Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Nature ; 616(7956): 384-389, 2023 04.
Article in English | MEDLINE | ID: mdl-37020015

ABSTRACT

The widespread TnpB proteins of IS200/IS605 transposon family have recently emerged as the smallest RNA-guided nucleases capable of targeted genome editing in eukaryotic cells1,2. Bioinformatic analysis identified TnpB proteins as the likely predecessors of Cas12 nucleases3-5, which along with Cas9 are widely used for targeted genome manipulation. Whereas Cas12 family nucleases are well characterized both biochemically and structurally6, the molecular mechanism of TnpB remains unknown. Here we present the cryogenic-electron microscopy structures of the Deinococcus radiodurans TnpB-reRNA (right-end transposon element-derived RNA) complex in DNA-bound and -free forms. The structures reveal the basic architecture of TnpB nuclease and the molecular mechanism for DNA target recognition and cleavage that is supported by biochemical experiments. Collectively, these results demonstrate that TnpB represents the minimal structural and functional core of the Cas12 protein family and provide a framework for developing TnpB-based genome editing tools.


Subject(s)
CRISPR-Associated Proteins , DNA Transposable Elements , Deinococcus , Endonucleases , Gene Editing , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/classification , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/ultrastructure , CRISPR-Cas Systems/genetics , Cryoelectron Microscopy , Deinococcus/enzymology , Deinococcus/genetics , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA/ultrastructure , DNA Transposable Elements/genetics , Endonucleases/chemistry , Endonucleases/classification , Endonucleases/metabolism , Endonucleases/ultrastructure , Evolution, Molecular , Gene Editing/methods , RNA, Guide, CRISPR-Cas Systems
2.
Nucleic Acids Res ; 52(D1): D419-D425, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37889074

ABSTRACT

Anti-prokaryotic immune system (APIS) proteins, typically encoded by phages, prophages, and plasmids, inhibit prokaryotic immune systems (e.g. restriction modification, toxin-antitoxin, CRISPR-Cas). A growing number of APIS genes have been characterized and dispersed in the literature. Here we developed dbAPIS (https://bcb.unl.edu/dbAPIS), as the first literature curated data repository for experimentally verified APIS genes and their associated protein families. The key features of dbAPIS include: (i) experimentally verified APIS genes with their protein sequences, functional annotation, PDB or AlphaFold predicted structures, genomic context, sequence and structural homologs from different microbiome/virome databases; (ii) classification of APIS proteins into sequence-based families and construction of hidden Markov models (HMMs); (iii) user-friendly web interface for data browsing by the inhibited immune system types or by the hosts, and functions for searching and batch downloading of pre-computed data; (iv) Inclusion of all types of APIS proteins (except for anti-CRISPRs) that inhibit a variety of prokaryotic defense systems (e.g. RM, TA, CBASS, Thoeris, Gabija). The current release of dbAPIS contains 41 verified APIS proteins and ∼4400 sequence homologs of 92 families and 38 clans. dbAPIS will facilitate the discovery of novel anti-defense genes and genomic islands in phages, by providing a user-friendly data repository and a web resource for an easy homology search against known APIS proteins.


Subject(s)
CRISPR-Associated Proteins , DNA Restriction-Modification Enzymes , Databases, Genetic , Toxin-Antitoxin Systems , Bacteriophages/genetics , Genome , Genomics , DNA Restriction-Modification Enzymes/classification , DNA Restriction-Modification Enzymes/genetics , Toxin-Antitoxin Systems/genetics , CRISPR-Associated Proteins/classification , CRISPR-Associated Proteins/genetics , Internet Use
3.
Nucleic Acids Res ; 52(D1): D590-D596, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37889041

ABSTRACT

CRISPR-Cas enzymes enable RNA-guided bacterial immunity and are widely used for biotechnological applications including genome editing. In particular, the Class 2 CRISPR-associated enzymes (Cas9, Cas12 and Cas13 families), have been deployed for numerous research, clinical and agricultural applications. However, the immense genetic and biochemical diversity of these proteins in the public domain poses a barrier for researchers seeking to leverage their activities. We present CasPEDIA (http://caspedia.org), the Cas Protein Effector Database of Information and Assessment, a curated encyclopedia that integrates enzymatic classification for hundreds of different Cas enzymes across 27 phylogenetic groups spanning the Cas9, Cas12 and Cas13 families, as well as evolutionarily related IscB and TnpB proteins. All enzymes in CasPEDIA were annotated with a standard workflow based on their primary nuclease activity, target requirements and guide-RNA design constraints. Our functional classification scheme, CasID, is described alongside current phylogenetic classification, allowing users to search related orthologs by enzymatic function and sequence similarity. CasPEDIA is a comprehensive data portal that summarizes and contextualizes enzymatic properties of widely used Cas enzymes, equipping users with valuable resources to foster biotechnological development. CasPEDIA complements phylogenetic Cas nomenclature and enables researchers to leverage the multi-faceted nucleic-acid targeting rules of diverse Class 2 Cas enzymes.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , Databases, Genetic , Endodeoxyribonucleases , CRISPR-Cas Systems/genetics , Phylogeny , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/classification , CRISPR-Associated Proteins/genetics , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/classification , Endodeoxyribonucleases/genetics , Encyclopedias as Topic
4.
Nature ; 566(7743): 218-223, 2019 02.
Article in English | MEDLINE | ID: mdl-30718774

ABSTRACT

The RNA-guided CRISPR-associated (Cas) proteins Cas9 and Cas12a provide adaptive immunity against invading nucleic acids, and function as powerful tools for genome editing in a wide range of organisms. Here we reveal the underlying mechanisms of a third, fundamentally distinct RNA-guided genome-editing platform named CRISPR-CasX, which uses unique structures for programmable double-stranded DNA binding and cleavage. Biochemical and in vivo data demonstrate that CasX is active for Escherichia coli and human genome modification. Eight cryo-electron microscopy structures of CasX in different states of assembly with its guide RNA and double-stranded DNA substrates reveal an extensive RNA scaffold and a domain required for DNA unwinding. These data demonstrate how CasX activity arose through convergent evolution to establish an enzyme family that is functionally separate from both Cas9 and Cas12a.


Subject(s)
CRISPR-Associated Proteins/classification , CRISPR-Associated Proteins/ultrastructure , CRISPR-Cas Systems/genetics , Gene Editing , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/metabolism , Cryoelectron Microscopy , DNA/chemistry , DNA/metabolism , DNA/ultrastructure , DNA Cleavage , Escherichia coli/genetics , Evolution, Molecular , Gene Silencing , Genome, Bacterial/genetics , Genome, Human/genetics , Humans , Models, Molecular , Nucleic Acid Conformation , Protein Domains , RNA, Guide, Kinetoplastida/metabolism
5.
Proc Natl Acad Sci U S A ; 119(28): e2118260119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35763567

ABSTRACT

Type VI CRISPR-Cas systems have been repurposed for various applications such as gene knockdown, viral interference, and diagnostics. However, the identification and characterization of thermophilic orthologs will expand and unlock the potential of diverse biotechnological applications. Herein, we identified and characterized a thermostable ortholog of the Cas13a family from the thermophilic organism Thermoclostridium caenicola (TccCas13a). We show that TccCas13a has a close phylogenetic relation to the HheCas13a ortholog from the thermophilic bacterium Herbinix hemicellulosilytica and shares several properties such as thermostability and inability to process its own pre-CRISPR RNA. We demonstrate that TccCas13a possesses robust cis and trans activities at a broad temperature range of 37 to 70 °C, compared with HheCas13a, which has a more limited range and lower activity. We harnessed TccCas13a thermostability to develop a sensitive, robust, rapid, and one-pot assay, named OPTIMA-dx, for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. OPTIMA-dx exhibits no cross-reactivity with other viruses and a limit of detection of 10 copies/µL when using a synthetic SARS-CoV-2 genome. We used OPTIMA-dx for SARS-CoV-2 detection in clinical samples, and our assay showed 95% sensitivity and 100% specificity compared with qRT-PCR. Furthermore, we demonstrated that OPTIMA-dx is suitable for multiplexed detection and is compatible with the quick extraction protocol. OPTIMA-dx exhibits critical features that enable its use at point of care (POC). Therefore, we developed a mobile phone application to facilitate OPTIMA-dx data collection and sharing of patient sample results. This work demonstrates the power of CRISPR-Cas13 thermostable enzymes in enabling key applications in one-pot POC diagnostics and potentially in transcriptome engineering, editing, and therapies.


Subject(s)
Bacterial Proteins , COVID-19 , CRISPR-Associated Proteins , Clostridiales , Endodeoxyribonucleases , Point-of-Care Testing , SARS-CoV-2 , Bacterial Proteins/chemistry , Bacterial Proteins/classification , Bacterial Proteins/genetics , Biotechnology , COVID-19/diagnosis , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/classification , CRISPR-Associated Proteins/genetics , Clostridiales/enzymology , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/classification , Endodeoxyribonucleases/genetics , Enzyme Stability , Hot Temperature , Humans , Phylogeny , SARS-CoV-2/isolation & purification
6.
Nature ; 562(7726): 277-280, 2018 10.
Article in English | MEDLINE | ID: mdl-30232454

ABSTRACT

The CRISPR system provides adaptive immunity against mobile genetic elements in prokaryotes, using small CRISPR RNAs that direct effector complexes to degrade invading nucleic acids1-3. Type III effector complexes were recently demonstrated to synthesize a novel second messenger, cyclic oligoadenylate, on binding target RNA4,5. Cyclic oligoadenylate, in turn, binds to and activates ribonucleases and other factors-via a CRISPR-associated Rossman-fold domain-and thereby induces in the cell an antiviral state that is important for immunity. The mechanism of the 'off-switch' that resets the system is not understood. Here we identify the nuclease that degrades these cyclic oligoadenylate ring molecules. This 'ring nuclease' is itself a protein of the CRISPR-associated Rossman-fold family, and has a metal-independent mechanism that cleaves cyclic tetraadenylate rings to generate linear diadenylate species and switches off the antiviral state. The identification of ring nucleases adds an important insight to the CRISPR system.


Subject(s)
Adenine Nucleotides/metabolism , CRISPR-Associated Proteins/antagonists & inhibitors , CRISPR-Associated Proteins/classification , CRISPR-Cas Systems/genetics , Endoribonucleases/chemistry , Endoribonucleases/metabolism , Oligoribonucleotides/metabolism , Sulfolobus solfataricus/enzymology , CRISPR-Associated Proteins/metabolism , Endoribonucleases/genetics , Endoribonucleases/isolation & purification , Kinetics , Models, Molecular , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Second Messenger Systems , Sulfolobus solfataricus/genetics
7.
Nucleic Acids Res ; 49(W1): W125-W130, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34133710

ABSTRACT

CRISPR-Cas systems are adaptive immune systems in prokaryotes, providing resistance against invading viruses and plasmids. The identification of CRISPR loci is currently a non-standardized, ambiguous process, requiring the manual combination of multiple tools, where existing tools detect only parts of the CRISPR-systems, and lack quality control, annotation and assessment capabilities of the detected CRISPR loci. Our CRISPRloci server provides the first resource for the prediction and assessment of all possible CRISPR loci. The server integrates a series of advanced Machine Learning tools within a seamless web interface featuring: (i) prediction of all CRISPR arrays in the correct orientation; (ii) definition of CRISPR leaders for each locus; and (iii) annotation of cas genes and their unambiguous classification. As a result, CRISPRloci is able to accurately determine the CRISPR array and associated information, such as: the Cas subtypes; cassette boundaries; accuracy of the repeat structure, orientation and leader sequence; virus-host interactions; self-targeting; as well as the annotation of cas genes, all of which have been missing from existing tools. This annotation is presented in an interactive interface, making it easy for scientists to gain an overview of the CRISPR system in their organism of interest. Predictions are also rendered in GFF format, enabling in-depth genome browser inspection. In summary, CRISPRloci constitutes a full suite for CRISPR-Cas system characterization that offers annotation quality previously available only after manual inspection.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Molecular Sequence Annotation , Software , CRISPR-Associated Proteins/classification , CRISPR-Associated Proteins/genetics , Machine Learning
8.
Nucleic Acids Res ; 48(18): 10470-10478, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32960267

ABSTRACT

Prokaryotic CRISPR-Cas immune systems are classified into six types based on their effector complexes which cleave dsDNA specifically (types I, II and V), ssRNA exclusively (type VI) or both ssRNA via a ruler mechanism and ssDNA unspecifically (type III). To date, no specific cleavage of ssDNA target has been reported for CRISPR-Cas. Here, we demonstrate dual dsDNA and ssDNA cleavage activities of a subtype I-D system which carries a type III Cas10-like large subunit, Cas10d. In addition to a specific dsDNA cleavage activity dependent on the HD domain of Cas10d, the helicase Cas3' and a compatible protospacer adjacent motif (PAM), the subtype I-D effector complex can cleave ssDNA that is complementary in sequence to the crRNA. Significantly, the ssDNA cleavage sites occur at 6-nt intervals and the cleavage is catalysed by the backbone subunit Csc2 (Cas7), similar to the periodic cleavage of ssRNA by the backbone subunit of type III effectors. The typical type I cleavage of dsDNA combined with the exceptional 6-nt spaced cleavage of ssDNA and the presence of a type III like large subunit provide strong evidence for the subtype I-D system being an evolutionary intermediate between type I and type III CRISPR-Cas systems.


Subject(s)
CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems/genetics , DNA/genetics , CRISPR-Associated Proteins/classification , CRISPR-Cas Systems/immunology , DNA/immunology , DNA Helicases/genetics , DNA, Single-Stranded/genetics , RNA, Bacterial/genetics , RNA, Double-Stranded/genetics
9.
Nucleic Acids Res ; 48(10): 5624-5638, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32329776

ABSTRACT

CRISPR-Cas systems comprise diverse adaptive immune systems in prokaryotes whose RNA-directed nucleases have been co-opted for various technologies. Recent efforts have focused on expanding the number of known CRISPR-Cas subtypes to identify nucleases with novel properties. However, the functional diversity of nucleases within each subtype remains poorly explored. Here, we used cell-free transcription-translation systems and human cells to characterize six Cas12a single-effector nucleases from the V-A subtype, including nucleases sharing high sequence identity. While these nucleases readily utilized each other's guide RNAs, they exhibited distinct PAM profiles and apparent targeting activities that did not track based on phylogeny. In particular, two Cas12a nucleases encoded by Prevotella ihumii (PiCas12a) and Prevotella disiens (PdCas12a) shared over 95% amino-acid identity yet recognized distinct PAM profiles, with PiCas12a but not PdCas12a accommodating multiple G's in PAM positions -2 through -4 and T in position -1. Mutational analyses transitioning PiCas12a to PdCas12a resulted in PAM profiles distinct from either nuclease, allowing more flexible editing in human cells. Cas12a nucleases therefore can exhibit widely varying properties between otherwise related orthologs, suggesting selective pressure to diversify PAM recognition and supporting expansion of the CRISPR toolbox through ortholog mining and PAM engineering.


Subject(s)
Bacterial Proteins/metabolism , CRISPR-Associated Proteins/metabolism , Endodeoxyribonucleases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/classification , Bacterial Proteins/genetics , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/classification , CRISPR-Associated Proteins/genetics , DNA Cleavage , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/classification , Endodeoxyribonucleases/genetics , HEK293 Cells , Humans , Mutation , Phylogeny , Prevotella/enzymology , Protein Biosynthesis , Protein Domains , Transcription, Genetic
10.
Nucleic Acids Res ; 42(4): 2448-59, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24319142

ABSTRACT

The CRISPR (clusters of regularly interspaced short palindromic repeats)-Cas adaptive immune system is an important defense system in bacteria, providing targeted defense against invasions of foreign nucleic acids. CRISPR-Cas systems consist of CRISPR loci and cas (CRISPR-associated) genes: sequence segments of invaders are incorporated into host genomes at CRISPR loci to generate specificity, while adjacent cas genes encode proteins that mediate the defense process. We pursued an integrated approach to identifying putative cas genes from genomes and metagenomes, combining similarity searches with genomic neighborhood analysis. Application of our approach to bacterial genomes and human microbiome datasets allowed us to significantly expand the collection of cas genes: the sequence space of the Cas9 family, the key player in the recently engineered RNA-guided platforms for genome editing in eukaryotes, is expanded by at least two-fold with metagenomic datasets. We found genes in cas loci encoding other functions, for example, toxins and antitoxins, confirming the recently discovered potential of coupling between adaptive immunity and the dormancy/suicide systems. We further identified 24 novel Cas families; one novel family contains 20 proteins, all identified from the human microbiome datasets, illustrating the importance of metagenomics projects in expanding the diversity of cas genes.


Subject(s)
CRISPR-Associated Proteins/genetics , Metagenome , CRISPR-Associated Proteins/classification , CRISPR-Cas Systems , Feces/microbiology , Genes, Bacterial , Genome, Bacterial , Humans , Metagenomics/methods , Microbiota , Mouth/microbiology
11.
Nucleic Acids Res ; 42(10): 6091-105, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24728998

ABSTRACT

The CRISPR-Cas systems of archaeal and bacterial adaptive immunity are classified into three types that differ by the repertoires of CRISPR-associated (cas) genes, the organization of cas operons and the structure of repeats in the CRISPR arrays. The simplest among the CRISPR-Cas systems is type II in which the endonuclease activities required for the interference with foreign deoxyribonucleic acid (DNA) are concentrated in a single multidomain protein, Cas9, and are guided by a co-processed dual-tracrRNA:crRNA molecule. This compact enzymatic machinery and readily programmable site-specific DNA targeting make type II systems top candidates for a new generation of powerful tools for genomic engineering. Here we report an updated census of CRISPR-Cas systems in bacterial and archaeal genomes. Type II systems are the rarest, missing in archaea, and represented in ∼ 5% of bacterial genomes, with an over-representation among pathogens and commensals. Phylogenomic analysis suggests that at least three cas genes, cas1, cas2 and cas4, and the CRISPR repeats of the type II-B system were acquired via recombination with a type I CRISPR-Cas locus. Distant homologs of Cas9 were identified among proteins encoded by diverse transposons, suggesting that type II CRISPR-Cas evolved via recombination of mobile nuclease genes with type I loci.


Subject(s)
CRISPR-Associated Proteins/classification , CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems , Evolution, Molecular , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/metabolism , Endonucleases/metabolism , Genome, Archaeal , Genome, Bacterial , Phylogeny
12.
Nucleic Acids Res ; 42(4): 2577-90, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24270795

ABSTRACT

The CRISPR-Cas-derived RNA-guided Cas9 endonuclease is the key element of an emerging promising technology for genome engineering in a broad range of cells and organisms. The DNA-targeting mechanism of the type II CRISPR-Cas system involves maturation of tracrRNA:crRNA duplex (dual-RNA), which directs Cas9 to cleave invading DNA in a sequence-specific manner, dependent on the presence of a Protospacer Adjacent Motif (PAM) on the target. We show that evolution of dual-RNA and Cas9 in bacteria produced remarkable sequence diversity. We selected eight representatives of phylogenetically defined type II CRISPR-Cas groups to analyze possible coevolution of Cas9 and dual-RNA. We demonstrate that these two components are interchangeable only between closely related type II systems when the PAM sequence is adjusted to the investigated Cas9 protein. Comparison of the taxonomy of bacterial species that harbor type II CRISPR-Cas systems with the Cas9 phylogeny corroborates horizontal transfer of the CRISPR-Cas loci. The reported collection of dual-RNA:Cas9 with associated PAMs expands the possibilities for multiplex genome editing and could provide means to improve the specificity of the RNA-programmable Cas9 tool.


Subject(s)
CRISPR-Associated Proteins/classification , CRISPR-Associated Proteins/metabolism , Endodeoxyribonucleases/classification , Endodeoxyribonucleases/metabolism , RNA/metabolism , Bacteria/enzymology , CRISPR-Associated Proteins/chemistry , CRISPR-Cas Systems , Catalytic Domain , DNA/chemistry , DNA/metabolism , DNA Cleavage , Endodeoxyribonucleases/chemistry , Nucleotide Motifs , Phylogeny , RNA/chemistry , Ribonuclease III/metabolism , Streptococcus pyogenes/enzymology
13.
RNA Biol ; 11(2): 156-67, 2014.
Article in English | MEDLINE | ID: mdl-24531374

ABSTRACT

CRISPR adaptive immune systems were analyzed for all available completed genomes of archaea, which included representatives of each of the main archaeal phyla. Initially, all proteins encoded within, and proximal to, CRISPR-cas loci were clustered and analyzed using a profile-profile approach. Then cas genes were assigned to gene cassettes and to functional modules for adaptation and interference. CRISPR systems were then classified primarily on the basis of their concatenated Cas protein sequences and gene synteny of the interference modules. With few exceptions, they could be assigned to the universal Type I or Type III systems. For Type I, subtypes I-A, I-B, and I-D dominate but the data support the division of subtype I-B into two subtypes, designated I-B and I-G. About 70% of the Type III systems fall into the universal subtypes III-A and III-B but the remainder, some of which are phyla-specific, diverge significantly in Cas protein sequences, and/or gene synteny, and they are classified separately. Furthermore, a few CRISPR systems that could not be assigned to Type I or Type III are categorized as variant systems. Criteria are presented for assigning newly sequenced archaeal CRISPR systems to the different subtypes. Several accessory proteins were identified that show a specific gene linkage, especially to Type III interference modules, and these may be cofunctional with the CRISPR systems. Evidence is presented for extensive exchange having occurred between adaptation and interference modules of different archaeal CRISPR systems, indicating the wide compatibility of the functionally diverse interference complexes with the relatively conserved adaptation modules.


Subject(s)
Archaea/immunology , Clustered Regularly Interspaced Short Palindromic Repeats , Adaptation, Physiological , Archaea/classification , CRISPR-Associated Proteins/classification , CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems , DNA, Archaeal , Evolution, Molecular , Genes, Archaeal , Genome, Archaeal , Phylogeny , Sequence Analysis, DNA
14.
J Mol Biol ; 436(6): 168448, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38266982

ABSTRACT

Among the diverse prokaryotic adaptive immunity mechanisms, the Type III CRISPR-Cas systems are the most complex. The multisubunit Type III effectors recognize RNA targets complementary to CRISPR RNAs (crRNAs). Target recognition causes synthesis of cyclic oligoadenylates that activate downstream auxiliary effectors, which affect cell physiology in complex and poorly understood ways. Here, we studied the ability of III-A and III-B CRISPR-Cas subtypes from Thermus thermophilus to interfere with plasmid transformation. We find that for both systems, requirements for crRNA-target complementarity sufficient for interference depend on the target transcript abundance, with more abundant targets requiring shorter complementarity segments. This result and thermodynamic calculations indicate that Type III effectors bind their targets in a simple bimolecular reaction with more extensive crRNA-target base pairing compensating for lower target abundance. Since the targeted RNA used in our work is non-essential for either the host or the plasmid, the results also establish that a certain number of target-bound effector complexes must be present in the cell to interfere with plasmid establishment. For the more active III-A system, we determine the minimal length of RNA-duplex sufficient for interference and show that the position of this minimal duplex can vary within the effector. Finally, we show that the III-A immunity is dependent on the HD nuclease domain of the Cas10 subunit. Since this domain is absent from the III-B system the result implies that the T. thermophilus III-B system must elicit a more efficient cyclic oligoadenylate-dependent response to provide the immunity.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , Thermus thermophilus , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/classification , Plasmids/genetics , RNA, Guide, CRISPR-Cas Systems , Thermus thermophilus/genetics , Thermus thermophilus/metabolism
15.
Science ; 382(6673): eadi1910, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37995242

ABSTRACT

Microbial systems underpin many biotechnologies, including CRISPR, but the exponential growth of sequence databases makes it difficult to find previously unidentified systems. In this work, we develop the fast locality-sensitive hashing-based clustering (FLSHclust) algorithm, which performs deep clustering on massive datasets in linearithmic time. We incorporated FLSHclust into a CRISPR discovery pipeline and identified 188 previously unreported CRISPR-linked gene modules, revealing many additional biochemical functions coupled to adaptive immunity. We experimentally characterized three HNH nuclease-containing CRISPR systems, including the first type IV system with a specified interference mechanism, and engineered them for genome editing. We also identified and characterized a candidate type VII system, which we show acts on RNA. This work opens new avenues for harnessing CRISPR and for the broader exploration of the vast functional diversity of microbial proteins.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , Data Mining , Gene Editing , CRISPR-Cas Systems/genetics , Humans , HEK293 Cells , Cluster Analysis , Algorithms , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/classification , CRISPR-Associated Proteins/genetics , DNA Cleavage , RNA, Guide, CRISPR-Cas Systems , Datasets as Topic , Data Mining/methods
16.
Science ; 382(6674): 1036-1041, 2023 12.
Article in English | MEDLINE | ID: mdl-38033086

ABSTRACT

Prokaryotic type III CRISPR-Cas antiviral systems employ cyclic oligoadenylate (cAn) signaling to activate a diverse range of auxiliary proteins that reinforce the CRISPR-Cas defense. Here we characterize a class of cAn-dependent effector proteins named CRISPR-Cas-associated messenger RNA (mRNA) interferase 1 (Cami1) consisting of a CRISPR-associated Rossmann fold sensor domain fused to winged helix-turn-helix and a RelE-family mRNA interferase domain. Upon activation by cyclic tetra-adenylate (cA4), Cami1 cleaves mRNA exposed at the ribosomal A-site thereby depleting mRNA and leading to cell growth arrest. The structures of apo-Cami1 and the ribosome-bound Cami1-cA4 complex delineate the conformational changes that lead to Cami1 activation and the mechanism of Cami1 binding to a bacterial ribosome, revealing unexpected parallels with eukaryotic ribosome-inactivating proteins.


Subject(s)
Bacteria , Bacterial Proteins , CRISPR-Associated Proteins , CRISPR-Cas Systems , Endoribonucleases , Bacteria/enzymology , Bacterial Proteins/chemistry , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/classification , RNA, Messenger/chemistry , Signal Transduction , Endoribonucleases/chemistry , Protein Domains
17.
mBio ; 12(4): e0213621, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34425703

ABSTRACT

CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems provide prokaryotes with efficient protection against foreign nucleic acid invaders. We have recently demonstrated the defensive interference function of a CRISPR-Cas system from Clostridioides (Clostridium) difficile, a major human enteropathogen, and showed that it could be harnessed for efficient genome editing in this bacterium. However, molecular details are still missing on CRISPR-Cas function for adaptation and sequence requirements for both interference and new spacer acquisition in this pathogen. Despite accumulating knowledge on the individual CRISPR-Cas systems in various prokaryotes, no data are available on the adaptation process in bacterial type I-B CRISPR-Cas systems. Here, we report the first experimental evidence that the C. difficile type I-B CRISPR-Cas system acquires new spacers upon overexpression of its adaptation module. The majority of new spacers are derived from a plasmid expressing Cas proteins required for adaptation or from regions of the C. difficile genome where generation of free DNA termini is expected. Results from protospacer-adjacent motif (PAM) library experiments and plasmid conjugation efficiency assays indicate that C. difficile CRISPR-Cas requires the YCN consensus PAM for efficient interference. We revealed a functional link between the adaptation and interference machineries, since newly adapted spacers are derived from sequences associated with a CCN PAM, which fits the interference consensus. The definition of functional PAMs and establishment of relative activity levels of each of the multiple C. difficile CRISPR arrays in present study are necessary for further CRISPR-based biotechnological and medical applications involving this organism. IMPORTANCE CRISPR-Cas systems provide prokaryotes with adaptive immunity for defense against foreign nucleic acid invaders, such as viruses or phages and plasmids. The CRISPR-Cas systems are highly diverse, and detailed studies of individual CRISPR-Cas subtypes are important for our understanding of various aspects of microbial adaptation strategies and for the potential applications. The significance of our work is in providing the first experimental evidence for type I-B CRISPR-Cas system adaptation in the emerging human enteropathogen Clostridioides difficile. This bacterium needs to survive in phage-rich gut communities, and its active CRISPR-Cas system might provide efficient antiphage defense by acquiring new spacers that constitute memory for further invader elimination. Our study also reveals a functional link between the adaptation and interference CRISPR machineries. The definition of all possible functional trinucleotide motifs upstream protospacers within foreign nucleic acid sequences is important for CRISPR-based genome editing in this pathogen and for developing new drugs against C. difficile infections.


Subject(s)
Adaptation, Physiological/genetics , CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems , Clostridioides difficile/genetics , Gene Editing/methods , Genome, Bacterial , CRISPR-Associated Proteins/classification , Clostridioides difficile/metabolism , Clostridioides difficile/pathogenicity , DNA, Bacterial/genetics
18.
Nat Commun ; 10(1): 5302, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31811138

ABSTRACT

Although single-component Class 2 CRISPR systems, such as type II Cas9 or type V Cas12a (Cpf1), are widely used for genome editing in eukaryotic cells, the application of multi-component Class 1 CRISPR has been less developed. Here we demonstrate that type I-E CRISPR mediates distinct DNA cleavage activity in human cells. Notably, Cas3, which possesses helicase and nuclease activity, predominantly triggered several thousand base pair deletions upstream of the 5'-ARG protospacer adjacent motif (PAM), without prominent off-target activity. This Cas3-mediated directional and broad DNA degradation can be used to introduce functional gene knockouts and knock-ins. As an example of potential therapeutic applications, we show Cas3-mediated exon-skipping of the Duchenne muscular dystrophy (DMD) gene in patient-induced pluripotent stem cells (iPSCs). These findings broaden our understanding of the Class 1 CRISPR system, which may serve as a unique genome editing tool in eukaryotic cells distinct from the Class 2 CRISPR system.


Subject(s)
CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems/genetics , Gene Editing/methods , CRISPR-Associated Proteins/classification , CRISPR-Associated Proteins/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , DNA Cleavage , DNA Helicases/metabolism , Exons , Gene Expression Regulation/genetics , Gene Knockout Techniques/methods , HEK293 Cells , Humans , Induced Pluripotent Stem Cells , Muscular Dystrophy, Duchenne/genetics , Sequence Deletion
19.
Science ; 362(6416): 839-842, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30337455

ABSTRACT

CRISPR-Cas systems provide microbes with adaptive immunity to infectious nucleic acids and are widely employed as genome editing tools. These tools use RNA-guided Cas proteins whose large size (950 to 1400 amino acids) has been considered essential to their specific DNA- or RNA-targeting activities. Here we present a set of CRISPR-Cas systems from uncultivated archaea that contain Cas14, a family of exceptionally compact RNA-guided nucleases (400 to 700 amino acids). Despite their small size, Cas14 proteins are capable of targeted single-stranded DNA (ssDNA) cleavage without restrictive sequence requirements. Moreover, target recognition by Cas14 triggers nonspecific cutting of ssDNA molecules, an activity that enables high-fidelity single-nucleotide polymorphism genotyping (Cas14-DETECTR). Metagenomic data show that multiple CRISPR-Cas14 systems evolved independently and suggest a potential evolutionary origin of single-effector CRISPR-based adaptive immunity.


Subject(s)
Archaeal Proteins/chemistry , Archaeal Proteins/classification , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/classification , DNA Cleavage , DNA, Single-Stranded/chemistry , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/classification , Archaeal Proteins/genetics , CRISPR-Associated Proteins/genetics , Datasets as Topic , Endodeoxyribonucleases/genetics , Evolution, Molecular , Metagenomics , Phylogeny
20.
Science ; 356(6333)2017 04 07.
Article in English | MEDLINE | ID: mdl-28385959

ABSTRACT

Bacteria and archaea are engaged in a constant arms race to defend against the ever-present threats of viruses and invasion by mobile genetic elements. The most flexible weapons in the prokaryotic defense arsenal are the CRISPR-Cas adaptive immune systems. These systems are capable of selective identification and neutralization of foreign DNA and/or RNA. CRISPR-Cas systems rely on stored genetic memories to facilitate target recognition. Thus, to keep pace with a changing pool of hostile invaders, the CRISPR memory banks must be regularly updated with new information through a process termed CRISPR adaptation. In this Review, we outline the recent advances in our understanding of the molecular mechanisms governing CRISPR adaptation. Specifically, the conserved protein machinery Cas1-Cas2 is the cornerstone of adaptive immunity in a range of diverse CRISPR-Cas systems.


Subject(s)
Adaptation, Physiological , Archaea/immunology , Bacteria/immunology , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/physiology , Archaea/virology , Bacteria/virology , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/classification , CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems/genetics , DNA/metabolism , RNA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL