Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.999
Filter
Add more filters

Publication year range
1.
Cell ; 181(4): 784-799.e19, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32413299

ABSTRACT

Swelling of the brain or spinal cord (CNS edema) affects millions of people every year. All potential pharmacological interventions have failed in clinical trials, meaning that symptom management is the only treatment option. The water channel protein aquaporin-4 (AQP4) is expressed in astrocytes and mediates water flux across the blood-brain and blood-spinal cord barriers. Here we show that AQP4 cell-surface abundance increases in response to hypoxia-induced cell swelling in a calmodulin-dependent manner. Calmodulin directly binds the AQP4 carboxyl terminus, causing a specific conformational change and driving AQP4 cell-surface localization. Inhibition of calmodulin in a rat spinal cord injury model with the licensed drug trifluoperazine inhibited AQP4 localization to the blood-spinal cord barrier, ablated CNS edema, and led to accelerated functional recovery compared with untreated animals. We propose that targeting the mechanism of calmodulin-mediated cell-surface localization of AQP4 is a viable strategy for development of CNS edema therapies.


Subject(s)
Aquaporin 4/metabolism , Edema/metabolism , Edema/therapy , Animals , Aquaporin 4/physiology , Astrocytes/metabolism , Brain/metabolism , Brain Edema/metabolism , Calmodulin/metabolism , Central Nervous System/metabolism , Edema/physiopathology , Male , Rats , Rats, Sprague-Dawley , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism , Trifluoperazine/pharmacology
2.
Cell ; 169(6): 1042-1050.e9, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28575668

ABSTRACT

KCNQ1 is the pore-forming subunit of cardiac slow-delayed rectifier potassium (IKs) channels. Mutations in the kcnq1 gene are the leading cause of congenital long QT syndrome (LQTS). Here, we present the cryoelectron microscopy (cryo-EM) structure of a KCNQ1/calmodulin (CaM) complex. The conformation corresponds to an "uncoupled," PIP2-free state of KCNQ1, with activated voltage sensors and a closed pore. Unique structural features within the S4-S5 linker permit uncoupling of the voltage sensor from the pore in the absence of PIP2. CaM contacts the KCNQ1 voltage sensor through a specific interface involving a residue on CaM that is mutated in a form of inherited LQTS. Using an electrophysiological assay, we find that this mutation on CaM shifts the KCNQ1 voltage-activation curve. This study describes one physiological form of KCNQ1, depolarized voltage sensors with a closed pore in the absence of PIP2, and reveals a regulatory interaction between CaM and KCNQ1 that may explain CaM-mediated LQTS.


Subject(s)
Calmodulin/chemistry , KCNQ1 Potassium Channel/chemistry , Long QT Syndrome/metabolism , Amino Acid Sequence , Animals , Calmodulin/metabolism , Cryoelectron Microscopy , Humans , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , Models, Molecular , Mutation , Sequence Alignment , Xenopus laevis
3.
Cell ; 163(5): 1214-1224, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26590423

ABSTRACT

Circadian clocks integrate light and temperature input to remain synchronized with the day/night cycle. Although light input to the clock is well studied, the molecular mechanisms by which circadian clocks respond to temperature remain poorly understood. We found that temperature phase shifts Drosophila circadian clocks through degradation of the pacemaker protein TIM. This degradation is mechanistically distinct from photic CRY-dependent TIM degradation. Thermal TIM degradation is triggered by cytosolic calcium increase and CALMODULIN binding to TIM and is mediated by the atypical calpain protease SOL. This thermal input pathway and CRY-dependent light input thus converge on TIM, providing a molecular mechanism for the integration of circadian light and temperature inputs. Mammals use body temperature cycles to keep peripheral clocks synchronized with their brain pacemaker. Interestingly, downregulating the mammalian SOL homolog SOLH blocks thermal mPER2 degradation and phase shifts. Thus, we propose that circadian thermosensation in insects and mammals share common principles.


Subject(s)
Circadian Clocks , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Nerve Tissue Proteins/metabolism , Animals , Biological Clocks , Calcium Signaling , Calmodulin/metabolism , Calpain , Circadian Rhythm , Male , Mammals/physiology , Proteolysis
4.
Cell ; 163(5): 1237-1251, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26590425

ABSTRACT

K-Ras and H-Ras share identical effectors and have similar properties; however, the high degree of tumor-type specificity associated with K-Ras and H-Ras mutations suggests that they have unique roles in oncogenesis. Here, we report that oncogenic K-Ras, but not H-Ras, suppresses non-canonical Wnt/Ca(2+) signaling, an effect that contributes strongly to its tumorigenic properties. K-Ras does this by binding to calmodulin and so reducing CaMKii activity and expression of Fzd8. Restoring Fzd8 in K-Ras mutant pancreatic cells suppresses malignancy, whereas depletion of Fzd8 in H-Ras(V12)-transformed cells enhances their tumor initiating capacity. Interrupting K-Ras-calmodulin binding using genetic means or by treatment with an orally active protein kinase C (PKC)-activator, prostratin, represses tumorigenesis in K-Ras mutant pancreatic cancer cells. These findings provide an alternative way to selectively target this "undruggable" protein.


Subject(s)
Proto-Oncogene Proteins p21(ras)/metabolism , Receptors, Cell Surface/metabolism , Wnt Signaling Pathway , Amino Acid Sequence , Animals , Animals, Genetically Modified , Calmodulin/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Genes, ras , Humans , Mice , Molecular Sequence Data , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Papilloma/metabolism , Phorbol Esters/administration & dosage , Phosphorylation , Protein Binding/drug effects
5.
Mol Cell ; 82(24): 4712-4726.e7, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36423631

ABSTRACT

Programmed cell death and caspase proteins play a pivotal role in host innate immune response combating pathogen infections. Blocking cell death is employed by many bacterial pathogens as a universal virulence strategy. CopC family type III effectors, including CopC from an environmental pathogen Chromobacterium violaceum, utilize calmodulin (CaM) as a co-factor to inactivate caspases by arginine ADPR deacylization. However, the molecular basis of the catalytic and substrate/co-factor binding mechanism is unknown. Here, we determine successive cryo-EM structures of CaM-CopC-caspase-3 ternary complex in pre-reaction, transition, and post-reaction states, which elucidate a multistep enzymatic mechanism of CopC-catalyzed ADPR deacylization. Moreover, we capture a snapshot of the detachment of modified caspase-3 from CopC. These structural insights are validated by mutagenesis analyses of CopC-mediated ADPR deacylization in vitro and animal infection in vivo. Our study offers a structural framework for understanding the molecular basis of arginine ADPR deacylization catalyzed by the CopC family.


Subject(s)
Calmodulin , Caspases , Animals , Calmodulin/genetics , Calmodulin/metabolism , Caspases/metabolism , Caspase 3/metabolism , Arginine , Catalysis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
6.
Cell ; 157(7): 1657-70, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24949975

ABSTRACT

Voltage-gated Na and Ca2+ channels comprise distinct ion channel superfamilies, yet the carboxy tails of these channels exhibit high homology, hinting at a long-shared and purposeful module. For different Ca2+ channels, carboxyl-tail interactions with calmodulin do elaborate robust and similar forms of Ca2+ regulation. However, Na channels have only shown subtler Ca2+ modulation that differs among reports, challenging attempts at unified understanding. Here, by rapid Ca2+ photorelease onto Na channels, we reset this view of Na channel regulation. For cardiac-muscle channels (NaV1.5), reported effects from which most mechanistic proposals derive, we observe no Ca2+ modulation. Conversely, for skeletal-muscle channels (NaV1.4), we uncover fast Ca2+ regulation eerily similar to that of Ca2+ channels. Channelopathic myotonia mutations halve NaV1.4 Ca2+ regulation, and transplanting the NaV1.4 carboxy tail onto Ca2+ channels recapitulates Ca2+ regulation. Thus, we argue for the persistence and physiological relevance of an ancient Ca2+ regulatory module across Na and Ca2+ channels.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Calmodulin/chemistry , Voltage-Gated Sodium Channels/chemistry , Amino Acid Sequence , Animals , Calcium Channels/genetics , Calmodulin/metabolism , Guinea Pigs , Humans , Models, Molecular , Molecular Sequence Data , Muscle Cells/metabolism , Myoblasts/metabolism , Phylogeny , Rats , Sequence Alignment , Voltage-Gated Sodium Channels/genetics , Voltage-Gated Sodium Channels/metabolism
7.
Cell ; 159(3): 608-22, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25417111

ABSTRACT

The Ca(2+)-free form of calmodulin (apoCaM) often appears inert, modulating target molecules only upon conversion to its Ca(2+)-bound form. This schema has appeared to govern voltage-gated Ca(2+) channels, where apoCaM has been considered a dormant Ca(2+) sensor, associated with channels but awaiting the binding of Ca(2+) ions before inhibiting channel opening to provide vital feedback inhibition. Using single-molecule measurements of channels and chemical dimerization to elevate apoCaM, we find that apoCaM binding on its own markedly upregulates opening, rivaling the strongest forms of modulation. Upon Ca(2+) binding to this CaM, inhibition may simply reverse the initial upregulation. As RNA-edited and -spliced channel variants show different affinities for apoCaM, the apoCaM-dependent control mechanisms may underlie the functional diversity of these variants and explain an elongation of neuronal action potentials by apoCaM. More broadly, voltage-gated Na channels adopt this same modulatory principle. ApoCaM thus imparts potent and pervasive ion-channel regulation. PAPERCLIP:


Subject(s)
Calmodulin/metabolism , Animals , Calcium Channels/chemistry , Calcium Channels/genetics , Calcium Channels/metabolism , Calcium Channels, L-Type/chemistry , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Electrophysiological Phenomena , Humans , Mice , Rats , Sodium Channels/chemistry , Sodium Channels/metabolism
8.
Cell ; 159(2): 281-94, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25303525

ABSTRACT

Activity-dependent CREB phosphorylation and gene expression are critical for long-term neuronal plasticity. Local signaling at CaV1 channels triggers these events, but how information is relayed onward to the nucleus remains unclear. Here, we report a mechanism that mediates long-distance communication within cells: a shuttle that transports Ca(2+)/calmodulin from the surface membrane to the nucleus. We show that the shuttle protein is γCaMKII, its phosphorylation at Thr287 by ßCaMKII protects the Ca(2+)/CaM signal, and CaN triggers its nuclear translocation. Both ßCaMKII and CaN act in close proximity to CaV1 channels, supporting their dominance, whereas γCaMKII operates as a carrier, not as a kinase. Upon arrival within the nucleus, Ca(2+)/CaM activates CaMKK and its substrate CaMKIV, the CREB kinase. This mechanism resolves long-standing puzzles about CaM/CaMK-dependent signaling to the nucleus. The significance of the mechanism is emphasized by dysregulation of CaV1, γCaMKII, ßCaMKII, and CaN in multiple neuropsychiatric disorders.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Animals , Calcium/metabolism , Calcium Channels/metabolism , Calmodulin/metabolism , Cell Nucleus/metabolism , Neurons/metabolism , Phosphorylation , Rats, Sprague-Dawley , Transcription, Genetic
9.
Nature ; 615(7954): 884-891, 2023 03.
Article in English | MEDLINE | ID: mdl-36922596

ABSTRACT

Calcium imaging with protein-based indicators1,2 is widely used to follow neural activity in intact nervous systems, but current protein sensors report neural activity at timescales much slower than electrical signalling and are limited by trade-offs between sensitivity and kinetics. Here we used large-scale screening and structure-guided mutagenesis to develop and optimize several fast and sensitive GCaMP-type indicators3-8. The resulting 'jGCaMP8' sensors, based on the calcium-binding protein calmodulin and a fragment of endothelial nitric oxide synthase, have ultra-fast kinetics (half-rise times of 2 ms) and the highest sensitivity for neural activity reported for a protein-based calcium sensor. jGCaMP8 sensors will allow tracking of large populations of neurons on timescales relevant to neural computation.


Subject(s)
Calcium Signaling , Calcium , Calmodulin , Neurons , Nitric Oxide Synthase Type III , Peptide Fragments , Calcium/analysis , Calcium/metabolism , Calmodulin/metabolism , Neurons/metabolism , Kinetics , Nitric Oxide Synthase Type III/chemistry , Nitric Oxide Synthase Type III/metabolism , Time Factors , Peptide Fragments/chemistry , Peptide Fragments/metabolism
10.
Mol Cell ; 81(2): 323-339.e11, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33321095

ABSTRACT

The phosphorylation of G protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) facilitates arrestin binding and receptor desensitization. Although this process can be regulated by Ca2+-binding proteins such as calmodulin (CaM) and recoverin, the molecular mechanisms are poorly understood. Here, we report structural, computational, and biochemical analysis of a CaM complex with GRK5, revealing how CaM shapes GRK5 response to calcium. The CaM N and C domains bind independently to two helical regions at the GRK5 N and C termini to inhibit GPCR phosphorylation, though only the C domain interaction disrupts GRK5 membrane association, thereby facilitating cytoplasmic translocation. The CaM N domain strongly activates GRK5 via ordering of the amphipathic αN-helix of GRK5 and allosteric disruption of kinase-RH domain interaction for phosphorylation of cytoplasmic GRK5 substrates. These results provide a framework for understanding how two functional effects, GRK5 activation and localization, can cooperate under control of CaM for selective substrate targeting by GRK5.


Subject(s)
Calcium/metabolism , Calmodulin/chemistry , G-Protein-Coupled Receptor Kinase 5/chemistry , Amino Acid Sequence , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Binding Sites , Calmodulin/genetics , Calmodulin/metabolism , Cloning, Molecular , Crystallography, X-Ray , G-Protein-Coupled Receptor Kinase 5/genetics , G-Protein-Coupled Receptor Kinase 5/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Kinetics , Molecular Dynamics Simulation , Phosphorylation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Sf9 Cells , Spodoptera , Substrate Specificity , Thermodynamics
11.
Mol Cell ; 81(21): 4527-4539.e8, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34407442

ABSTRACT

The kinase domain transfers phosphate from ATP to substrates. However, the Legionella effector SidJ adopts a kinase fold, yet catalyzes calmodulin (CaM)-dependent glutamylation to inactivate the SidE ubiquitin ligases. The structural and mechanistic basis in which the kinase domain catalyzes protein glutamylation is unknown. Here we present cryo-EM reconstructions of SidJ:CaM:SidE reaction intermediate complexes. We show that the kinase-like active site of SidJ adenylates an active-site Glu in SidE, resulting in the formation of a stable reaction intermediate complex. An insertion in the catalytic loop of the kinase domain positions the donor Glu near the acyl-adenylate for peptide bond formation. Our structural analysis led us to discover that the SidJ paralog SdjA is a glutamylase that differentially regulates the SidE ligases during Legionella infection. Our results uncover the structural and mechanistic basis in which the kinase fold catalyzes non-ribosomal amino acid ligations and reveal an unappreciated level of SidE-family regulation.


Subject(s)
Bacterial Proteins/chemistry , Protein Folding , Proteins/chemistry , Virulence Factors/chemistry , Bacterial Proteins/metabolism , Calmodulin/chemistry , Catalysis , Catalytic Domain , Cryoelectron Microscopy , Legionella/enzymology , Mutagenesis , Peptides/chemistry , Protein Binding , Protein Conformation , Protein Domains , Spectrometry, Fluorescence , Ubiquitin-Protein Ligases/chemistry , Virulence Factors/metabolism
12.
Trends Biochem Sci ; 49(2): 169-182, 2024 02.
Article in English | MEDLINE | ID: mdl-38103971

ABSTRACT

The α-kinase eukaryotic elongation factor 2 kinase (eEF-2K) regulates translational elongation by phosphorylating its ribosome-associated substrate, the GTPase eEF-2. eEF-2K is activated by calmodulin (CaM) through a distinctive mechanism unlike that in other CaM-dependent kinases (CAMK). We describe recent structural insights into this unique activation process and examine the effects of specific regulatory signals on this mechanism. We also highlight key unanswered questions to guide future structure-function studies. These include structural mechanisms which enable eEF-2K to interact with upstream/downstream partners and facilitate its integration of diverse inputs, including Ca2+ transients, phosphorylation mediated by energy/nutrient-sensing pathways, pH changes, and metabolites. Answering these questions is key to establishing how eEF-2K harmonizes translation with cellular requirements within the boundaries of its molecular landscape.


Subject(s)
Elongation Factor 2 Kinase , Protein Biosynthesis , Elongation Factor 2 Kinase/chemistry , Elongation Factor 2 Kinase/genetics , Elongation Factor 2 Kinase/metabolism , Phosphorylation , Calmodulin/chemistry , Calmodulin/genetics , Calmodulin/metabolism
13.
Nature ; 603(7899): 180-186, 2022 03.
Article in English | MEDLINE | ID: mdl-34929720

ABSTRACT

Depolarizing sodium (Na+) leak currents carried by the NALCN channel regulate the resting membrane potential of many neurons to modulate respiration, circadian rhythm, locomotion and pain sensitivity1-8. NALCN requires FAM155A, UNC79 and UNC80 to function, but the role of these auxiliary subunits is not understood3,7,9-12. NALCN, UNC79 and UNC80 are essential in rodents2,9,13, and mutations in human NALCN and UNC80 cause severe developmental and neurological disease14,15. Here we determined the structure of the NALCN channelosome, an approximately 1-MDa complex, as fundamental aspects about the composition, assembly and gating of this channelosome remain obscure. UNC79 and UNC80 are massive HEAT-repeat proteins that form an intertwined anti-parallel superhelical assembly, which docks intracellularly onto the NALCN-FAM155A pore-forming subcomplex. Calmodulin copurifies bound to the carboxy-terminal domain of NALCN, identifying this region as a putative modulatory hub. Single-channel analyses uncovered a low open probability for the wild-type complex, highlighting the tightly closed S6 gate in the structure, and providing a basis to interpret the altered gating properties of disease-causing variants. Key constraints between the UNC79-UNC80 subcomplex and the NALCN DI-DII and DII-DIII linkers were identified, leading to a model of channelosome gating. Our results provide a structural blueprint to understand the physiology of the NALCN channelosome and a template for drug discovery to modulate the resting membrane potential.


Subject(s)
Ion Channels , Membrane Proteins , Amino Acid Motifs , Calmodulin , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Humans , Ion Channel Gating , Ion Channels/chemistry , Ion Channels/metabolism , Membrane Potentials , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Neurons/metabolism , Sodium/metabolism
14.
Nat Rev Neurosci ; 23(11): 666-682, 2022 11.
Article in English | MEDLINE | ID: mdl-36056211

ABSTRACT

Calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII) is the most abundant protein in excitatory synapses and is central to synaptic plasticity, learning and memory. It is activated by intracellular increases in calcium ion levels and triggers molecular processes necessary for synaptic plasticity. CaMKII phosphorylates numerous synaptic proteins, thereby regulating their structure and functions. This leads to molecular events crucial for synaptic plasticity, such as receptor trafficking, localization and activity; actin cytoskeletal dynamics; translation; and even transcription through synapse-nucleus shuttling. Several new tools affording increasingly greater spatiotemporal resolution have revealed the link between CaMKII activity and downstream signalling processes in dendritic spines during synaptic and behavioural plasticity. These technologies have provided insights into the function of CaMKII in learning and memory.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Calmodulin , Humans , Calcium-Calmodulin-Dependent Protein Kinase Type 2/analysis , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calmodulin/analysis , Calmodulin/metabolism , Calcium/metabolism , Actins/analysis , Actins/metabolism , Neuronal Plasticity/physiology , Synapses/metabolism , Hippocampus
15.
Proc Natl Acad Sci U S A ; 121(39): e2318900121, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39288178

ABSTRACT

Small-conductance Ca2+-activated K+ channels (SK, KCa2) are gated solely by intracellular microdomain Ca2+. The channel has emerged as a therapeutic target for cardiac arrhythmias. Calmodulin (CaM) interacts with the CaM binding domain (CaMBD) of the SK channels, serving as the obligatory Ca2+ sensor to gate the channels. In heterologous expression systems, phosphatidylinositol 4,5-bisphosphate (PIP2) coordinates with CaM in regulating SK channels. However, the roles and mechanisms of PIP2 in regulating SK channels in cardiomyocytes remain unknown. Here, optogenetics, magnetic nanoparticles, combined with Rosetta structural modeling, and molecular dynamics (MD) simulations revealed the atomistic mechanisms of how PIP2 works in concert with Ca2+-CaM in the SK channel activation. Our computational study affords evidence for the critical role of the amino acid residue R395 in the S6 transmembrane segment, which is localized in propinquity to the intracellular hydrophobic gate. This residue forms a salt bridge with residue E398 in the S6 transmembrane segment from the adjacent subunit. Both R395 and E398 are conserved in all known isoforms of SK channels. Our findings suggest that the binding of PIP2 to R395 residue disrupts the R395:E398 salt bridge, increasing the flexibility of the transmembrane segment S6 and the activation of the channel. Importantly, our findings serve as a platform for testing of structural-based drug designs for therapeutic inhibitors and activators of the SK channel family. The study is timely since inhibitors of SK channels are currently in clinical trials to treat atrial arrhythmias.


Subject(s)
Calmodulin , Molecular Dynamics Simulation , Phosphatidylinositol 4,5-Diphosphate , Small-Conductance Calcium-Activated Potassium Channels , Phosphatidylinositol 4,5-Diphosphate/metabolism , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Small-Conductance Calcium-Activated Potassium Channels/chemistry , Small-Conductance Calcium-Activated Potassium Channels/genetics , Animals , Calmodulin/metabolism , Calmodulin/chemistry , Humans , Ion Channel Gating , Calcium/metabolism , Protein Binding , Myocytes, Cardiac/metabolism
16.
Proc Natl Acad Sci U S A ; 121(31): e2400078121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39058580

ABSTRACT

Current treatments of anxiety and depressive disorders are plagued by considerable side effects and limited efficacies, underscoring the need for additional molecular targets that can be leveraged to improve medications. Here, we have identified a molecular cascade triggered by chronic stress that exacerbates anxiety- and depressive-like behaviors. Specifically, chronic stress enhances Src kinase activity and tyrosine phosphorylation of calmodulin, which diminishes MyosinVa (MyoVa) interaction with Neuroligin2 (NL2), resulting in decreased inhibitory transmission and heightened anxiety-like behaviors. Importantly, pharmacological inhibition of Src reinstates inhibitory synaptic deficits and effectively reverses heightened anxiety-like behaviors in chronically stressed mice, a process requiring the MyoVa-NL2 interaction. These data demonstrate the reversibility of anxiety- and depressive-like phenotypes at both molecular and behavioral levels and uncover a therapeutic target for anxiety and depressive disorders.


Subject(s)
Anxiety , Calmodulin , Signal Transduction , Stress, Psychological , Animals , Mice , Signal Transduction/drug effects , Anxiety/drug therapy , Anxiety/metabolism , Stress, Psychological/metabolism , Calmodulin/metabolism , src-Family Kinases/metabolism , Phosphorylation , Myosins/metabolism , Male , Mice, Inbred C57BL , Depression/drug therapy , Depression/metabolism , Humans
17.
EMBO J ; 41(4): e106523, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34935159

ABSTRACT

Excitatory synapses of principal hippocampal neurons are frequently located on dendritic spines. The dynamic strengthening or weakening of individual inputs results in structural and molecular diversity of dendritic spines. Active spines with large calcium ion (Ca2+ ) transients are frequently invaded by a single protrusion from the endoplasmic reticulum (ER), which is dynamically transported into spines via the actin-based motor myosin V. An increase in synaptic strength correlates with stable anchoring of the ER, followed by the formation of an organelle referred to as the spine apparatus. Here, we show that myosin V binds the Ca2+ sensor caldendrin, a brain-specific homolog of the well-known myosin V interactor calmodulin. While calmodulin is an essential activator of myosin V motor function, we found that caldendrin acts as an inhibitor of processive myosin V movement. In mouse and rat hippocampal neurons, caldendrin regulates spine apparatus localization to a subset of dendritic spines through a myosin V-dependent pathway. We propose that caldendrin transforms myosin into a stationary F-actin tether that enables the localization of ER tubules and formation of the spine apparatus in dendritic spines.


Subject(s)
Calcium-Binding Proteins/metabolism , Dendritic Spines/metabolism , Endoplasmic Reticulum/metabolism , Myosin Type V/metabolism , Actins/metabolism , Animals , Calcium-Binding Proteins/genetics , Calmodulin/metabolism , Endoplasmic Reticulum, Smooth/metabolism , HEK293 Cells , Hippocampus/cytology , Hippocampus/metabolism , Humans , Mass Spectrometry , Mice, Knockout , Myosin Type V/genetics , Protein Interaction Domains and Motifs , Rats, Wistar
18.
EMBO Rep ; 25(3): 1513-1540, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38351373

ABSTRACT

Membrane adenylyl cyclase AC8 is regulated by G proteins and calmodulin (CaM), mediating the crosstalk between the cAMP pathway and Ca2+ signalling. Despite the importance of AC8 in physiology, the structural basis of its regulation by G proteins and CaM is not well defined. Here, we report the 3.5 Å resolution cryo-EM structure of the bovine AC8 bound to the stimulatory Gαs protein in the presence of Ca2+/CaM. The structure reveals the architecture of the ordered AC8 domains bound to Gαs and the small molecule activator forskolin. The extracellular surface of AC8 features a negatively charged pocket, a potential site for unknown interactors. Despite the well-resolved forskolin density, the captured state of AC8 does not favour tight nucleotide binding. The structural proteomics approaches, limited proteolysis and crosslinking mass spectrometry (LiP-MS and XL-MS), allowed us to identify the contact sites between AC8 and its regulators, CaM, Gαs, and Gßγ, as well as to infer the conformational changes induced by these interactions. Our results provide a framework for understanding the role of flexible regions in the mechanism of AC regulation.


Subject(s)
Adenylyl Cyclases , Calmodulin , Animals , Cattle , Adenylyl Cyclases/chemistry , Adenylyl Cyclases/metabolism , Colforsin/pharmacology , Cryoelectron Microscopy , Proteomics , GTP-Binding Proteins/metabolism
19.
Cell ; 147(7): 1576-88, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-22196732

ABSTRACT

Metazoans secrete an extensive array of small proteins essential for intercellular communication, defense, and physiologic regulation. Their synthesis takes mere seconds, leaving minimal time for recognition by the machinery for cotranslational protein translocation into the ER. The pathway taken by these substrates to enter the ER is not known. Here, we show that both in vivo and in vitro, small secretory proteins can enter the ER posttranslationally via a transient cytosolic intermediate. This intermediate contained calmodulin selectively bound to the signal peptides of small secretory proteins. Calmodulin maintained the translocation competence of small-protein precursors, precluded their aggregation and degradation, and minimized their inappropriate interactions with other cytosolic polypeptide-binding proteins. Acute inhibition of calmodulin specifically impaired small-protein translocation in vitro and in cells. These findings establish a mammalian posttranslational pathway for small-protein secretion and identify an unexpected role for calmodulin in chaperoning these precursors safely through the cytosol.


Subject(s)
Calmodulin/metabolism , Proteins/metabolism , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/metabolism , Endoplasmic Reticulum/metabolism , HEK293 Cells , HeLa Cells , Humans , Metabolic Networks and Pathways , Prolactin/chemistry , Prolactin/metabolism , Protein Processing, Post-Translational , Protein Sorting Signals , Protein Transport , Proteins/chemistry , Yeasts/metabolism
20.
Mol Cell ; 70(1): 136-149.e7, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625034

ABSTRACT

Insect herbivory causes severe damage to plants and threatens the world's food production. During evolutionary adaptation, plants have evolved sophisticated mechanisms to rapidly accumulate a key defense hormone, jasmonate (JA), that triggers plant defense against herbivory. However, little is known about how plants initially activate JA biosynthesis at encounter with herbivory. Here, we uncover that a novel JAV1-JAZ8-WRKY51 (JJW) complex controls JA biosynthesis to defend against insect attack. In healthy plants, the JJW complex represses JA biosynthesis to restrain JA at a low basal level to ensure proper plant growth. When plants are injured by insect attack, injury rapidly triggers calcium influxes to activate calmodulin-dependent phosphorylation of JAV1, which disintegrates JJW complex and activates JA biosynthesis, giving rise to the rapid burst of JA for plant defense. Our findings offer new insights into the highly sophisticated defense systems evolved by plants to defend against herbivory.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Calcium/metabolism , Calmodulin/metabolism , Co-Repressor Proteins/metabolism , Cyclopentanes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Oxylipins/metabolism , Plant Leaves/enzymology , Plants, Genetically Modified/enzymology , Spodoptera/physiology , Transcription Factors/metabolism , Animals , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Calcium Signaling , Calmodulin/genetics , Co-Repressor Proteins/genetics , Gene Expression Regulation, Plant , Herbivory , Intracellular Signaling Peptides and Proteins/genetics , Multiprotein Complexes , Phosphorylation , Plant Leaves/genetics , Plants, Genetically Modified/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL