Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
1.
Proc Biol Sci ; 291(2028): 20240473, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39106959

ABSTRACT

A central objective of historical biogeography is to understand where clades originated and how they moved across space and over time. However, given the dynamic history of ecosystem changes in response to climate change and geological events, the manifold long-distance dispersals over evolutionary timescales, and regional and global extinctions, it remains uncertain how reliable inferences based solely on extant taxa can be achieved. Using a novel species-level phylogeny of all known extant and extinct species of the mammalian order Carnivora and related extinct groups, we show that far more precise and accurate ancestral areas can be estimated by fully integrating extinct species into the analyses, rather than solely relying on extant species or identifying ancestral areas only based on the geography of the oldest fossils. Through a series of simulations, we further show that this conclusion is robust under realistic scenarios in which the unknown extinct taxa represent a biased subset of all extinct species. Our results highlight the importance of integrating fossil taxa into a phylogenetic framework to further improve our understanding of historical biogeography and reveal the dynamic dispersal and diversification history of carnivores.


Subject(s)
Carnivora , Extinction, Biological , Fossils , Phylogeny , Phylogeography , Animals , Carnivora/classification , Biological Evolution
2.
PLoS Biol ; 18(9): e3000818, 2020 09.
Article in English | MEDLINE | ID: mdl-32960897

ABSTRACT

Humans profoundly impact landscapes, ecosystems, and animal behavior. In many cases, animals living near humans become tolerant of them and reduce antipredator responses. Yet, we still lack an understanding of the underlying evolutionary dynamics behind these shifts in traits that affect animal survival. Here, we used a phylogenetic meta-analysis to determine how the mean and variability in antipredator responses change as a function of the number of generations spent in contact with humans under 3 different contexts: urbanization, captivity, and domestication. We found that any contact with humans leads to a rapid reduction in mean antipredator responses as expected. Notably, the variance among individuals over time observed a short-term increase followed by a gradual decrease, significant for domesticated animals. This implies that intense human contact immediately releases animals from predation pressure and then imposes strong anthropogenic selection on traits. In addition, our results reveal that the loss of antipredator traits due to urbanization is similar to that of domestication but occurs 3 times more slowly. Furthermore, the rapid disappearance of antipredator traits was associated with 2 main life-history traits: foraging guild and whether the species was solitary or gregarious (i.e., group-living). For domesticated animals, this decrease in antipredator behavior was stronger for herbivores than for omnivores or carnivores and for solitary than for gregarious species. By contrast, the decrease in antipredator traits was stronger for gregarious, urbanized species, although this result is based mostly on birds. Our study offers 2 major insights on evolution in the Anthropocene: (1) changes in traits occur rapidly even under unintentional human "interventions" (i.e., urbanization) and (2) there are similarities between the selection pressures exerted by domestication and by urbanization. In all, such changes could affect animal survival in a predator-rich world, but through understanding evolutionary dynamics, we can better predict when and how exposure to humans modify these fitness-related traits.


Subject(s)
Behavior, Animal/physiology , Biological Evolution , Carnivora/physiology , Human Activities , Predatory Behavior/physiology , Animals , Carnivora/classification , Domestication , Ecosystem , Human Activities/trends , Humans , Life History Traits , Phenotype , Urbanization/trends
3.
Syst Biol ; 68(6): 967-986, 2019 11 01.
Article in English | MEDLINE | ID: mdl-30816937

ABSTRACT

Discrete morphological data have been widely used to study species evolution, but the use of quantitative (or continuous) morphological characters is less common. Here, we implement a Bayesian method to estimate species divergence times using quantitative characters. Quantitative character evolution is modeled using Brownian diffusion with character correlation and character variation within populations. Through simulations, we demonstrate that ignoring the population variation (or population "noise") and the correlation among characters leads to biased estimates of divergence times and rate, especially if the correlation and population noise are high. We apply our new method to the analysis of quantitative characters (cranium landmarks) and molecular data from carnivoran mammals. Our results show that time estimates are affected by whether the correlations and population noise are accounted for or ignored in the analysis. The estimates are also affected by the type of data analyzed, with analyses of morphological characters only, molecular data only, or a combination of both; showing noticeable differences among the time estimates. Rate variation of morphological characters among the carnivoran species appears to be very high, with Bayesian model selection indicating that the independent-rates model fits the morphological data better than the autocorrelated-rates model. We suggest that using morphological continuous characters, together with molecular data, can bring a new perspective to the study of species evolution. Our new model is implemented in the MCMCtree computer program for Bayesian inference of divergence times.


Subject(s)
Biodiversity , Carnivora/classification , Classification/methods , Phylogeny , Animals , Bayes Theorem , Carnivora/anatomy & histology , Models, Biological
4.
Syst Biol ; 67(1): 127-144, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28472434

ABSTRACT

Adaptive radiation is hypothesized to be a primary mechanism that drives the remarkable species diversity and morphological disparity across the Tree of Life. Tests for adaptive radiation in extant taxa are traditionally estimated from calibrated molecular phylogenies with little input from extinct taxa. With 85 putative species in 33 genera and over 400 described extinct species, the carnivoran superfamily Musteloidea is a prime candidate to investigate patterns of adaptive radiation using both extant- and fossil-based macroevolutionary methods. The species diversity and equally impressive ecological and phenotypic diversity found across Musteloidea is often attributed to two adaptive radiations coinciding with two major climate events, the Eocene-Oligocene transition and the Mid-Miocene Climate Transition. Here, we compiled a novel time-scaled phylogeny for 88% of extant musteloids and used it as a framework for testing the predictions of adaptive radiation hypotheses with respect to rates of lineage diversification and phenotypic evolution. Contrary to expectations, we found no evidence for rapid bursts of lineage diversification at the origin of Musteloidea, and further analyses of lineage diversification rates using molecular and fossil-based methods did not find associations between rates of lineage diversification and the Eocene-Oligocene transition or Mid-Miocene Climate Transition as previously hypothesized. Rather, we found support for decoupled diversification dynamics driven by increased clade carrying capacity in the branches leading to a subclade of elongate mustelids. Supporting decoupled diversification dynamics between the subclade of elongate mustelids and the ancestral musteloid regime is our finding of increased rates of body length evolution, but not body mass evolution, within the decoupled mustelid subclade. The lack of correspondence in rates of body mass and length evolution suggest that phenotypic evolutionary rates under a single morphological metric, even one as influential as mass, may not capture the evolution of diversity in clades that exhibit elongate body shapes. The discordance in evolutionary rates between body length and body mass along with evidence of decoupled diversification dynamics suggests that body elongation might be an innovation for the exploitation of novel Mid-Miocene resources, resulting in the radiation of some musteloids.


Subject(s)
Body Size , Carnivora/classification , Fossils , Phylogeny , Animals , Biodiversity , Carnivora/anatomy & histology , Carnivora/genetics , Genetic Speciation
5.
Proc Natl Acad Sci U S A ; 113(9): 2532-7, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26811470

ABSTRACT

Despite considerable interest in the forces shaping the relationship between brain size and cognitive abilities, it remains controversial whether larger-brained animals are, indeed, better problem-solvers. Recently, several comparative studies have revealed correlations between brain size and traits thought to require advanced cognitive abilities, such as innovation, behavioral flexibility, invasion success, and self-control. However, the general assumption that animals with larger brains have superior cognitive abilities has been heavily criticized, primarily because of the lack of experimental support for it. Here, we designed an experiment to inquire whether specific neuroanatomical or socioecological measures predict success at solving a novel technical problem among species in the mammalian order Carnivora. We presented puzzle boxes, baited with food and scaled to accommodate body size, to members of 39 carnivore species from nine families housed in multiple North American zoos. We found that species with larger brains relative to their body mass were more successful at opening the boxes. In a subset of species, we also used virtual brain endocasts to measure volumes of four gross brain regions and show that some of these regions improve model prediction of success at opening the boxes when included with total brain size and body mass. Socioecological variables, including measures of social complexity and manual dexterity, failed to predict success at opening the boxes. Our results, thus, fail to support the social brain hypothesis but provide important empirical support for the relationship between relative brain size and the ability to solve this novel technical problem.


Subject(s)
Brain/anatomy & histology , Carnivora/physiology , Problem Solving , Animals , Carnivora/classification , Species Specificity
6.
Environ Manage ; 61(5): 719-731, 2018 05.
Article in English | MEDLINE | ID: mdl-29318357

ABSTRACT

Compensation programs are used globally to increase tolerance for and help offset economic loss caused by large carnivores. Compensation program funding comes from a variety of sources, and in Wyoming and Idaho, USA and Alberta, Canada this includes revenue from hunting and fishing license sales. We review the patterns of livestock depredation and compensation costs of Alberta's predator-compensation program, and compare Alberta's program to compensation programs in neighboring Canadian and American jurisdictions. Current compensation costs in Alberta are well below historic levels, but have been rapidly increasing in recent years due to an increase in depredation events coupled with increased cattle prices. That increase has caused push back from Alberta's hunting and fishing community that finances the compensation program, although less than 3.6% of Alberta's license levy dollars are used for predator compensation. Hunting effort in Alberta is highest on the same privately owned lands with livestock depredation problems, suggesting that private lands support habitats for hunted ungulate species as well as carnivores. Although compensation programs do not prevent depredation events themselves, compensation programs effectively can support the maintenance of wildlife habitats on private lands.


Subject(s)
Animals, Wild/growth & development , Carnivora/growth & development , Compensation and Redress , Conservation of Natural Resources/methods , Government Programs/economics , Livestock/growth & development , Alberta , Animals , Animals, Wild/classification , Carnivora/classification , Cattle , Conservation of Natural Resources/economics , Ecosystem , Humans , Livestock/classification
7.
Parazitologiia ; 51(2): 104-20, 2017.
Article in Russian | MEDLINE | ID: mdl-29405683

ABSTRACT

Biological diversity of ixodid tick fauna of the North Caucasus is analyzed. On the whole, 38 tick species are represented in the fauna of the North Caucasus. Their distribution within the region, biotopic features, and host-parasite relationships of different stages of ontogenesis are considered.


Subject(s)
Host-Parasite Interactions , Ixodidae/physiology , Phylogeny , Tick Infestations/epidemiology , Tick Infestations/veterinary , Animals , Biodiversity , Birds/classification , Birds/parasitology , Carnivora/classification , Carnivora/parasitology , Hedgehogs/classification , Hedgehogs/parasitology , Host Specificity , Humans , Ixodidae/classification , Lagomorpha/classification , Lagomorpha/parasitology , Rodentia/classification , Rodentia/parasitology , Ruminants/classification , Ruminants/parasitology , Russia/epidemiology , Species Specificity , Tick Infestations/parasitology
8.
Syst Biol ; 64(2): 294-306, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25516268

ABSTRACT

Although the use of landmark data to study shape changes along a phylogenetic tree has become a common practice in evolutionary studies, the role of this sort of data for the inference of phylogenetic relationships remains under debate. Theoretical issues aside, the very existence of historical information in landmark data has been challenged, since phylogenetic analyses have often shown little congruence with alternative sources of evidence. However, most analyses conducted in the past were based upon a single landmark configuration, leaving it unsettled whether the incorporation of multiple configurations may improve the rather poor performance of this data source in most previous phylogenetic analyses. In the present study, we present a phylogenetic analysis of landmark data that combines information derived from several skeletal structures to derive a phylogenetic tree for musteloids. The analysis includes nine configurations representing different skeletal structures for 24 species. The resulting tree presents several notable concordances with phylogenetic hypotheses derived from molecular data. In particular, Mephitidae, Procyonidae, and Lutrinae plus the genera Martes, Mustela, Galictis, and Procyon were retrieved as monophyletic. In addition, other groupings were in agreement with molecular phylogenies or presented only minor discordances. Complementary analyses have also indicated that the results improve substantially when an increasing number of landmark configurations are included in the analysis. The results presented here thus highlight the importance of combining information from multiple structures to derive phylogenetic hypotheses from landmark data.


Subject(s)
Carnivora/classification , Classification/methods , Phylogeny , Animals , Bone and Bones/anatomy & histology , Carnivora/anatomy & histology , Humerus/anatomy & histology
9.
BMC Evol Biol ; 15: 8, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25648618

ABSTRACT

BACKGROUND: Which factors influence the distribution patterns of morphological diversity among clades? The adaptive radiation model predicts that a clade entering new ecological niche will experience high rates of evolution early in its history, followed by a gradual slowing. Here we measure disparity and rates of evolution in Carnivora, specifically focusing on the terrestrial-aquatic transition in Pinnipedia. We analyze fissiped (mostly terrestrial, arboreal, and semi-arboreal, but also including the semi-aquatic otter) and pinniped (secondarily aquatic) carnivorans as a case study of an extreme ecological transition. We used 3D geometric morphometrics to quantify cranial shape in 151 carnivoran specimens (64 fissiped, 87 pinniped) and five exceptionally-preserved fossil pinnipeds, including the stem-pinniped Enaliarctos emlongi. Range-based and variance-based disparity measures were compared between pinnipeds and fissipeds. To distinguish between evolutionary modes, a Brownian motion model was compared to selective regime shifts associated with the terrestrial-aquatic transition and at the base of Pinnipedia. Further, evolutionary patterns were estimated on individual branches using both Ornstein-Uhlenbeck and Independent Evolution models, to examine the origin of pinniped diversity. RESULTS: Pinnipeds exhibit greater cranial disparity than fissipeds, even though they are less taxonomically diverse and, as a clade nested within fissipeds, phylogenetically younger. Despite this, there is no increase in the rate of morphological evolution at the base of Pinnipedia, as would be predicted by an adaptive radiation model, and a Brownian motion model of evolution is supported. Instead basal pinnipeds populated new areas of morphospace via low to moderate rates of evolution in new directions, followed by later bursts within the crown-group, potentially associated with ecological diversification within the marine realm. CONCLUSION: The transition to an aquatic habitat in carnivorans resulted in a shift in cranial morphology without an increase in rate in the stem lineage, contra to the adaptive radiation model. Instead these data suggest a release from evolutionary constraint model, followed by aquatic diversifications within crown families.


Subject(s)
Biological Evolution , Carnivora/anatomy & histology , Carnivora/genetics , Skull/anatomy & histology , Animals , Caniformia/anatomy & histology , Caniformia/classification , Caniformia/genetics , Carnivora/classification , Ecosystem , Fossils , Phylogeny
10.
Proc Biol Sci ; 282(1817): 20151952, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26490792

ABSTRACT

Lineages arriving on islands may undergo explosive evolutionary radiations owing to the wealth of ecological opportunities. Although studies on insular taxa have improved our understanding of macroevolutionary phenomena, we know little about the macroevolutionary dynamics of continental exchanges. Here we study the evolution of eight Carnivora families that have migrated across the Northern Hemisphere to investigate if continental invasions also result in explosive diversification dynamics. We used a Bayesian approach to estimate speciation and extinction rates from a substantial dataset of fossil occurrences while accounting for the incompleteness of the fossil record. Our analyses revealed a strongly asymmetrical pattern in which North American lineages invading Eurasia underwent explosive radiations, whereas lineages invading North America maintained uniform diversification dynamics. These invasions into Eurasia were characterized by high rates of speciation and extinction. The radiation of the arriving lineages in Eurasia coincide with the decline of established lineages or phases of climate change, suggesting differences in the ecological settings between the continents may be responsible for the disparity in diversification dynamics. These results reveal long-term outcomes of biological invasions and show that the importance of explosive radiations in shaping diversity extends beyond insular systems and have significant impact at continental scales.


Subject(s)
Carnivora/classification , Animals , Bayes Theorem , Biological Evolution , Climate Change , Ecosystem , Extinction, Biological , Fossils , Genetic Speciation , Introduced Species
11.
Proc Natl Acad Sci U S A ; 109(5): 1584-8, 2012 Jan 31.
Article in English | MEDLINE | ID: mdl-22307615

ABSTRACT

The medial Permian (~270-260 Ma: Guadalupian) was a time of important tetrapod faunal changes, in particular reflecting a turnover from pelycosaurian- to therapsid-grade synapsids. Until now, most knowledge on tetrapod distribution during the medial Permian has come from fossils found in the South African Karoo and the Russian Platform, whereas other areas of Pangaea are still poorly known. We present evidence for the presence of a terrestrial carnivorous vertebrate from the Middle Permian of South America based on a complete skull. Pampaphoneus biccai gen. et sp. nov. was a dinocephalian "mammal-like reptile" member of the Anteosauridae, an early therapsid predator clade known only from the Middle Permian of Russia, Kazakhstan, China, and South Africa. The genus is characterized, among other features, by postorbital bosses, short, bulbous postcanines, and strongly recurved canines. Phylogenetic analysis indicates that the Brazilian dinocephalian occupies a middle position within the Anteosauridae, reinforcing the model of a global distribution for therapsids as early as the Guadalupian. The close phylogenetic relationship of the Brazilian species to dinocephalians from South Africa and the Russian Platform suggests a closer faunistic relationship between South America and eastern Europe than previously thought, lending support to a Pangaea B-type continental reconstruction.


Subject(s)
Carnivora , Fossils , Animals , Brazil , Carnivora/classification , Phylogeny
12.
BMC Evol Biol ; 14: 129, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24927753

ABSTRACT

BACKGROUND: The shape of the appendicular bones in mammals usually reflects adaptations towards different locomotor abilities. However, other aspects such as body size and phylogeny also play an important role in shaping bone design.We used 3D landmark-based geometric morphometrics to analyse the shape of the hind limb bones (i.e., femur, tibia, and pelvic girdle bones) of living and extinct terrestrial carnivorans (Mammalia, Carnivora) to quantitatively investigate the influence of body size, phylogeny, and locomotor behaviour in shaping the morphology of these bones. We also investigated the main patterns of morphological variation within a phylogenetic context. RESULTS: Size and phylogeny strongly influence the shape of the hind limb bones. In contrast, adaptations towards different modes of locomotion seem to have little influence. Principal Components Analysis and the study of phylomorphospaces suggest that the main source of variation in bone shape is a gradient of slenderness-robustness. CONCLUSION: The shape of the hind limb bones is strongly influenced by body size and phylogeny, but not to a similar degree by locomotor behaviour. The slender-robust "morphological bipolarity" found in bone shape variability is probably related to a trade-off between maintaining energetic efficiency and withstanding resistance to stresses. The balance involved in this trade-off impedes the evolution of high phenotypic variability. In fact, both morphological extremes (slender/robust) are adaptive in different selective contexts and lead to a convergence in shape among taxa with extremely different ecologies but with similar biomechanical demands. Strikingly, this "one-to-many mapping" pattern of evolution between morphology and ecology in hind limb bones is in complete contrast to the "many-to-one mapping" pattern found in the evolution of carnivoran skull shape. The results suggest that there are more constraints in the evolution of the shape of the appendicular skeleton than in that of skull shape because of the strong biomechanical constraints imposed by terrestrial locomotion.


Subject(s)
Biological Evolution , Bones of Lower Extremity/anatomy & histology , Carnivora/anatomy & histology , Adaptation, Physiological , Animals , Body Size , Bones of Lower Extremity/physiology , Bones of Upper Extremity/anatomy & histology , Bones of Upper Extremity/physiology , Carnivora/classification , Locomotion , Mammals/anatomy & histology , Phylogeny , Principal Component Analysis
13.
Proc Biol Sci ; 281(1778): 20132312, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24452020

ABSTRACT

The ecological and evolutionary processes leading to present-day biological diversity can be inferred by reconstructing the phylogeny of living organisms, and then modelling potential processes that could have produced this genealogy. A more direct approach is to estimate past processes from the fossil record. The Carnivora (Mammalia) has both substantial extant species richness and a rich fossil record. We compiled species-level data for over 10 000 fossil occurrences of nearly 1400 carnivoran species. Using this compilation, we estimated extinction, speciation and net diversification for carnivorans through the Neogene (22-2 Ma), while simultaneously modelling sampling probability. Our analyses show that caniforms (dogs, bears and relatives) have higher speciation and extinction rates than feliforms (cats, hyenas and relatives), but lower rates of net diversification. We also find that despite continual species turnover, net carnivoran diversification through the Neogene is surprisingly stable, suggesting a saturated adaptive zone, despite restructuring of the physical environment. This result is strikingly different from analyses of carnivoran diversification estimated from extant species alone. Two intervals show elevated diversification rates (13-12 Ma and 4-3 Ma), although the precise causal factors behind the two peaks in carnivoran diversification remain open questions.


Subject(s)
Carnivora/classification , Phylogeny , Animals , Carnivory , Extinction, Biological , Fossils , Genetic Speciation , Models, Theoretical , Species Specificity
14.
Syst Biol ; 62(3): 439-55, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23417679

ABSTRACT

The branching structure of biological evolution confers statistical dependencies on phenotypic trait values in related organisms. For this reason, comparative macroevolutionary studies usually begin with an inferred phylogeny that describes the evolutionary relationships of the organisms of interest. The probability of the observed trait data can be computed by assuming a model for trait evolution, such as Brownian motion, over the branches of this fixed tree. However, the phylogenetic tree itself contributes statistical uncertainty to estimates of rates of phenotypic evolution, and many comparative evolutionary biologists regard the tree as a nuisance parameter. In this article, we present a framework for analytically integrating over unknown phylogenetic trees in comparative evolutionary studies by assuming that the tree arises from a continuous-time Markov branching model called the Yule process. To do this, we derive a closed-form expression for the distribution of phylogenetic diversity (PD), which is the sum of branch lengths connecting the species in a clade. We then present a generalization of PD which is equivalent to the expected trait disparity in a set of taxa whose evolutionary relationships are generated by a Yule process and whose traits evolve by Brownian motion. We find expressions for the distribution of expected trait disparity under a Yule tree. Given one or more observations of trait disparity in a clade, we perform fast likelihood-based estimation of the Brownian variance for unresolved clades. Our method does not require simulation or a fixed phylogenetic tree. We conclude with a brief example illustrating Brownian rate estimation for 12 families in the mammalian order Carnivora, in which the phylogenetic tree for each family is unresolved.


Subject(s)
Biological Evolution , Carnivora/classification , Carnivora/genetics , Markov Chains , Models, Genetic , Animals , Body Size , Carnivora/anatomy & histology , Genetic Speciation , Likelihood Functions , Phylogeny
15.
J Anim Ecol ; 83(3): 671-80, 2014 May.
Article in English | MEDLINE | ID: mdl-24289314

ABSTRACT

Most parasites infect multiple hosts, but what factors determine the range of hosts a given parasite can infect? Understanding the broad scale determinants of parasite distributions across host lineages is important for predicting pathogen emergence in new hosts and for estimating pathogen diversity in understudied host species. In this study, we used a new data set on 793 parasite species reported from free-ranging populations of 64 carnivore species to examine the factors that influence parasite sharing between host species. Our results showed that parasites are more commonly shared between phylogenetically related host species pairs. Additionally, host species with higher similarity in biological traits and greater geographic range overlap were also more likely to share parasite species. Of three measures of phylogenetic relatedness considered here, the number divergence events that separated host species pairs most strongly influenced the likelihood of parasite sharing. We also showed that viruses and helminths tend to infect carnivore hosts within more restricted phylogenetic ranges than expected by chance. Overall, our results underscore the importance of host evolutionary history in determining parasite host range, even when simultaneously considering other factors such as host ecology and geographic distribution.


Subject(s)
Carnivora/parasitology , Host-Parasite Interactions , Parasites/classification , Phylogeny , Animals , Biodiversity , Biological Evolution , Carnivora/classification , Ecosystem , Host Specificity
16.
An Acad Bras Cienc ; 86(4): 1641-55, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25590705

ABSTRACT

The Brazilian Quaternary terrestrial Carnivora are represented by the following families: Canidae, Felidae, Ursidae, Procyonidae Mephitidae and Mustelidae. Their recent evolutionary history in South America is associated with the uplift of the Panamanian Isthmus, and which enabled the Great American Biotic Interchange (GABI). Here we present new fossil records of Carnivora found in a cave in Aurora do Tocantins, Tocantins, northern Brazil. A stratigraphical controlled collection in the sedimentary deposit of the studied cave revealed a fossiliferous level where the following Carnivora taxa were present: Panthera onca, Leopardus sp., Galictis cuja, Procyon cancrivorus, Nasua nasua and Arctotherium wingei. Dating by Electron Spinning Resonance indicates that this assemblage was deposited during the Last Glacial Maximum (LGM), at least, 22.000 YBP. The weasel, G. cuja, is currently reported much further south than the record presented here. This may suggest that the environment around the cave was relatively drier during the LGM, with more open vegetation, and more moderate temperatures than the current Brazilian Cerrado.


Subject(s)
Carnivora/anatomy & histology , Carnivora/classification , Fossils , Paleodontology , Tooth/anatomy & histology , Animals , Brazil
17.
Sci Rep ; 14(1): 23721, 2024 10 10.
Article in English | MEDLINE | ID: mdl-39390235

ABSTRACT

Variation in coat color is a prominent feature in carnivores, thought to be shaped by environmental factors. As new traits could allow populations to occupy novel niches and habitats, color polymorphism may be maintained by balancing selection. Consequently, color polymorphic species may speciate more rapidly and can give rise to monomorphic daughter species. We thus predicted that, within the Carnivora, (i) speciation rate is higher in polymorphic lineages, (ii) divergence between color polymorphic lineages is more recent, and (iii) within closely related groups, polymorphic lineages are ancestral and monomorphic lineages derived. We also tested whether accelerated speciation rates relate to niche breadth, measured by the number of occupied habitats and range size. We collected data of 48 polymorphic and 192 monomorphic carnivore species, and assessed speciation rates using phylogenetic comparative methods. We found that polymorphic carnivores had higher speciation rates (λ1 = 0.29, SD = 0.13) than monomorphic species (λ0 = 0.053, SD = 0.044). Hidden and quantitative state speciation and extinction models inferred that color polymorphism was the main contributing factor, and that niche breadth was not of influence. Therefore, other selective forces than spatial niche segregation, such as predator-prey coevolution, may contribute to color polymorphism in wild carnivores.


Subject(s)
Carnivora , Genetic Speciation , Phylogeny , Animals , Carnivora/genetics , Carnivora/classification , Ecosystem , Polymorphism, Genetic , Pigmentation/genetics
18.
Curr Biol ; 34(11): 2460-2473.e4, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38759651

ABSTRACT

The sabertooth morphology stands as a classic case of convergence, manifesting recurrently across various vertebrate groups, prominently within two carnivorans clades: felids and nimravids. Nonetheless, the evolutionary mechanisms driving these recurring phenotypes remain insufficiently understood, lacking a robust phylogenetic and spatiotemporal framework. We reconstruct the tempo and mode of craniomandibular evolution of Felidae and Nimravidae and evaluate the strength of the dichotomy between conical and saber-toothed species, as well as within saber-toothed morphotypes. To do so, we investigate morphological variation, convergence, phenotypic integration, and evolutionary rates, employing a comprehensive dataset of nearly 200 3D models encompassing mandibles and crania from both extinct and extant feline-like carnivorans, spanning their entire evolutionary timeline. Our results reject the hypothesis of a distinctive sabertooth morphology, revealing instead a continuous spectrum of feline-like phenotypes in both the cranium and mandible, with sporadic instances of unequivocal convergence. Disparity peaked at the end of the Miocene and is usually higher in clades containing taxa with extreme sabertoothed adaptations. We show that taxa with saberteeth exhibit a lower degree of craniomandibular integration, allowing to exhibit a greater range of phenotypes. Those same groups usually show a burst of morphological evolutionary rate at the beginning of their evolutionary history. Consequently, we propose that a reduced degree of integration coupled with rapid evolutionary rates emerge as key components in the development of a sabertooth morphology in multiple clades.


Subject(s)
Biological Evolution , Fossils , Mandible , Phylogeny , Skull , Animals , Mandible/anatomy & histology , Skull/anatomy & histology , Fossils/anatomy & histology , Carnivora/anatomy & histology , Carnivora/classification , Felidae/anatomy & histology , Felidae/classification , Phenotype
19.
BMC Evol Biol ; 13: 114, 2013 Jun 05.
Article in English | MEDLINE | ID: mdl-23738594

ABSTRACT

BACKGROUND: Many boreo-temperate mammals have a Pleistocene fossil record throughout Eurasia and North America, but only few have a contemporary distribution that spans this large area. Examples of Holarctic-distributed carnivores are the brown bear, grey wolf, and red fox, all three ecological generalists with large dispersal capacity and a high adaptive flexibility. While the two former have been examined extensively across their ranges, no phylogeographic study of the red fox has been conducted across its entire Holarctic range. Moreover, no study included samples from central Asia, leaving a large sampling gap in the middle of the Eurasian landmass. RESULTS: Here we provide the first mitochondrial DNA sequence data of red foxes from central Asia (Siberia), and new sequences from several European populations. In a range-wide synthesis of 729 red fox mitochondrial control region sequences, including 677 previously published and 52 newly obtained sequences, this manuscript describes the pattern and timing of major phylogeographic events in red foxes, using a Bayesian coalescence approach with multiple fossil tip and root calibration points. In a 335 bp alignment we found in total 175 unique haplotypes. All newly sequenced individuals belonged to the previously described Holarctic lineage. Our analyses confirmed the presence of three Nearctic- and two Japan-restricted lineages that were formed since the Mid/Late Pleistocene. CONCLUSIONS: The phylogeographic history of red foxes is highly similar to that previously described for grey wolves and brown bears, indicating that climatic fluctuations and habitat changes since the Pleistocene had similar effects on these highly mobile generalist species. All three species originally diversified in Eurasia and later colonized North America and Japan. North American lineages persisted through the last glacial maximum south of the ice sheets, meeting more recent colonizers from Beringia during postglacial expansion into the northern Nearctic. Both brown bears and red foxes colonized Japan's northern island Hokkaido at least three times, all lineages being most closely related to different mainland lineages. Red foxes, grey wolves, and brown bears thus represent an interesting case where species that occupy similar ecological niches also exhibit similar phylogeographic histories.


Subject(s)
Foxes/genetics , Animals , Bayes Theorem , Carnivora/classification , Carnivora/genetics , DNA, Mitochondrial/genetics , Fossils , Foxes/classification , Ice Cover , North America , Phylogeography
20.
Mol Phylogenet Evol ; 66(3): 748-56, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23147269

ABSTRACT

Insertion and deletion events (indels) provide a suite of markers with enormous potential for molecular phylogenetics. Using many more indel characters than those in previous studies, we here for the first time address the impact of indel inclusion on the phylogenetic inferences of Arctoidea (Mammalia: Carnivora). Based on 6843 indel characters from 22 nuclear intron loci of 16 species of Arctoidea, our analyses demonstrate that when the indels were not taken into consideration, the monophyly of Ursidae and Pinnipedia tree and the monophyly of Pinnipedia and Musteloidea tree were both recovered, whereas inclusion of indels by using three different indel coding schemes give identical phylogenetic tree topologies supporting the monophyly of Ursidae and Pinnipedia. Our work brings new perspectives on the previously controversial placements among Arctoidea families, and provides another example demonstrating the importance of identifying and incorporating indels in the phylogenetic analyses of introns. In addition, comparison of indel incorporation methods revealed that the three indel coding methods are all advantageous over treating indels as missing data, given that incorporating indels produces consistent results across methods. This is the first report of the impact of different indel coding schemes on phylogenetic reconstruction at the family level in Carnivora, which indicates that indels should be taken into account in the future phylogenetic analyses.


Subject(s)
Carnivora/classification , Carnivora/genetics , Classification/methods , INDEL Mutation/genetics , Phylogeny , Animals , Base Sequence , Bayes Theorem , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL