Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.705
Filter
1.
Cell ; 184(4): 943-956.e18, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33571432

ABSTRACT

Dopamine receptors, including D1- and D2-like receptors, are important therapeutic targets in a variety of neurological syndromes, as well as cardiovascular and kidney diseases. Here, we present five cryoelectron microscopy (cryo-EM) structures of the dopamine D1 receptor (DRD1) coupled to Gs heterotrimer in complex with three catechol-based agonists, a non-catechol agonist, and a positive allosteric modulator for endogenous dopamine. These structures revealed that a polar interaction network is essential for catecholamine-like agonist recognition, whereas specific motifs in the extended binding pocket were responsible for discriminating D1- from D2-like receptors. Moreover, allosteric binding at a distinct inner surface pocket improved the activity of DRD1 by stabilizing endogenous dopamine interaction at the orthosteric site. DRD1-Gs interface revealed key features that serve as determinants for G protein coupling. Together, our study provides a structural understanding of the ligand recognition, allosteric regulation, and G protein coupling mechanisms of DRD1.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/metabolism , Receptors, Dopamine D1/metabolism , Signal Transduction , Allosteric Regulation , Allosteric Site , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Catechols/metabolism , Cryoelectron Microscopy , Fenoldopam/chemistry , Fenoldopam/pharmacology , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/ultrastructure , HEK293 Cells , Humans , Ligands , Models, Molecular , Protein Multimerization , Receptors, Dopamine D1/chemistry , Receptors, Dopamine D1/ultrastructure , Receptors, Dopamine D2/metabolism , Structural Homology, Protein
2.
Nat Immunol ; 17(10): 1159-66, 2016 10.
Article in English | MEDLINE | ID: mdl-27548435

ABSTRACT

CD1a is a lipid-presenting molecule that is abundantly expressed on Langerhans cells. However, the in vivo role of CD1a has remained unclear, principally because CD1a is lacking in mice. Through the use of mice with transgenic expression of CD1a, we found that the plant-derived lipid urushiol triggered CD1a-dependent skin inflammation driven by CD4(+) helper T cells that produced the cytokines IL-17 and IL-22 (TH17 cells). Human subjects with poison-ivy dermatitis had a similar cytokine signature following CD1a-mediated recognition of urushiol. Among various urushiol congeners, we identified diunsaturated pentadecylcatechol (C15:2) as the dominant antigen for CD1a-restricted T cells. We determined the crystal structure of the CD1a-urushiol (C15:2) complex, demonstrating the molecular basis of urushiol interaction with the antigen-binding cleft of CD1a. In a mouse model and in patients with psoriasis, CD1a amplified inflammatory responses that were mediated by TH17 cells that reacted to self lipid antigens. Treatment with blocking antibodies to CD1a alleviated skin inflammation. Thus, we propose CD1a as a potential therapeutic target in inflammatory skin diseases.


Subject(s)
Antigens, CD1/metabolism , Autoantigens/metabolism , Catechols/metabolism , Dermatitis, Toxicodendron/immunology , Langerhans Cells/immunology , Psoriasis/immunology , Th17 Cells/immunology , Animals , Antibodies, Blocking/administration & dosage , Antigens, CD1/genetics , Antigens, CD1/immunology , Catechols/chemistry , Crystallography, X-Ray , Disease Models, Animal , Humans , Interleukin-17/metabolism , Interleukins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Protein Conformation , Toxicodendron/immunology , Interleukin-22
3.
Plant J ; 119(2): 927-941, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38872484

ABSTRACT

Acteoside is a bioactive phenylethanoid glycoside widely distributed throughout the plant kingdom. Because of its two catechol moieties, acteoside displays a variety of beneficial activities. The biosynthetic pathway of acteoside has been largely elucidated, but the assembly logic of two catechol moieties in acteoside remains unclear. Here, we identified a novel polyphenol oxidase OfPPO2 from Osmanthus fragrans, which could hydroxylate various monophenolic substrates, including tyrosine, tyrosol, tyramine, 4-hydroxyphenylacetaldehyde, salidroside, and osmanthuside A, leading to the formation of corresponding catechol-containing intermediates for acteoside biosynthesis. OfPPO2 could also convert osmanthuside B into acteoside, creating catechol moieties directly via post-modification of the acteoside skeleton. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis and subcellular localization assay further support the involvement of OfPPO2 in acteoside biosynthesis in planta. These findings suggest that the biosynthesis of acteoside in O. fragrans may follow "parallel routes" rather than the conventionally considered linear route. In support of this hypothesis, the glycosyltransferase OfUGT and the acyltransferase OfAT could direct the flux of diphenolic intermediates generated by OfPPO2 into acteoside. Significantly, OfPPO2 and its orthologs constitute a functionally conserved enzyme family that evolved independently from other known biosynthetic enzymes of acteoside, implying that the substrate promiscuity of this PPO family may offer acteoside-producing plants alternative ways to synthesize acteoside. Overall, this work expands our understanding of parallel pathways plants may employ to efficiently synthesize acteoside, a strategy that may contribute to plants' adaptation to environmental challenges.


Subject(s)
Catechol Oxidase , Glucosides , Phenols , Plant Proteins , Catechol Oxidase/metabolism , Catechol Oxidase/genetics , Glucosides/metabolism , Glucosides/biosynthesis , Phenols/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Biosynthetic Pathways , Oleaceae/enzymology , Oleaceae/genetics , Oleaceae/metabolism , Catechols/metabolism , Gene Expression Regulation, Plant , Polyphenols
4.
Plant J ; 118(3): 682-695, 2024 May.
Article in English | MEDLINE | ID: mdl-38251816

ABSTRACT

Ginger is cultivated in tropical and subtropical regions and is one of the most crucial spices worldwide owing to its special taste and scent. Here, we present a high-quality genome assembly for 'Small Laiwu Ginger', a famous cultivated ginger in northern China. The ginger genome was phased into two haplotypes, haplotype A (1.55Gb), and haplotype B (1.44Gb). Analysis of Ty1/Copia and Ty3/Gypsy LTR retrotransposon families revealed that both have undergone multiple retrotransposon bursts about 0-1 million years ago. In addition to a recent whole-genome duplication event, there has been a lineage-specific expansion of genes involved in stilbenoid, diarylheptanoid, and gingerol biosynthesis, thereby enhancing 6-gingerol biosynthesis. Furthermore, we focused on the biosynthesis of 6-gingerol, the most important gingerol, and screened key transcription factors ZoMYB106 and ZobHLH148 that regulate 6-gingerol synthesis by transcriptomic and metabolomic analysis in the ginger rhizome at four growth stages. The results of yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase reporter gene assays showed that both ZoMYB106 and ZobHLH148 bind to the promoters of the key rate-limiting enzyme genes ZoCCOMT1 and ZoCCOMT2 in the 6-gingerol synthesis pathway and promote their transcriptional activities. The reference genome, transcriptome, and metabolome data pave the way for further research on the molecular mechanism underlying the biosynthesis of 6-gingerol. Furthermore, it provides precious new resources for the study on the biology and molecular breeding of ginger.


Subject(s)
Catechols , Fatty Alcohols , Genome, Plant , Zingiber officinale , Zingiber officinale/genetics , Zingiber officinale/metabolism , Fatty Alcohols/metabolism , Catechols/metabolism , Genome, Plant/genetics , Evolution, Molecular , Retroelements/genetics , Haplotypes , Rhizome/genetics , Rhizome/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Gene Expression Regulation, Plant
5.
Proc Natl Acad Sci U S A ; 119(30): e2122309119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858445

ABSTRACT

Plants and microbes share common metabolic pathways for producing a range of bioproducts that are potentially foundational to the future bioeconomy. However, in planta accumulation and microbial production of bioproducts have never been systematically compared on an economic basis to identify optimal routes of production. A detailed technoeconomic analysis of four exemplar compounds (4-hydroxybenzoic acid [4-HBA], catechol, muconic acid, and 2-pyrone-4,6-dicarboxylic acid [PDC]) is conducted with the highest reported yields and accumulation rates to identify economically advantaged platforms and breakeven targets for plants and microbes. The results indicate that in planta mass accumulation ranging from 0.1 to 0.3 dry weight % (dwt%) can achieve costs comparable to microbial routes operating at 40 to 55% of maximum theoretical yields. These yields and accumulation rates are sufficient to be cost competitive if the products are sold at market prices consistent with specialty chemicals ($20 to $50/kg). Prices consistent with commodity chemicals will require an order-of-magnitude-greater accumulation rate for plants and/or yields nearing theoretical maxima for microbial production platforms. This comparative analysis revealed that the demonstrated accumulation rates of 4-HBA (3.2 dwt%) and PDC (3.0 dwt%) in engineered plants vastly outperform microbial routes, even if microbial platforms were to reach theoretical maximum yields. Their recovery and sale as part of a lignocellulosic biorefinery could enable biofuel prices to be competitive with petroleum. Muconic acid and catechol, in contrast, are currently more attractive when produced microbially using a sugar feedstock. Ultimately, both platforms can play an important role in replacing fossil-derived products.


Subject(s)
Bacteria , Biological Products , Biotechnology , Metabolic Networks and Pathways , Plants , Yeasts , Bacteria/genetics , Bacteria/metabolism , Biological Products/metabolism , Biotechnology/economics , Biotechnology/trends , Catechols/metabolism , Parabens/metabolism , Plants/genetics , Plants/metabolism , Pyrones/metabolism , Sorbic Acid/analogs & derivatives , Sorbic Acid/metabolism , Yeasts/genetics , Yeasts/metabolism
6.
Chembiochem ; 25(19): e202400139, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38682718

ABSTRACT

A binuclear Cu(II) cofactor was covalently bound to a lauric acid anchor. The resulting conjugate was characterized then combined with beta-lactoglobulin (ßLG) to generate a new biohybrid following the so-called "Trojan horse" strategy. This biohybrid was examined for its effectiveness in the oxidation of a catechol derivative to the corresponding quinone. The resulting biohybrid did not exhibit the sought after catecholase activity, likely due to its ability to bind and stabilize the semiquinone radical intermediate DTB-SQ. This semi-quinone radical was stabilized only in the presence of the protein and was characterized using optical and magnetic spectroscopic techniques, demonstrating stability for over 16 hours. Molecular docking studies revealed that this stabilization could occur owing to interactions of the semi-quinone with hydrophobic amino acid residues of ßLG.


Subject(s)
Benzoquinones , Copper , Lactoglobulins , Molecular Docking Simulation , Copper/chemistry , Copper/metabolism , Benzoquinones/chemistry , Benzoquinones/metabolism , Lactoglobulins/chemistry , Lactoglobulins/metabolism , Metalloproteins/chemistry , Metalloproteins/metabolism , Oxidation-Reduction , Binding Sites , Catechols/chemistry , Catechols/metabolism , Lauric Acids
7.
Biotechnol Bioeng ; 121(3): 1036-1049, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38116701

ABSTRACT

The biodegradation of chloroethene compounds under oxic and anoxic conditions is well established. However, the biological reactions that take place under microoxic conditions are unknown. Here, we report the biostimulated (BIOST: addition of lactate) and natural attenuated (NAT) degradation of chloroethene compounds under microoxic conditions by bacterial communities from chloroethene compounds-contaminated groundwater. The degradation of tetrachloroethene was significantly higher in NAT (15.14% on average) than in BIOST (10.13% on average) conditions at the end of the experiment (90 days). Sporomusa, Paracoccus, Sedimentibacter, Pseudomonas, and Desulfosporosinus were overrepresented in NAT and BIOST compared to the source groundwater. The NAT metagenome contains phenol hydrolase P1 oxygenase (dmpL), catechol-1,2-dioxygenase (catA), catechol-2,3-dioxygenases (dmpB, todE, and xylE) genes, which could be involved in the cometabolic degradation of chloroethene compounds; and chlorate reductase (clrA), that could be associated with partial reductive dechlorination of chloroethene compounds. Our data provide a better understanding of the bacterial communities, genes, and pathways potentially implicated in the reductive and cometabolic degradation of chloroethene compounds under microoxic conditions.


Subject(s)
Bacteria , Tetrachloroethylene , Bacteria/metabolism , Tetrachloroethylene/metabolism , Lactic Acid/metabolism , Biodegradation, Environmental , Catechols/metabolism
8.
J Neural Transm (Vienna) ; 131(3): 213-228, 2024 03.
Article in English | MEDLINE | ID: mdl-38238531

ABSTRACT

The present study was performed to examine if catechol oxidation is higher in brains from patients with Parkinson's disease compared to age-matched controls, and if catechol oxidation increases with age. Brain tissue from Parkinson patients and age-matched controls was examined for oxidation of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylalanine (DOPA) to corresponding quinones, by measurement of 5-S-cysteinyl-dopamine, 5-S-cysteinyl-DOPAC and 5-S-cysteinyl-DOPA. The cysteinyl catechols are assumed to be biomarkers for DA, DOPAC and DOPA autoxidation and part of the biosynthetic pathway of neuromelanin. The concentrations of the 5-S-cysteinyl catechols were lower, whereas the 5-S-cysteinyl-DA/DA and 5-S-cysteinyl-DOPAC/DOPAC ratios tended to be higher in the Parkinson group compared to controls, which was interpreted as a higher degree of oxidation. High 5-S-cysteinyl-DA/DA ratios were found in the substantia nigra of a sub-population of the Parkinson group. Based on 5-S-cysteinyl-DA/DA ratios, dopamine oxidation was found to increase statistically significantly with age in the caudate nucleus, and non-significantly in the substantia nigra. In conclusion, the occurrence of 5-S-cysteinyl-DA, 5-S-cysteinyl-DOPAC and 5-S-cysteinyl-DOPA was demonstrated in dopaminergic brain areas of humans, a tendency for higher oxidation of DA in the Parkinson group compared to controls was observed as well as a statistically significant increase in DA oxidation with age. Possibly, autoxidation of DA and other catechols are involved in both normal and pathological ageing of the brain. This study confirms one earlier but small study, as well as complements one study on non-PD cases and one study on both PD cases and controls on NM bound or integrated markers or catechols.


Subject(s)
Cysteinyldopa/analogs & derivatives , Dopamine , Parkinson Disease , Humans , Dopamine/metabolism , Parkinson Disease/metabolism , 3,4-Dihydroxyphenylacetic Acid/metabolism , Dihydroxyphenylalanine , Brain/metabolism , Catechols/metabolism , Aging
9.
Ecotoxicol Environ Saf ; 281: 116665, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964062

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), notably benzo[a]pyrene (BaP), are environmental contaminants with multiple adverse ecological implications. Numerous studies have suggested the use of BaP biodegradation using various bacterial strains to remove BaP from the environment. This study investigates the BaP biodegradation capability of Pigmentiphaga kullae strain KIT-003, isolated from the Nak-dong River (South Korea) under specific environmental conditions. The optimum conditions of biodegradation were found to be pH 7.0, 35°C, and a salinity of 0 %. GC-MS analysis suggested alternative pathways by which KIT-003 produced catechol from BaP through several intermediate metabolites, including 4-formylchrysene-5-carboxylic acid, 5,6-dihydro-5,6-dihydroxychrysene-5-carboxylic acid (isomer: 3,4-dihydro-3,4-dihydroxychrysene-4-carboxylic acid), naphthalene-1,2-dicarboxylic acid, and 2-hydroxy-1-naphthoic acid. Proteomic profiles indicated upregulation of enzymes associated with aromatic compound degradation, such as nahAc and nahB, and of those integral to the tricarboxylic acid cycle, reflecting the strain's adaptability to and degradation of BaP. Lipidomic analysis of KIT-003 demonstrated that BaP exposure induced an accumulation of glycerolipids such as diacylglycerol and triacylglycerol, indicating their crucial role in bacterial adaptation mechanisms under BaP stress. This study provides significant scientific knowledge regarding the intricate mechanisms involved in BaP degradation by microorganisms.


Subject(s)
Benzo(a)pyrene , Biodegradation, Environmental , Benzo(a)pyrene/metabolism , Benzo(a)pyrene/toxicity , Republic of Korea , Proteomics , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Gas Chromatography-Mass Spectrometry , Catechols/metabolism , Rivers/chemistry , Rivers/microbiology , Multiomics
10.
J Biol Chem ; 298(7): 102046, 2022 07.
Article in English | MEDLINE | ID: mdl-35597283

ABSTRACT

Streptococcus pneumoniae (pneumococcus) is a Gram-positive commensal and human respiratory pathogen. How this bacterium satisfies its nutritional iron (Fe) requirement in the context of endogenously produced hydrogen peroxide is not well understood. Here, we characterize a novel virulence-associated Rrf2-family transcriptional repressor that we term SifR (streptococcal IscR-like family transcriptional repressor) encoded by spd_1448 and conserved in Streptococci. Global transcriptomic analysis of a ΔsifR strain defines the SifR regulon as genes encoding a candidate catechol dioxygenase CatE, an uncharacterized oxidoreductase YwnB, a candidate flavin-dependent ferric reductase YhdA, a candidate heme-based ferric reductase domain-containing protein and the Piu (pneumococcus iron uptake) Fe transporter (piuBCDA). Previous work established that membrane-anchored PiuA binds FeIII-bis-catechol or monocatechol complexes with high affinity, including the human catecholamine stress hormone, norepinephrine. We demonstrate that SifR senses quinone via a single conserved cysteine that represses its regulon when in the reduced form. Upon reaction with catechol-derived quinones, we show that SifR dissociates from the DNA leading to regulon derepression, allowing the pneumococcus to access a catechol-derived source of Fe while minimizing reactive electrophile stress induced by quinones. Consistent with this model, we show that CatE is an FeII-dependent 2,3-catechol dioxygenase with broad substrate specificity, YwnB is an NAD(P)H-dependent quinone reductase capable of reducing the oxidized and cyclized norepinephrine, adrenochrome, and YhdA is capable of reducing a number of FeIII complexes, including PiuA-binding transport substrates. These findings are consistent with a model where FeIII-catechol complexes serve as significant nutritional Fe sources in the host.


Subject(s)
Bacterial Proteins , Catechols , Iron , Quinones , Streptococcus pneumoniae , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catechols/chemistry , Catechols/metabolism , Dioxygenases/metabolism , Iron/metabolism , Norepinephrine/metabolism , Quinones/metabolism , Regulon , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism
11.
Metab Eng ; 75: 153-169, 2023 01.
Article in English | MEDLINE | ID: mdl-36563956

ABSTRACT

Lignin displays a highly challenging renewable. To date, massive amounts of lignin, generated in lignocellulosic processing facilities, are for the most part merely burned due to lacking value-added alternatives. Aromatic lignin monomers of recognized relevance are in particular vanillin, and to a lesser extent vanillate, because they are accessible at high yield from softwood-lignin using industrially operated alkaline oxidative depolymerization. Here, we metabolically engineered C. glutamicum towards cis, cis-muconate (MA) production from these key aromatics. Starting from the previously created catechol-based producer C. glutamicum MA-2, systems metabolic engineering first discovered an unspecific aromatic aldehyde reductase that formed aromatic alcohols from vanillin, protocatechualdehyde, and p- hydroxybenzaldehyde, and was responsible for the conversion up to 57% of vanillin into vanillyl alcohol. The alcohol was not re-consumed by the microbe later, posing a strong drawback on the producer. The identification and subsequent elimination of the encoding fudC gene completely abolished vanillyl alcohol formation. Second, the initially weak flux through the native vanillin and vanillate metabolism was enhanced up to 2.9-fold by implementing synthetic pathway modules. Third, the most efficient protocatechuate decarboxylase AroY for conversion of the midstream pathway intermediate protocatechuate into catechol was identified out of several variants in native and codon optimized form and expressed together with the respective helper proteins. Fourth, the streamlined modules were all genomically combined which yielded the final strain MA-9. MA-9 produced bio-based MA from vanillin, vanillate, and seven structurally related aromatics at maximum selectivity. In addition, MA production from softwood-based vanillin, obtained through alkaline depolymerization, was demonstrated.


Subject(s)
Corynebacterium glutamicum , Lignin , Lignin/metabolism , Metabolic Engineering , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Catechols/metabolism
12.
Microb Cell Fact ; 22(1): 60, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36998045

ABSTRACT

BACKGROUND: Orsellinic acid (2,4-dihydroxy-6-methylbenzoic acid, OA) and its structural analog o-Orsellinaldehyde, have become widely used intermediates in clinical drugs synthesis. Although the research on the biosynthesis of such compounds has made significant progress, due to the lack of suitable hosts, there is still far from the industrial production of such compounds based on synthetic biology. RESULTS: With the help of genome mining, we found a polyketide synthase (PKS, HerA) in the genome of the Hericium erinaceus, which shares 60% amino acid sequence homology with ArmB from Armillaria mellea, an identified PKS capable of synthesizing OA. To characterize the function of HerA, we cloned herA and heterologously expressed it in Aspergillus oryzae, and successfully detected the production of OA. Subsequently, the introduction of an incomplete PKS (Pks5) from Ustilago maydis containing only three domains (AMP-ACP-R), which was into herA-containing A. oryzae, the resulted in the production of o-Orsellinaldehyde. Considering the economic value of OA and o-Orsellinaldehyde, we then optimized the yield of these compounds in A. oryzae. The screening showed that when maltose was used as carbon source, the yields of OA and o-Orsellinaldehyde were 57.68 mg/L and 15.71 mg/L respectively, while the yields were 340.41 mg/Kg and 84.79 mg/Kg respectively in rice medium for 10 days. CONCLUSIONS: Herein, we successfully expressed the genes of basidiomycetes using A. oryzae heterologous host. As a fungus of ascomycetes, which not only correctly splices genes of basidiomycetes containing multiple introns, but also efficiently produces their metabolites. This study highlights that A. oryzae is an excellent host for the heterologous production of fungal natural products, and has the potential to become an efficient chassis for the production of basidiomycete secondary metabolites in synthetic biology.


Subject(s)
Agaricales , Aspergillus oryzae , Polyketides , Aspergillus oryzae/genetics , Aspergillus oryzae/metabolism , Polyketides/metabolism , Catechols/metabolism
13.
Proc Natl Acad Sci U S A ; 117(14): 7613-7621, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32209666

ABSTRACT

Inspired largely by the role of the posttranslationally modified amino acid dopa (DOPA) in mussel adhesion, catechol functional groups have become commonplace in medical adhesives, tissue scaffolds, and advanced smart polymers. Yet, the complex redox chemistry of catechol groups complicates cross-link regulation, hampering fabrication and the long-term stability/performance of mussel-inspired polymers. Here, we investigated the various fates of DOPA residues in proteins comprising mussel byssus fibers before, during, and after protein secretion. Utilizing a combination of histological staining and confocal Raman spectroscopy on native tissues, as well as peptide-based cross-linking studies, we have identified at least two distinct DOPA-based cross-linking pathways during byssus fabrication, achieved by oxidative covalent cross-linking or formation of metal coordination interactions under reducing conditions, respectively. We suggest that these end states are spatiotemporally regulated by the microenvironments in which the proteins are stored prior to secretion, which are retained after formation-in particular, due to the presence of reducing moieties. These findings provide physicochemical pathways toward greater control over properties of synthetic catechol-based polymers and adhesives.


Subject(s)
Bivalvia/metabolism , Catechols/metabolism , Dihydroxyphenylalanine/metabolism , Amino Acid Sequence , Animals , Catechols/chemistry , Oxidation-Reduction , Peptides/chemistry , Peptides/metabolism
14.
Ecotoxicol Environ Saf ; 249: 114464, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-38321683

ABSTRACT

Skatole is a typical malodor compound in animal wastes. Several skatole-degrading bacterial strains have been obtained, whereas the molecular response of strains to skatole stress has not been well elucidated. Herein, the skatole degradation by a Gram-positive strain Rhodococcus aetherivorans DMU1 was investigated. Strain DMU1 showed high efficiency in skatole degradation under the conditions of 25-40 °C and pH 7.0-10.0. It could utilize various aromatics, including cresols, phenol, and methylindoles, as the sole carbon source for growth, implying its potential in the bioremediation application of animal wastes. Transcriptomic sequencing revealed that 328 genes were up-regulated and 640 genes were down-regulated in strain DMU1 when grown in the skatole-containing medium. Skatole increased the gene expression levels of antioxidant defense systems and heat shock proteins. The expression of ribosome-related genes was significantly inhibited which implied the growth inhibition of skatole. A rich set of oxidoreductases were changed, and a novel gene cluster containing the flavoprotein monooxygenase and ring-hydroxylating oxygenase genes was highly up-regulated, which was probably involved in skatole upstream degradation. The upregulation pattern of this gene cluster was further verified by qRT-PCR assay. Furthermore, skatole should be mainly degraded via the catechol ortho-cleavage pathway with cat25170 as the functional gene. The gene cat25170 was cloned and expressed in E. coli BL21(DE3). Pure enzyme assays showed that Cat25170 could catalyze catechol with Km 9.96 µmol/L and kcat 12.36 s-1.


Subject(s)
Rhodococcus , Skatole , Animals , Skatole/metabolism , Escherichia coli/genetics , Rhodococcus/metabolism , Catechols/metabolism , Gene Expression Profiling , Biodegradation, Environmental
15.
Nano Lett ; 22(15): 6245-6253, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35900805

ABSTRACT

Cytosolic delivery of peptides remains a challenging task because of the limited binding sites on peptides and the existence of multiple intracellular barriers. Here, we proposed the use of polycatechols with a high cell permeability to deliver peptides of different physicochemical properties using the catechol-boronate chemistry. Peptides were decorated with boronate moieties via three strategies, and the introduced boronate groups greatly increased the binding affinity of cargo peptides with polycatechols. The loading peptides could be released under the endolysosomal acidity. When the cargo peptide was modified with boronate moiety via a p-hydroxybenzylcarbamate self-immolative spacer, it could be loaded by polycatechols and released in a traceless manner triggered by reactive oxygen species. The proposed strategies greatly promote the cytosolic delivery efficiency of different peptides into various cell lines and restored their biofunctions after intracellular delivery and release. This study provides a general and robust platform for the intracellular delivery of membrane-impermeable peptides.


Subject(s)
Catechols , Peptides , Catechols/metabolism , Cytosol/metabolism , Peptides/metabolism
16.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298424

ABSTRACT

Black barley seeds are a health-beneficial diet resource because of their special chemical composition and antioxidant properties. The black lemma and pericarp (BLP) locus was mapped in a genetic interval of 0.807 Mb on chromosome 1H, but its genetic basis remains unknown. In this study, targeted metabolomics and conjunctive analyses of BSA-seq and BSR-seq were used to identify candidate genes of BLP and the precursors of black pigments. The results revealed that five candidate genes, purple acid phosphatase, 3-ketoacyl-CoA synthase 11, coiled-coil domain-containing protein 167, subtilisin-like protease, and caffeic acid-O-methyltransferase, of the BLP locus were identified in the 10.12 Mb location region on the 1H chromosome after differential expression analysis, and 17 differential metabolites, including the precursor and repeating unit of allomelanin, were accumulated in the late mike stage of black barley. Phenol nitrogen-free precursors such as catechol (protocatechuic aldehyde) or catecholic acids (caffeic, protocatechuic, and gallic acids) may promote black pigmentation. BLP can manipulate the accumulation of benzoic acid derivatives (salicylic acid, 2,4-dihydroxybenzoic acid, gallic acid, gentisic acid, protocatechuic acid, syringic acid, vanillic acid, protocatechuic aldehyde, and syringaldehyde) through the shikimate/chorismite pathway other than the phenylalanine pathway and alter the metabolism of the phenylpropanoid-monolignol branch. Collectively, it is reasonable to infer that black pigmentation in barley is due to allomelanin biosynthesis in the lemma and pericarp, and BLP regulates melanogenesis by manipulating the biosynthesis of its precursors.


Subject(s)
Hordeum , Hordeum/genetics , Hordeum/metabolism , Melanins/metabolism , Catechols/metabolism
17.
J Environ Sci (China) ; 127: 688-699, 2023 May.
Article in English | MEDLINE | ID: mdl-36522097

ABSTRACT

3-Methylindole (skatole) is regarded as one of the most offensive compounds in odor emission. Biodegradation is feasible for skatole removal but the functional species and genes responsible for skatole degradation remain enigmatic. In this study, an efficient aerobic skatole-degrading consortium was obtained. Rhodococcus and Pseudomonas were identified as the two major and active populations by integrated metagenomic and metatranscriptomic analyses. Bioinformatic analyses indicated that the skatole downstream degradation was mainly via the catechol pathway, and upstream degradation was likely catalyzed by the aromatic ring-hydroxylating oxygenase and flavin monooxygenase. Genome binning and gene analyses indicated that Pseudomonas, Pseudoclavibacter, and Raineyella should cooperate with Rhodococcus for the skatole degradation process. Moreover, a pure strain Rhodococcus sp. DMU1 was successfully obtained which could utilize skatole as the sole carbon source. Complete genome sequencing showed that strain DMU1 was the predominant population in the consortium. Further crude enzyme and RT-qPCR assays indicated that strain DMU1 degraded skatole through the catechol ortho-cleavage pathway. Collectively, our results suggested that synergistic degradation of skatole in the consortium should be performed by diverse bacteria with Rhodococcus as the primary degrader, and the degradation mainly proceeded via the catechol pathway.


Subject(s)
Rhodococcus , Skatole , Skatole/metabolism , Biodegradation, Environmental , Rhodococcus/genetics , Rhodococcus/metabolism , Oxygenases/genetics , Oxygenases/metabolism , Pseudomonas/metabolism , Catechols/metabolism
18.
Metab Eng ; 72: 337-352, 2022 07.
Article in English | MEDLINE | ID: mdl-35545205

ABSTRACT

Polyethylene terephthalate (PET), the most common synthetic polyester today, is largely produced from fossil resources, contributing to global warming. Consequently, sustainable sources must be developed to meet the increasing demand for this useful polymer. Here, we demonstrate a cascaded value chain that provides green PET from lignin, the world's most underutilized renewable, via fermentative production of cis, cis-muconate (MA) from lignin-based aromatics as a central step. Catechol, industrially the most relevant but apparently also a highly toxic lignin-related aromatic, strongly inhibited MA-producing Pseudomonas putida MA-1. Assessed by 13C metabolic flux analysis, the microbe substantially redirected its carbon core fluxes, resulting in enhanced NADPH supply for stress defense but causing additional ATP costs. The reconstruction of MA production in a genome-reduced P. putida chassis yielded novel producers with superior pathway fluxes and enhanced robustness to catechol and a wide range of other aromatics. Using the advanced producer P. putida MA-10 catechol, MA could be produced in a fed-batch process from catechol (plus glucose as additional growth substrate) up to an attractive titer of 74 g L-1 and a space-time-yield of 1.4 g L-1 h-1. In terms of co-consumed sugar, the further streamlined strain MA-11 achieved the highest yield of 1.4 mol MA (mol glucose)-1, providing a striking economic advantage. Following fermentative production, bio-based MA was purified and used to chemically synthetize the PET monomer terephthalic acid and the comonomer diethylene glycol terephthalic acid through five steps, which finally enabled the first green PET from lignin.


Subject(s)
Pseudomonas putida , Catechols/metabolism , Glucose/metabolism , Lignin/metabolism , Oxidation-Reduction , Polyethylene Terephthalates/metabolism , Pseudomonas putida/genetics , Pseudomonas putida/metabolism
19.
Plant Physiol ; 185(3): 876-891, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33793924

ABSTRACT

The hormone salicylic acid (SA) plays crucial roles in plant defense, stress responses, and in the regulation of plant growth and development. Whereas the biosynthetic pathways and biological functions of SA have been extensively studied, SA catabolism is less well understood. In this study, we report the identification and functional characterization of an FAD/NADH-dependent SA 1-hydroxylase from tomato (Solanum lycopersicum; SlSA1H), which catalyzes the oxidative decarboxylation of SA to catechol. Transcript levels of SlSA1H were highest in stems and its expression was correlated with the formation of the methylated catechol derivatives guaiacol and veratrole. Consistent with a role in SA catabolism, SlSA1H RNAi plants accumulated lower amounts of guaiacol and failed to produce any veratrole. Two O-methyltransferases involved in the conversion of catechol to guaiacol and guaiacol to veratrole were also functionally characterized. Subcellular localization analyses revealed the cytosolic localization of this degradation pathway. Phylogenetic analysis and functional characterization of SA1H homologs from other species indicated that this type of FAD/NADH-dependent SA 1-hydroxylases evolved recently within the Solanaceae family.


Subject(s)
Mixed Function Oxygenases/metabolism , Salicylic Acid/metabolism , Catechols/metabolism , Gene Expression Regulation, Plant , Guaiacol/metabolism , Solanum lycopersicum/enzymology , Solanum lycopersicum/metabolism , Phylogeny , Plant Proteins/metabolism , Protein O-Methyltransferase/metabolism
20.
Appl Microbiol Biotechnol ; 106(12): 4499-4509, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35687156

ABSTRACT

Lignin is the most abundant aromatic compound in nature, and it plays an important role in the carbon cycle. White-rot fungi are microbes that are capable of efficiently degrading lignin. Enzymes from these fungi possess exceptional oxidative potential and have gained increasing importance for improving bioprocesses, such as the degradation of organic pollutants. The aim of this study was to identify the enzymes involved in the ring cleavage of the lignin-derived aromatic 1,2,4-trihydroxybenzene (THB) in Phanerochaete chrysosporium, a lignin-degrading basidiomycete. Two intradiol dioxygenases (IDDs), PcIDD1 and PcIDD2, were identified and produced as recombinant proteins in Escherichia coli. In the presence of O2, PcIDD1 and PcIDD2 acted on eight and two THB derivatives, respectively, as substrates. PcIDD1 and PcIDD2 catalyze the ring cleavage of lignin-derived fragments, such as 6-methoxy-1,2,4-trihydroxybenzene (6-MeOTHB) and 3-methoxy-1,2-catechol. The current study also revealed that syringic acid (SA) was converted to 5-hydroxyvanillic acid, 2,6-dimethoxyhydroquinone, and 6-MeOTHB by fungal cells, suggesting that PcIDD1 and PcIDD2 may be involved in aromatic ring fission of 6-MeOTHB for SA degradation. This is the first study to show 6-MeOTHB dioxygenase activity of an IDD superfamily member. These findings highlight the unique and broad substrate spectra of PcIDDs, rendering it an attractive candidate for biotechnological application. KEY POINTS: • Novel intradiol dioxygenases (IDD) in lignin degradation were characterized. • PcIDDs acted on lignin-derived fragments and catechol derivatives. • Dioxygenase activity on 6-MeOTHB was identified in IDD superfamily enzymes.


Subject(s)
Dioxygenases , Phanerochaete , Catechols/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Hydroquinones , Lignin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL