specific animal family. Furthermore, the EBLN of a ground squirrel was formed by a recent integration event, whereas those in primates must have been formed more than 40 million years ago. We also show that the N mRNA of a current mammalian bornavirus, Borna disease virus (BDV), can form EBLN-like elements in the genomes of persistently infected cultured cells. Our results provide the first evidence for endogenization of non-retroviral virus-derived elements in mammalian genomes and give novel insights not only into generation of endogenous elements, but also into a role of bornavirus as a source of genetic novelty in its host.


Subject(s)
Bornaviridae/genetics , Genes, Viral/genetics , Genome/genetics , Mammals/genetics , Mammals/virology , Virus Integration/genetics , Amino Acid Sequence , Animals , Borna disease virus/genetics , Borna disease virus/physiology , Bornaviridae/physiology , Cell Line , Conserved Sequence/genetics , Evolution, Molecular , Host-Pathogen Interactions/genetics , Humans , Models, Genetic , Molecular Sequence Data , Open Reading Frames/genetics , Phylogeny , Reverse Transcription , Time Factors
16.
BMC Vet Res ; 12(1): 253, 2016 Nov 14.
Article in English | MEDLINE | ID: mdl-27842550

ABSTRACT

BACKGROUND: Borna disease virus is a neurotropic pathogen and infects the central nervous system. This virus infected a variety of animal species including cows. The most of cows infected with Borna disease virus 1 (BoDV-1) exhibit subclinical infection without any neurological symptoms throughout their lifetime. We previously reported on the low conception rates in-seropositive cows. Interferon-τ (IFN-τ) plays an important role in stable fertilization, and is produced from the fetal side following embryo growth at 15-40 days of pregnancy. IFN-τ induces the expression of interferon-stimulated gene (ISG) 15 and Mx2 in peripheral blood mononuclear cells (PBMCs). To understand the embryo growth and maternal reaction during early pregnancy in cows with BoDV-1 infection, we aimed to assess the gene expression of ISG15 and Mx2 from PBMCs in BoDV-1-seropositive cows. RESULTS: None of the cows showed any clinical and neurological symptoms. Among the cows that conceived, the expressions of the ISG15 and Mx2 genes were greater in the BoDV-1-seropositive cows than in the BoDV-1-seronegative cows; the difference was significant between the cows that conceived and those that did not (P < 0.05). CONCLUSIONS: The expression of ISG15 and Mx2 genes during early pregnancy significantly increased in the BoDV-1-seropositive cows and may be important for the maintenance of stable pregnancy in BoDV-1-infected cows. In contrast, the gene expression levels of ISG15 and Mx2 did not significantly increase during early pregnancy in BoDV-1-seronegative cows. Thus, BoDV-1 infection may lead to instability in the maintenance of early pregnancy by interfering with INF-τ production.


Subject(s)
Borna Disease/genetics , Borna Disease/immunology , Cattle Diseases/genetics , Cattle Diseases/immunology , Cytokines/genetics , Gene Expression Regulation/immunology , Myxovirus Resistance Proteins/genetics , Animals , Antibodies, Viral/blood , Borna disease virus/physiology , Cattle , Female , Interferons/metabolism , Leukocytes, Mononuclear/metabolism , Pregnancy
17.
Proc Natl Acad Sci U S A ; 110(5): 1899-904, 2013 Jan 29.
Article in English | MEDLINE | ID: mdl-23319640

ABSTRACT

Infection of newborn rats with Borne disease virus (BDV) results in selective degeneration of granule cell neurons of the dentate gyrus (DG). To study cellular countermechanisms that might prevent this pathology, we screened for rat strains resistant to this BDV-induced neuronal degeneration. To this end, we infected hippocampal slice cultures of different rat strains with BDV and analyzed for the preservation of the DG. Whereas infected cultures of five rat strains, including Lewis (LEW) rats, exhibited a disrupted DG cytoarchitecture, slices of three other rat strains, including Sprague-Dawley (SD), were unaffected. However, efficiency of viral replication was comparable in susceptible and resistant cultures. Moreover, these rat strain-dependent differences in vulnerability were replicated in vivo in neonatally infected LEW and SD rats. Intriguingly, conditioned media from uninfected cultures of both LEW and SD rats could prevent BDV-induced DG damage in infected LEW hippocampal cultures, whereas infection with BDV suppressed the availability of these factors from LEW but not in SD hippocampal cultures. To gain further insights into the genetic basis for this rat strain-dependent susceptibility, we analyzed DG granule cell survival in BDV-infected cultures of hippocampal neurons derived from the F1 and F2 offspring of the crossing of SD and LEW rats. Genome-wide association analysis revealed one resistance locus on chromosome (chr) 6q16 in SD rats and, surprisingly, a locus on chr3q21-23 that was associated with susceptibility. Thus, BDV-induced neuronal degeneration is dependent on the host genetic background and is prevented by soluble protective factors in the disease-resistant SD rat strain.


Subject(s)
Borna disease virus/physiology , Dentate Gyrus/virology , Nerve Degeneration/virology , Neurons/virology , Animals , Animals, Newborn , Biological Factors/chemistry , Biological Factors/pharmacology , Brain-Derived Neurotrophic Factor/pharmacology , Cell Survival/drug effects , Chromosome Mapping , Chromosomes, Mammalian/genetics , Culture Media, Conditioned/chemistry , Culture Media, Conditioned/pharmacology , Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Disease Resistance/genetics , Female , Hippocampus/metabolism , Hippocampus/pathology , Hippocampus/virology , Host-Pathogen Interactions , Male , Nerve Degeneration/genetics , Nerve Degeneration/prevention & control , Neurons/metabolism , Neurons/pathology , Polymorphism, Single Nucleotide , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Solubility , Species Specificity , Tissue Culture Techniques
18.
Arch Virol ; 159(8): 1941-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24573218

ABSTRACT

Borna disease virus (BDV) is a non-cytolytic, neurotropic RNA virus that can infect many vertebrate species, including humans. To date, BDV infection has been reported in a range of animal species across a broad global geographic distribution. However, a systematic epidemiological survey of BDV infection in domesticated animals in China has yet to be performed. In current study, BDV RNA and antibodies in 2353 blood samples from apparently healthy animals of eight species (horse, donkey, dog, pig, rabbit, cattle, goat, sheep) from three areas in western China (Xinjiang province, Chongqing municipality, and Ningxia province) were assayed using reverse transcription qPCR (RT-qPCR) and ELISA assay. Brain tissue samples from a portion of the BDV RNA- and/or antibody-positive animals were subjected to RT-qPCR and western blotting. As a result, varying prevalence of BDV antibodies and/or RNA was demonstrated in various animal species from three areas, ranging from 4.4 % to 20.0 %. Detection of BDV RNA and/or antibodies in Chongqing pigs (9.2 %) provided the first known evidence of BDV infection in this species. Not all brain tissue samples from animals whose blood was BDV RNA and/or antibody positive contained BDV RNA and protein. This study provides evidence that BDV infection among healthy domestic animal species is more widespread in western China than previously believed.


Subject(s)
Animals, Domestic/virology , Borna Disease/virology , Borna disease virus/physiology , Animals , Antibodies, Viral/blood , Borna Disease/blood , Borna Disease/diagnosis , Borna Disease/epidemiology , Borna disease virus/genetics , Borna disease virus/immunology , Borna disease virus/isolation & purification , Cattle , China/epidemiology , Dogs , Equidae , Goats , Horses , Rabbits , Sheep , Swine
19.
Cell Mol Life Sci ; 70(22): 4399-410, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23793543

ABSTRACT

Borna disease virus (BDV) persistently infects neurons of the central nervous system of various hosts, including rats. Since type I IFN-mediated antiviral response efficiently blocks BDV replication in primary rat embryo fibroblasts, it has been speculated that BDV is not effectively sensed by the host innate immune system in the nervous system. To test this assumption, organotypical rat hippocampal slice cultures were infected with BDV for up to 4 weeks. This resulted in the secretion of IFN and the up-regulation of IFN-stimulated genes. Using the rat Mx protein as a specific marker for IFN-induced gene expression, astrocytes and microglial cells were found to be Mx positive, whereas neurons, the major cell type in which BDV is replicating, lacked detectable levels of Mx protein. In uninfected cultures, neurons also remained Mx negative even after treatment with high concentrations of IFN-α. This non-responsiveness correlated with a lack of detectable nuclear translocation of both pSTAT1 and pSTAT2 in these cells. Consistently, neuronal dissemination of BDV was not prevented by treatment with IFN-α. These data suggest that the poor innate immune response in rat neurons renders this cell type highly susceptible to BDV infection even in the presence of exogenous IFN-α. Intriguingly, in contrast to rat neurons, IFN-α treatment of mouse neurons resulted in the up-regulation of Mx proteins and block of BDV replication, indicating species-specific differences in the type I IFN response of neurons between mice and rats.


Subject(s)
Borna Disease/immunology , Borna disease virus/physiology , Immunity, Innate/physiology , Neurons/metabolism , Animals , Astrocytes/cytology , Astrocytes/metabolism , Borna Disease/metabolism , Borna Disease/virology , Hippocampus/cytology , Hippocampus/metabolism , Interferon-alpha/pharmacology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microglia/cytology , Microglia/metabolism , Myxovirus Resistance Proteins/metabolism , Neurons/cytology , Neurons/virology , Phosphorylation , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , Up-Regulation/drug effects , Virus Replication
20.
Int J Mol Sci ; 15(12): 21825-39, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25431926

ABSTRACT

Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) is the most commonly-used technique to identify gene expression profiles. The selection of stably expressed reference genes is a prerequisite to properly evaluating gene expression. Here, the suitability of commonly-used reference genes in normalizing RT-qPCR assays of mRNA expression in cultured rat cortical neurons infected with Borna disease virus (BDV) was assessed. The expressions of eight commonly-used reference genes were comparatively analyzed in BDV-infected rat cortical neurons and non-infected control neurons mainly across 9 and 12 days post-infection. These reference genes were validated by RT-qPCR and separately ranked by four statistical algorithms: geNorm, NormFinder, BestKeeper and the comparative delta-Ct method. Then, the RankAggreg package was used to construct consensus rankings. ARBP was found to be the most stable internal control gene at Day 9, and ACTB at Day 12. As the assessment of the validity of the selected reference genes confirms the suitability of applying a combination of the two most stable references genes, combining the two most stable genes for normalization of RT-qPCR studies in BDV-infected rat cortical neurons is recommended at each time point. This study can contribute to improving BDV research by providing the means by which to obtain more reliable and accurate gene expression measurements.


Subject(s)
Borna Disease/genetics , Borna Disease/virology , Borna disease virus/physiology , Cerebral Cortex/pathology , Neurons/virology , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Fluorescent Antibody Technique , Gene Expression Regulation , Neurons/metabolism , Neurons/pathology , Rats, Sprague-Dawley , Reference Standards , Reproducibility of Results , Software
SELECTION OF CITATIONS
SEARCH DETAIL