Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 715
Filter
1.
Anal Chem ; 96(21): 8282-8290, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38717341

ABSTRACT

Hamburger wrapping paper, coated with water-based barrier coatings, used in the food packaging industry was studied by using the total organic fluorine (TOF) method based on combustion ion chromatography and fluorine-19 solid-state nuclear magnetic resonance (19F ss-NMR) spectroscopy. Although the TOF method is a fast and affordable method used to screen for per- and polyfluoroalkyl substances (PFAS), the amount of fluorine it measures is heavily dependent on the extraction step and, therefore could lead to inaccurate results. Fluorine-19 ss-NMR spectroscopy can differentiate between organic and inorganic fluorinated sources, eliminating the need for sample clean up. To illustrate this, the 19F ss-NMR spectra of clean coated paper samples that contained naturally occurring F- ions from the talc raw material and spiked samples containing perfluorooctanoic acid were compared. A range of experimental conditions was explored to improve sensitivity for low PFAS concentrations (in the order of 10-20 mg/kg). Despite the disadvantages of ss-NMR spectroscopy, such as the low limit of detection and resolution, the results demonstrate it can be a viable tool to directly detect PFAS moieties in consumer and food packaging. Therefore, 19F solid-state NMR spectroscopy challenges and complements current methods, which only provide indirect evidence of the presence of PFAS.


Subject(s)
Food Packaging , Magnetic Resonance Spectroscopy , Magnetic Resonance Spectroscopy/methods , Fluorine/analysis , Fluorocarbons/analysis , Fluorocarbons/chemistry , Food Contamination/analysis , Caprylates/analysis , Caprylates/chemistry
2.
Anal Chem ; 96(33): 13512-13521, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39110961

ABSTRACT

Timely and efficient analysis of the fluorinated per- and polyfluoroalkyl substances (PFAS) in an atmospheric environment is critical to environmental pollution traceability, early warnings, and governance. Here, a portable, reliable, and intelligent digital monitoring device for onsite real-time dynamic analysis of atmospheric perfluorooctanoic acid (PFOA) is proposed. The sensing mechanism is attributed to the oxidase-like activity of PtCoNPs@g-C3N4 that is reversely regulated by the surface modification of a PFOA-recognizable DNA aptamer, engineering a PFOA-activated oxidase-like activity of nanozyme (Apt-PtCoNPs@g-C3N4) to combine the nonfluorescence o-phenylenediamine (OPD) as the dual-modality response system. The present PFOA interacts with its DNA aptamer and dissociates from the surface of Apt-PtCoNPs@g-C3N4, restoring the oxidase-like activity of PtCoNPs@g-C3N4 to oxidize OPD into yellow fluorescence 2,3-diphenylaniline (DAP), thereby observing a PFOA-triggered colorimetric as well as fluorescence dual-modality change. Then, a hydrogel kit-programmed Apt-PtCoNPs@g-C3N4 + OPD system is used as the sensitive element to incorporate into this homemade portable device, automatically gathering and processing the PFOA-triggered hydrogel colorimetric and fluorescence image gray values by our self-weaving software, ultimately realizing the onsite real-time dynamic analysis of atmospheric PFOA surrounding a fluorochemical production plant. This work provides a direction and theoretical foundation for designing portable onsite screening devices that cater to other atmospheric contaminants detection requirements.


Subject(s)
Aptamers, Nucleotide , Caprylates , Fluorocarbons , Aptamers, Nucleotide/chemistry , Fluorocarbons/chemistry , Fluorocarbons/analysis , Caprylates/analysis , Caprylates/chemistry , Oxidoreductases/metabolism , Biosensing Techniques/methods , Air Pollutants/analysis , Environmental Monitoring/methods , Limit of Detection
3.
Environ Res ; 252(Pt 1): 118100, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38176628

ABSTRACT

A 3-D transport and dispersion model was applied to study the recent past and future dynamics of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) concentrations in the Black Sea for the 2016-2030 period. The modelled surface concentrations show a distinct seasonal behaviour, shaped by winter to spring convective mixing. A significant increasing long-term trend in PFOS concentrations is established, with concentrations in water layers 200 m below the surface increasing at 4-8% per year. Driving mechanisms for PFOA and PFOS transport and accumulation in the subsurface and deeper layers are the cooling of the surface water in winter and the transport of water masses from the North Western Shelf (NWS) of the Black Sea. A simulated 50% phase-out of PFOA and PFOS from 2020 to 2030 shows a 21% reduction in PFOA, while PFOS continues to increase.


Subject(s)
Alkanesulfonic Acids , Caprylates , Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/analysis , Fluorocarbons/chemistry , Alkanesulfonic Acids/analysis , Caprylates/analysis , Water Pollutants, Chemical/analysis , Black Sea , Environmental Monitoring , Seasons , Seawater/chemistry , Water Movements
4.
Environ Res ; 251(Pt 2): 118707, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38490632

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are recognized as emerging environmental pollutants due to their high persistence and toxicities to humans and animals. Understanding the temporal trend of PFAS in the environment is important for their pollution control and making appropriate policies. Many studies have reported the PFAS concentrations in Taihu Lake, the third largest lake in China, while their temporal trend during the years was seldom investigated. This study summarizes the PFAS concentrations in the water, sediment and organisms in Taihu Lake from 2009 to 2020 to depict their temporal trends. Meanwhile, the ecological model of AQUATOX was applied to evaluate and predict the potential risks of PFAS from 2012 to 2030. The results showed that the total PFAS concentrations varied but without distinct increase or decrease in both water and sediment during the years, while PFAS concentrations in organisms significantly decreased. The yearly mean concentrations of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in the water were 21.7-25.4 ng/L and 9.7-26.5 ng/L respectively, lower than the Standards for Drinking Water Quality of China and the suggested water quality criteria to protect the aquatic organisms. In sediment, PFOA and PFOS concentrations were 0.16-0.69 ng/g and 0.15-0.82 ng/g respectively, much lower than the recommended sediment quality guideline values. Based on the AQUATOX prediction, there will be no major threats caused by PFAS to the growth of biota in Taihu Lake in the near future, while the biomass of some species (e.g. carp) will be affected under the perturbation of PFAS. Both field investigation and AQUATOX simulation showed that PFOS concentrations in invertebrates and fish descend steadily, while no remarkable decrease in PFOA concentrations was expected. This study suggests a decreasing ecological risk of PFAS in Taihu Lake, while highlights the necessity of continuous monitoring of PFAS contamination.


Subject(s)
Alkanesulfonic Acids , Environmental Monitoring , Fluorocarbons , Geologic Sediments , Lakes , Water Pollutants, Chemical , Fluorocarbons/analysis , China , Lakes/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Risk Assessment , Alkanesulfonic Acids/analysis , Animals , Geologic Sediments/chemistry , Geologic Sediments/analysis , Caprylates/analysis
5.
J Environ Sci Health B ; 59(9): 551-561, 2024.
Article in English | MEDLINE | ID: mdl-39138893

ABSTRACT

Per and polyfluoroalkyl substances (PFAS) are toxicologically concerning because of their potential to bioaccumulate and their persistence in the environment and the human body. We determined PFAS levels in cosmetic and personal care products and assessed their health risks. We investigated the trends in concentrations and types of PFAS contaminants in cosmetic and personal care products before and after perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were added to the list of persistent organic pollutants. The total PFAS concentration ranged from 1.98 to 706.75 ng g-1. The hazard quotients (HQs) for PFOA, PFOS and perfluorobutanesulfonic acid (PFBS) were lower than 1, indicating no appreciable risk to consumers. Assuming the simultaneous use of all product types and the worst-case scenario for calculations, perfluoroalkyl carboxylic acids and perfluoroalkane sulfonic acids (PFSAs) also had hazard indices lower than 1. We found that adverse effects are unlikely to occur when each type of cosmetic is used separately, or even when all product types are used together. Nevertheless, the persistence and bioaccumulation characteristics of additional PFAS present in cosmetics continue to be a cause for concern. Further research is necessary to investigate the long-term impacts of using such cosmetics and the associated risks to human health.


Subject(s)
Alkanesulfonic Acids , Cosmetics , Fluorocarbons , Cosmetics/analysis , Fluorocarbons/analysis , Fluorocarbons/toxicity , Risk Assessment , Humans , Alkanesulfonic Acids/analysis , Caprylates/analysis , Caprylates/toxicity , Environmental Pollutants/analysis , Environmental Monitoring , Environmental Exposure
6.
Epidemiol Prev ; 48(3): 239-244, 2024.
Article in Italian | MEDLINE | ID: mdl-38995137

ABSTRACT

The Veneto Region (Northern Italy) conducted a monitoring campaign in the years 2016-2017 in order to evaluate the concentration of per- and polyfluoroalkyl substances (PFASs) in foods in the area affected by the water contamination discovered in 2013. The risk assessment for the resident population was conducted by the Italian National Institute of Health (ISS) in 2018 and updated in 2021. The European Food Safety Agency (EFSA) updated the limits used by ISS, in particular adding a limit for the sum of four PFAS molecules in 2020. In this work, the risk assessment conducted by ISS is reviewed in light of the new limit of 4.4 ng/kg body weight for the sum of perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexanesulfonate (PFHxS). In the adult population (18-65 years), total weekly intakes, calculated for the years preceding 2013, resulted more than ten times the EFSA 2020 limit, more than five times in the intermediate period 2013-2017 - preceding the implementation of mitigation actions through double filtration of the water of the aqueduct -, by more than three times in the period after 2018, and yet by almost seven times for those who supply contaminated groundwater through private wells. The food contribution for those who use filtered water from the aqueduct is equal to 20% of the total weekly income.


Subject(s)
Alkanesulfonic Acids , Caprylates , Fluorocarbons , Food Contamination , Water Pollutants, Chemical , Italy , Fluorocarbons/analysis , Humans , Risk Assessment , Adult , Alkanesulfonic Acids/analysis , Adolescent , Caprylates/analysis , Middle Aged , Water Pollutants, Chemical/analysis , Aged , Dietary Exposure/analysis , Young Adult , Environmental Monitoring , Female , Sulfonic Acids
7.
Ecotoxicol Environ Saf ; 263: 115267, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37499384

ABSTRACT

Perfluorinated compounds (PFCs) are man-made chemicals used in the manufacture of many products with water and dirt repellent properties. Many diseases have been proved to be related to the exposure of PFCs, including breast fibroadenoma, hepatocellular carcinoma, breast cancer and leydig cell adenoma. However, whether the PFCs promote the progression of prostate cancer remains unclear. In this work, through comprehensive bioinformatics analysis, we discovered the correlation between the prostate cancer and five PFCs using Comparative Toxicogenomics Database (CTD), Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. In addition, further analysis showed that several PFCs-related genes demonstrated strong prognostic value for prostate cancer patients. The survival analysis and receiver operating characteristic (ROC) curves revealed that PFCs-related genes based prognostic model held great predictive value for the prognosis of prostate cancer, which could potentially serve as an independent risk factor in the future. In vitro experiments verified the promotive role of perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) in the growth of prostate cancer cells. This study provided novel insights into understanding the role of PFCs in prostate cancer and brought attention to the environmental association with cancer risks and progression.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Prostatic Neoplasms , Water Pollutants, Chemical , Male , Humans , Fluorocarbons/analysis , Caprylates/toxicity , Caprylates/analysis , Prostatic Neoplasms/chemically induced , Prostatic Neoplasms/genetics , Water/analysis , Water Pollutants, Chemical/analysis , Risk , Environmental Monitoring , Alkanesulfonic Acids/toxicity , Alkanesulfonic Acids/analysis
8.
Zhonghua Yu Fang Yi Xue Za Zhi ; 57(6): 815-822, 2023 Jun 06.
Article in Zh | MEDLINE | ID: mdl-37357196

ABSTRACT

Perfluorinated compounds, especially Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), are widely detected in water environments in China. Considering the potential health risks of drinking water exposure routes, PFOA and PFOS have been added to the water quality reference index of the newly issued "Standards for Drinking Water Quality (GB5749-2022)", with limit values of 40 and 80 ng/L, respectively. This study analyzed and discussed the relevant technical contents for determining the limits of the hygiene standard, including the environmental existence level and exposure status of PFOA and PFOS, health effects, derivation of safety reference values, and determination of hygiene standard limits. It also proposed prospects for the future direction of formulating drinking water standards.


Subject(s)
Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Humans , Water Quality , Fluorocarbons/analysis , Caprylates/analysis , China , Water Pollutants, Chemical/analysis
9.
Pediatr Allergy Immunol ; 33(2): e13744, 2022 02.
Article in English | MEDLINE | ID: mdl-35212041

ABSTRACT

BACKGROUND: Atopic dermatitis (AD) occurs in exclusively breastfed infants. As fatty acids have some immunomodulatory effect, we aimed to investigate the influence of fatty acid compositions in breast milk (BM) on the development of AD in exclusively breastfed infants. METHODS: We enrolled two- to four-month-old exclusively breastfed infants. The objective SCORing Atopic Dermatitis (objSCORAD) was evaluated. The lipid layer of BM was analyzed by gas chromatography for fatty acid levels. Medical charts were reviewed. RESULTS: Forty-seven AD infants and 47 healthy controls were enrolled. The objSCORAD was 20.5 ± 1.7 (shown as mean ± SEM) in the AD group. The age, sex, parental atopy history, and nutrient intake of mothers were not significantly different between two groups. The palmitate and monounsaturated fatty acid (MUFA) levels in BM positively correlated with objSCORAD, while caprylate, acetate, and short-chain fatty acid (SCFA) levels negatively correlated with objSCORAD (p = .031, .019, .039, .013, .022, respectively). However, the butyrate levels in BM were not significantly different. The caprylate and acetate levels in BM were significantly associated with the presence of infantile AD (p = .021 and .015, respectively) after adjusting for age, sex, parental allergy history, MUFA, palmitate, and SCFA levels in BM. ObjSCORAD in infancy was significantly associated with persistent AD (p = .026) after adjusting for age, sex, parental atopy history, caprylate, palmitate, MUFA, acetate, and SCFA levels in BM. CONCLUSION: Caprylate and acetate levels in BM for exclusively breastfed infants were negatively associated with objSCORAD. Lower caprylate and acetate in BM might be the risk factors for infantile AD, while butyrate in BM was not associated with infantile AD.


Subject(s)
Dermatitis, Atopic , Milk, Human , Acetates , Breast Feeding , Caprylates/analysis , Female , Humans , Infant
10.
Environ Sci Technol ; 56(12): 7963-7975, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35549168

ABSTRACT

Predicting the transport of perfluoroalkyl acids (PFAAs) in the vadose zone is critically important for PFAA site cleanup and risk mitigation. PFAAs exhibit several unusual and poorly understood transport behaviors, including partitioning to the air-water interface, which is currently the subject of debate. This study develops a novel use of quasi-saturated (residual air saturation) column experiments to estimate chemical partitioning parameters of both linear and branched perfluorooctane sulfonate (PFOS) in unsaturated soils. The ratio of linear-to-branched air-water interfacial partitioning constants for all six experiments was 1.62 ± 0.24, indicating significantly greater partitioning of linear PFOS isomers at the air-water interface. Standard breakthrough curve analysis and numerical inversion of HYDRUS models support the application of a Freundlich isotherm for PFOS air-water interfacial partitioning below a critical reference concentration (CRC). Data from this study and previously reported unsaturated column data on perfluorooctanoate (PFOA) were reevaluated to examine unsaturated systems for transport nonidealities. This reanalysis suggests both transport nonidealities and Freundlich isotherm behavior for PFOA below the CRC using drainage-based column methods, contrary to the assertions of the original authors. Finally, a combined Freundlich-Langmuir isotherm was proposed to describe PFAA air-water interfacial partitioning across the full range of relevant PFAA concentrations.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Caprylates/analysis , Fluorocarbons/analysis , Isomerism , Porosity , Water , Water Pollutants, Chemical/analysis
11.
Molecules ; 27(5)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35268765

ABSTRACT

Quality control of human immunoglobulin formulations produced by caprylic acid precipitation necessitates a simple, rapid, and accurate method for determination of residual caprylic acid. A high-performance liquid chromatography method for that purpose was developed and validated. The method involves depletion of immunoglobulins, the major interfering components that produce high background noise, by precipitation with acetonitrile (1:1, v/v). Chromatographic analysis of caprylic acid, preserved in supernatant with no loss, was performed using a reverse-phase C18 column (2.1 × 150 mm, 3 µm) as a stationary phase and water with 0.05% TFA-acetonitrile (50:50, v/v) as a mobile phase at a flow rate of 0.2 mL/min and run time of 10 min. The developed method was successfully validated according to the ICH guidelines. The validation parameters confirmed that method was linear, accurate, precise, specific, and able to provide excellent separation of peaks corresponding to caprylic acid and the fraction of remaining immunoglobulins. Furthermore, a 24-1 fractional factorial design was applied in order to test the robustness of developed method. As such, the method is highly suitable for the quantification of residual caprylic acid in formulations of human immunoglobulins for therapeutic use, as demonstrated on samples produced by fractionation of convalescent anti-SARS-CoV-2 human plasma at a laboratory scale. The obtained results confirmed that the method is convenient for routine quality control.


Subject(s)
Caprylates/analysis , Chromatography, High Pressure Liquid/methods , Drug Compounding , Immunoglobulins/chemistry , COVID-19/therapy , COVID-19/virology , Caprylates/chemistry , Humans , Immunization, Passive/methods , Immunoglobulins/therapeutic use , Limit of Detection , Reproducibility of Results , SARS-CoV-2/isolation & purification , COVID-19 Serotherapy
12.
Chemistry ; 27(3): 1046-1056, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33058253

ABSTRACT

The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effect is weak with acetone and D6 -acetone. In contrast, clear differences were observed in the perception of octanoic acid and D15 -octanoic acid. Furthermore, a trained sniffer dog was initially able to distinguish between these isotopologues of octanoic acid. In chromatographic measurements, the respective deuterated molecule showed weaker interaction with a non-polar liquid phase. Quantum chemical calculations give evidence that deuterated octanoic acid binds more strongly to a model receptor than non-deuterated. In contrast, the binding of the non-deuterated molecule is stronger with acetone. The isotope effect is calculated in the framework of statistical mechanics. It results from a complicated interplay between various thermostatistical contributions to the non-covalent free binding energies and it turns out to be very molecule-specific. The vibrational terms including non-classical zero-point energies play about the same role as rotational/translational contributions and are larger than bond length effects for the differential isotope perception of odor for which general rules cannot be derived.


Subject(s)
Deuterium/analysis , Deuterium/chemistry , Odorants/analysis , Olfactory Perception , Organic Chemicals/analysis , Organic Chemicals/chemistry , Smell , Acetone/analysis , Acetone/chemistry , Animals , Caprylates/analysis , Caprylates/chemistry , Dogs , Working Dogs
13.
FEMS Yeast Res ; 21(2)2021 03 18.
Article in English | MEDLINE | ID: mdl-33599754

ABSTRACT

The medium-chain fatty acid octanoic acid is an important platform compound widely used in industry. The microbial production from sugars in Saccharomyces cerevisiae is a promising alternative to current non-sustainable production methods, however, titers need to be further increased. To achieve this, it is essential to have in-depth knowledge about the cell physiology during octanoic acid production. To this end, we collected the first RNA-Seq data of an octanoic acid producer strain at three time points during fermentation. The strain produced higher levels of octanoic acid and increased levels of fatty acids of other chain lengths (C6-C18) but showed decreased growth compared to the reference. Furthermore, we show that the here analyzed transcriptomic response to internally produced octanoic acid is notably distinct from a wild type's response to externally supplied octanoic acid as reported in previous publications. By comparing the transcriptomic response of different sampling times, we identified several genes that we subsequently overexpressed and knocked out, respectively. Hereby we identified RPL40B, to date unknown to play a role in fatty acid biosynthesis or medium-chain fatty acid tolerance. Overexpression of RPL40B led to an increase in octanoic acid titers by 40%.


Subject(s)
Caprylates/metabolism , Gene Expression Profiling , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Biosynthetic Pathways/genetics , Caprylates/analysis , Fermentation
14.
J Appl Microbiol ; 130(6): 1972-1980, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33064909

ABSTRACT

AIM: Aspergillus niger S17-5 produces two alkylitaconic acids, 9-hydroxyhexylitaconic acid (9-HHIA) and 10-hydroxyhexylitaconic acid (10-HHIA), which have cytotoxic and polymer building block properties. In this study, we characterized the production of 9-HHIA and 10-HHIA by addition of their expected precursor, caprylic acid, to a culture of A. niger S17-5, and demonstrated batch fermentation of 9-HHIA and 10-HHIA in a jar fermenter with DO-stat. METHODS AND RESULTS: Production titres of 9-HHIA and 10-HHIA from 3% glucose in a flask after 25 days cultivation were 0·35 and 1·01 g l-1 respectively. Addition of 0·22 g l-1 of caprylic acid to a suspension of resting cells of A. niger S17-5 led to 32% enhancement of total 9-HHIA and 10-HHIA production compared to no addition. No enhancement of the production of 9-HHIA or 10-HHIA by the addition of oxaloacetic acid was observed. Addition of caprylic acid to the culture at mid-growth phase was more suitable for 9-HHIA and 10-HHIA production due to less cell growth inhibition by caprylic acid. DO-stat batch fermentation with 3% glucose and 14·4 g l-1 of caprylic acid in a 1·5 l jar fermenter resulted in the production titres of 9-HHIA and 10-HHIA being 0·48 and 1·54 g l-1 respectively after 10 days of cultivation. CONCLUSIONS: Addition of caprylic acid to the culture of A. niger S17-5 enhances 9-HHIA and 10-HHIA production. SIGNIFICANCE AND IMPACT OF THE STUDY: These results suggest that 9-HHIA and 10-HHIA are synthesized with octanoyl-CoA derived from caprylic acid, and that the supply of octanoyl-CoA is a rate-limiting step in 9-HHIA and 10-HHIA production. To the best of our knowledge, this is the first report regarding the fermentation of naturally occurring itaconic acid derivatives in a jar fermenter.


Subject(s)
Aspergillus niger/metabolism , Caprylates/metabolism , Succinates/metabolism , Aspergillus niger/drug effects , Aspergillus niger/growth & development , Bioreactors , Caprylates/analysis , Caprylates/pharmacology , Fermentation , Glucose/analysis , Glucose/metabolism , Succinates/analysis , Succinates/chemistry
15.
Ecotoxicol Environ Saf ; 207: 111250, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32920311

ABSTRACT

Perfluoroalkyl substances (PFAS), including perfluorooctanoic acid (PFOA), are industrial chemicals that are of concern due to their environmental presence, persistence, bioaccumulative potential, toxicity, and capacity for long-range transport. Despite a large body of research on environmental exposure, insufficient chronic aquatic toxicity data exist to develop water quality targets for clean-up of federal contaminated sites in Canada. Thus, our objective was to assess the aqueous toxicity of PFOA in chronic tests with Hyalella azteca (amphipod) and early-life stage tests with Pimephales promelas (fathead minnow). Toxicity data were analyzed based on measured PFOA concentrations. Amphipod exposures were 42 d (0.84-97 mg/L) and examined survival, growth, and reproduction. Fathead minnow exposures were 21 d (0.010-76 mg/L), which encompassed hatching (5 d) and larval stages until 16 d post-hatch; endpoints included hatching success, deformities at hatch, and larval survival and growth. Amphipod survival was significantly reduced at 97 mg/L (42-d LC50 = 51 mg/L), but growth and reproduction were more sensitive endpoints (42-d EC50 for both endpoints = 2.3 mg/L). Fathead minnows were less sensitive than amphipods, exhibiting no significant effects in all endpoints with the exception of uninflated swim bladder, which was significantly higher at 76 mg/L (15%) than controls (0%). Maximum concentrations of PFOA are generally in the ng/L range in global surface waters, but can reach the µg/L range in close proximity to major source inputs; therefore, environmental concentrations are well below those that caused toxicity in the current study. Our data will provide valuable information with which to assess the risk of PFOA at contaminated sites, and to set a target for site remediation.


Subject(s)
Amphipoda , Caprylates/analysis , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Animals , Canada , Cyprinidae/growth & development , Larva/drug effects , Reproduction/drug effects , Water Pollutants, Chemical/toxicity , Water Quality
16.
Molecules ; 26(4)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572434

ABSTRACT

Perfluoroalkyl substances (PFAS) represent one of the most recalcitrant class of compounds of emerging concern and their removal from water is a challenging goal. In this study, we investigated the removal efficiency of three selected PFAS from water, namely, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA) and pefluorooctanesulfonic acid (PFOS) using a custom-built non-thermal plasma generator. A modified full factorial design (with 2 levels, 3 variables and the central point in which both quadratic terms and interactions between couple of variables were considered) was used to investigate the effect of plasma discharge frequency, distance between the electrodes and water conductivity on treatment efficiency. Then, the plasma treatment running on optimized conditions was used to degrade PFAS at ppb level both individually and in mixture, in ultrapure and groundwater matrices. PFOS 1 ppb exhibited the best degradation reaching complete removal after 30 min of treatment in both water matrices (first order rate constant 0.107 min-1 in ultrapure water and 0.0633 min-1 in groundwater), while the degradation rate of PFOA and PFHxA was slower of around 65% and 83%, respectively. During plasma treatment, the production of reactive species in the liquid phase (hydroxyl radical, hydrogen peroxide) and in the gas phase (ozone, NOx) was investigated. Particular attention was dedicated to the nitrogen balance in solution where, following to NOx hydrolysis, total nitrogen (TN) was accumulated at the rate of up to 40 mgN L-1 h-1.


Subject(s)
Alkanesulfonic Acids/metabolism , Caproates/metabolism , Caprylates/metabolism , Fluorocarbons/metabolism , Groundwater/chemistry , Plasma Gases/chemistry , Water Pollutants, Chemical/metabolism , Water Purification/methods , Alkanesulfonic Acids/analysis , Alkanesulfonic Acids/isolation & purification , Caproates/analysis , Caproates/isolation & purification , Caprylates/analysis , Caprylates/isolation & purification , Fluorocarbons/analysis , Fluorocarbons/isolation & purification , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification
17.
Environ Geochem Health ; 43(1): 347-360, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32949006

ABSTRACT

This study performed the first environmental and dietary exposure assessment to explore plant uptake of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) from agricultural soil and irrigation water in the Nakdong River delta, South Korea. Annual average concentrations of total PFOA and PFOS ranged from 0.026 to 0.112 µg L-1 (irrigation water), and from 0.818 to 1.364 µg kg-1 (soil), respectively. PFOA and PFOS hotspots were identified downstream of the Nakdong River and were influenced by seasonal climatic variations. The observed average biennial concentration of the sum of PFOA and PFOS decreased in irrigation water, from 0.112 µg L-1 in 2013 to 0.026 µg L-1 in 2015, suggests that the 2013 Persistent Organic Pollutants Control Act may have helped to reduce levels of PFAS at this location. This study calculated some of the highest plant uptake factors reported to date, with values ranging from 0.962 in green onions to < 0.004 in plums. Leafy vegetables and rice are important components of the Korean diet; these groups had the largest contribution to the estimated dietary intake of PFOA and PFOS, which was calculated at 0.449 and 0.140 ng kg bw -1 day-1, respectively. This corresponded to 66.4% for PFOA and 7.9% for PFOS of the EFSA reference dose (RfD). The dietary intake of PFOA and PFOS from crops alone did not exceed the RfD. However, when the estimated daily intake (EDI) from other sources such as tap water, meat, fish, dairy, and beverages was included in the exposure risk assessment, both of the EDIs to PFOA and PFOS exceeded the RfDs, indicating that there may be a risk to human health. This study concludes that consumption of crops might, therefore, be a significant and underappreciated pathway for human exposure to PFAS.


Subject(s)
Alkanesulfonic Acids/analysis , Caprylates/analysis , Dietary Exposure/analysis , Fluorocarbons/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Animals , Crops, Agricultural/metabolism , Dietary Exposure/standards , Food Contamination/analysis , Humans , Republic of Korea
18.
Anal Chem ; 92(6): 4614-4622, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32096628

ABSTRACT

Perfluoroalkyl substances (PFASs) persist and are ubiquitous in the environment. The origins of PFAS toxicity and how they specifically affect the functions of proteins remain unclear. Herein, we report that PFASs can strongly inhibit the activity of human carbonic anhydrases (hCAs), which are ubiquitous enzymes that catalyze the hydration of CO2, are abundant in the blood and organs of mammals, and involved in pH regulation, ion homeostasis, and biosynthesis. The interactions between PFASs and hCAs were investigated using stopped-flow kinetic enzyme-inhibition measurements, native mass spectrometry (MS), and ligand-docking simulations. Narrow-bore emitters in native MS with inner diameters of ∼300 nm were used to directly and simultaneously measure the dissociation constants of 11 PFASs to an enzyme, which was not possible using conventional emitters. The data from native MS and stopped-flow measurements were in excellent agreement. Of 15 PFASs investigated, eight can inhibit at least one of four hCA isozymes (I, II, IX, and XII) with submicromolar inhibition constants, including perfluorooctanoic acid, perfluorooctanesulfonamide, and perfluorooctanesulfonic acid. Some PFASs, including those with both short and long perfluoromethylene chains, can effectively inhibit at least one hCA isozyme with low nanomolar inhibition constants.


Subject(s)
Alkanesulfonic Acids/pharmacology , Caprylates/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Environmental Pollutants/pharmacology , Fluorocarbons/pharmacology , Alkanesulfonic Acids/analysis , Caprylates/analysis , Carbonic Anhydrase Inhibitors/analysis , Crystallography, X-Ray , Environmental Pollutants/analysis , Fluorocarbons/analysis , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Ligands , Mass Spectrometry , Models, Molecular , Particle Size , Surface Properties
19.
Environ Sci Technol ; 54(23): 15202-15214, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33200604

ABSTRACT

Irrigation water or soil contaminated with per- and polyfluoroalkyl substances (PFASs) raises concerns among regulators tasked with protecting human health from potential PFAS-contaminated food crops, with several studies identifying crop uptake as an important exposure pathway. We estimated daily dietary exposure intake of individual PFASs in vegetables for children and adults using Monte Carlo simulation in a tiered stochastic modeling approach: exposures were the highest for young children (1-2 years > adults > 3-5 years > 6-11 years > 12-19 years). Using the lowest available human health toxicity reference values (RfDs) and no additional exposure, estimated fifth percentile risk-based threshold concentrations in irrigation water were 38 ng/L (median 180 ng/L) for perfluorooctanoate (PFOA) and 140 ng/L (median 850 ng/L) for perfluorooctane sulfonate (PFOS). Thus, consumption of vegetables irrigated with PFAS-impacted water that meets the current 70 ng/L of PFOA and PFOS U.S. Environmental Protection Agency's lifetime health advisory for drinking water may or may not be protective of vegetable exposures to these contaminants. Hazard analyses using real-world PFAS-contaminated groundwater data for a hypothetical farm showed estimated exposures to most PFASs exceeding available or derived RfDs, indicating water-to-crop transfer is an important exposure pathway for communities with PFAS-impacted irrigation water.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Fluorocarbons , Groundwater , Water Pollutants, Chemical , Adult , Alkanesulfonic Acids/analysis , Caprylates/analysis , Child , Child, Preschool , Drinking Water/analysis , Fluorocarbons/analysis , Humans , Vegetables , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL