Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Appl Microbiol Biotechnol ; 107(13): 4261-4274, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37212884

ABSTRACT

The development of multifunctional particles using polymeric scaffolds is an emerging technology for many nanobiotechnological applications. Here we present a system for the production of multifunctional complexes, based on the high affinity non-covalent interaction of cohesin and dockerin modules complementary fused to decameric Brucella abortus lumazine synthase (BLS) subunits, and selected target proteins, respectively. The cohesin-BLS scaffold was solubly expressed in high yield in Escherichia coli, and revealed a high thermostability. The production of multienzymatic particles using this system was evaluated using the catalytic domain of Cellulomonas fimi endoglucanase CenA recombinantly fused to a dockerin module. Coupling of the enzyme to the scaffold was highly efficient and occurred with the expected stoichiometry. The decavalent enzymatic complexes obtained showed higher cellulolytic activity and association to the substrate compared to equivalent amounts of the free enzyme. This phenomenon was dependent on the multiplicity and proximity of the enzymes coupled to the scaffold, and was attributed to an avidity effect in the polyvalent enzyme interaction with the substrate. Our results highlight the usefulness of the scaffold presented in this work for the development of multifunctional particles, and the improvement of lignocellulose degradation among other applications. KEY POINTS: • New system for multifunctional particle production using the BLS scaffold • Higher cellulolytic activity of polyvalent endoglucanase compared to the free enzyme • Amount of enzyme associated to cellulose is higher for the polyvalent endoglucanase.


Subject(s)
Cellulase , Cellulomonas , Cellulase/metabolism , Cellulomonas/genetics , Cellulomonas/metabolism , Catalytic Domain , Bacterial Proteins/metabolism
2.
Proc Natl Acad Sci U S A ; 117(33): 19896-19903, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32747547

ABSTRACT

Cellulose is the most abundant biomass on Earth, and many microorganisms depend on it as a source of energy. It consists mainly of crystalline and amorphous regions, and natural degradation of the crystalline part is highly dependent on the degree of processivity of the degrading enzymes (i.e., the extent of continuous hydrolysis without detachment from the substrate cellulose). Here, we report high-speed atomic force microscopic (HS-AFM) observations of the movement of four types of cellulases derived from the cellulolytic bacteria Cellulomonas fimi on various insoluble cellulose substrates. The HS-AFM images clearly demonstrated that two of them (CfCel6B and CfCel48A) slide on crystalline cellulose. The direction of processive movement of CfCel6B is from the nonreducing to the reducing end of the substrate, which is opposite that of processive cellulase Cel7A of the fungus Trichoderma reesei (TrCel7A), whose movement was first observed by this technique, while CfCel48A moves in the same direction as TrCel7A. When CfCel6B and TrCel7A were mixed on the same substrate, "traffic accidents" were observed, in which the two cellulases blocked each other's progress. The processivity of CfCel6B was similar to those of fungal family 7 cellulases but considerably higher than those of fungal family 6 cellulases. The results indicate that bacteria utilize family 6 cellulases as high-processivity enzymes for efficient degradation of crystalline cellulose, whereas family 7 enzymes have the same function in fungi. This is consistent with the idea of convergent evolution of processive cellulases in fungi and bacteria to achieve similar functionality using different protein foldings.


Subject(s)
Bacterial Proteins/chemistry , Cellulases/chemistry , Cellulomonas/enzymology , Fungal Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Biological Evolution , Cellulases/genetics , Cellulases/metabolism , Cellulomonas/chemistry , Cellulomonas/genetics , Cellulomonas/metabolism , Cellulose/chemistry , Cellulose/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Kinetics , Microscopy, Atomic Force
3.
Appl Environ Microbiol ; 88(15): e0096822, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35862679

ABSTRACT

Cellulomonas flavigena is a saprotrophic bacterium that encodes, within its genome, four predicted lytic polysaccharide monooxygenases (LPMOs) from Auxiliary Activity family 10 (AA10). We showed previously that three of these cleave the plant polysaccharide cellulose by oxidation at carbon-1 (J. Li, L. Solhi, E.D. Goddard-Borger, Y. Mattieu et al., Biotechnol Biofuels 14:29, 2021, https://doi.org/10.1186/s13068-020-01860-3). Here, we present the biochemical characterization of the fourth C. flavigena AA10 member (CflaLPMO10D) as a chitin-active LPMO. Both the full-length CflaLPMO10D-Carbohydrate-Binding Module family 2 (CBM2) and catalytic module-only proteins were produced in Escherichia coli using the native general secretory (Sec) signal peptide. To quantify chitinolytic activity, we developed a high-performance anion-exchange chromatography-pulsed amperometric detection (HPAEC-PAD) method as an alternative to the established hydrophilic interaction liquid ion chromatography coupled with UV detection (HILIC-UV) method for separation and detection of released oxidized chito-oligosaccharides. Using this method, we demonstrated that CflaLPMO10D is strictly active on the ß-allomorph of chitin, with optimal activity at pH 5 to 6 and a preference for ascorbic acid as the reducing agent. We also demonstrated the importance of the CBM2 member for both mediating enzyme localization to substrates and prolonging LPMO activity. Together with previous work, the present study defines the distinct substrate specificities of the suite of C. flavigena AA10 members. Notably, a cross-genome survey of AA10 members indicated that chitinolytic LPMOs are, in fact, rare among Cellulomonas bacteria. IMPORTANCE Species from the genus Cellulomonas have a long history of study due to their roles in biomass recycling in nature and corresponding potential as sources of enzymes for biotechnological applications. Although Cellulomonas species are more commonly associated with the cleavage and utilization of plant cell wall polysaccharides, here, we show that C. flavigena produces a unique lytic polysaccharide monooxygenase with activity on ß-chitin, which is found, for example, in arthropods. The limited distribution of orthologous chitinolytic LPMOs suggests adaptation of individual cellulomonads to specific nutrient niches present in soil ecosystems. This research provides new insight into the biochemical specificity of LPMOs in Cellulomonas species and related bacteria, and it raises new questions about the physiological function of these enzymes.


Subject(s)
Cellulomonas , Mixed Function Oxygenases , Bacteria/metabolism , Cellulomonas/metabolism , Chitin/metabolism , Ecosystem , Mixed Function Oxygenases/metabolism , Polysaccharides/metabolism , Substrate Specificity
4.
Appl Microbiol Biotechnol ; 106(13-16): 5035-5049, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35799069

ABSTRACT

Valorization of the hemicellulose fraction of plant biomass is crucial for the sustainability of lignocellulosic biorefineries. The Cellulomonas genus comprises Gram-positive Actinobacteria that degrade cellulose and other polysaccharides by secreting a complex array of enzymes. In this work, we studied the specificity and synergy of two enzymes, CsXyn10A and CsAbf62A, which were identified as highly abundant in the extracellular proteome of Cellulomonas sp. B6 when grown on wheat bran. To explore their potential for bioprocessing, the recombinant enzymes were expressed and their activities were thoroughly characterized. rCsXyn10A is a GH10 endo-xylanase (EC 3.2.1.8), active across a broad pH range (5 to 9), at temperatures up to 55 °C. rCsAbf62A is an α-L-arabinofuranosidase (ABF) (EC 3.2.1.55) that specifically removes α-1,2 and α-1,3-L-arabinosyl substituents from arabino-xylo-oligosaccharides (AXOS), xylan, and arabinan backbones, but it cannot act on double-substituted residues. It also has activity on pNPA. No differences were observed regarding activity when CsAbf62A was expressed with its appended CBM13 module or only the catalytic domain. The amount of xylobiose released from either wheat arabinoxylan or arabino-xylo-oligosaccharides increased significantly when rCsXyn10A was supplemented with rCsAbf62A, indicating that the removal of arabinosyl residues by rCsAbf62A improved rCsXyn10A accessibility to ß-1,4-xylose linkages, but no synergism was observed in the deconstruction of wheat bran. These results contribute to designing tailor-made, substrate-specific, enzymatic cocktails for xylan valorization. KEY POINTS: • rCsAbf62A removes α-1,2 and α-1,3-L-arabinosyl substituents from arabino-xylo-oligosaccharides, xylan, and arabinan backbones. • The appended CBM13 of rCsAbf62A did not affect the specific activity of the enzyme. • Supplementation of rCsXyn10A with rCsAbf62A improves the degradation of AXOS and xylan.


Subject(s)
Cellulomonas , Xylans , Cellulomonas/genetics , Cellulomonas/metabolism , Dietary Fiber , Endo-1,4-beta Xylanases/metabolism , Glycoside Hydrolases/metabolism , Hydrolysis , Oligosaccharides/metabolism , Substrate Specificity , Xylans/metabolism
5.
J Biol Chem ; 295(43): 14606-14617, 2020 10 23.
Article in English | MEDLINE | ID: mdl-32816991

ABSTRACT

Cellobiohydrolases directly convert crystalline cellulose into cellobiose and are of biotechnological interest to achieve efficient biomass utilization. As a result, much research in the field has focused on identifying cellobiohydrolases that are very fast. Cellobiohydrolase A from the bacterium Cellulomonas fimi (CfCel6B) and cellobiohydrolase II from the fungus Trichoderma reesei (TrCel6A) have similar catalytic domains (CDs) and show similar hydrolytic activity. However, TrCel6A and CfCel6B have different cellulose-binding domains (CBDs) and linkers: TrCel6A has a glycosylated peptide linker, whereas CfCel6B's linker consists of three fibronectin type 3 domains. We previously found that TrCel6A's linker plays an important role in increasing the binding rate constant to crystalline cellulose. However, it was not clear whether CfCel6B's linker has similar function. Here we analyze kinetic parameters of CfCel6B using single-molecule fluorescence imaging to compare CfCel6B and TrCel6A. We find that CBD is important for initial binding of CfCel6B, but the contribution of the linker to the binding rate constant or to the dissociation rate constant is minor. The crystal structure of the CfCel6B CD showed longer loops at the entrance and exit of the substrate-binding tunnel compared with TrCel6A CD, which results in higher processivity. Furthermore, CfCel6B CD showed not only fast surface diffusion but also slow processive movement, which is not observed in TrCel6A CD. Combined with the results of a phylogenetic tree analysis, we propose that bacterial cellobiohydrolases are designed to degrade crystalline cellulose using high-affinity CBD and high-processivity CD.


Subject(s)
Bacterial Proteins/chemistry , Cellulomonas/enzymology , Cellulose 1,4-beta-Cellobiosidase/chemistry , Fungal Proteins/chemistry , Hypocreales/enzymology , Bacterial Proteins/metabolism , Binding Sites , Catalytic Domain , Cellulomonas/chemistry , Cellulomonas/metabolism , Cellulose/metabolism , Cellulose 1,4-beta-Cellobiosidase/metabolism , Crystallography, X-Ray , Fungal Proteins/metabolism , Hypocreales/chemistry , Hypocreales/metabolism , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , Substrate Specificity
6.
BMC Microbiol ; 21(1): 177, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34116639

ABSTRACT

BACKGROUND: A bacterial consortium SCP comprising three bacterial members, viz. Stenotrophomonas acidaminiphila APG1, Pseudomonas stutzeri APG2 and Cellulomonas sp. APG4 was developed for degradation of the mono-azo dye, Reactive Blue 28. The genomic analysis of each member of the SCP consortium was done to elucidate the catabolic potential and role of the individual organism in dye degradation. RESULTS: The genes for glycerol utilization were detected in the genomes of APG2 and APG4, which corroborated with their ability to grow on a minimal medium containing glycerol as the sole co-substrate. The genes for azoreductase were identified in the genomes of APG2 and APG4, while no such trait could be determined in APG1. In addition to co-substrate oxidation and dye reduction, several other cellular functions like chemotaxis, signal transduction, stress-tolerance, repair mechanisms, aromatic degradation, and copper tolerance associated with dye degradation were also annotated. A model for azo dye degradation is postulated, representing the predominant role of APG4 and APG2 in dye metabolism while suggesting an accessory role of APG1. CONCLUSIONS: This exploratory study is the first-ever attempt to divulge the genetic basis of azo-dye co-metabolism by cross-genome comparisons and can be harnessed as an example for demonstrating microbial syntrophy.


Subject(s)
Azo Compounds/metabolism , Cellulomonas/metabolism , Coloring Agents/metabolism , Pseudomonas stutzeri/metabolism , Stenotrophomonas/metabolism , Biodegradation, Environmental , Cellulomonas/genetics , Cellulomonas/growth & development , Culture Media/metabolism , Genome, Bacterial , Microbial Consortia , Pseudomonas stutzeri/genetics , Pseudomonas stutzeri/growth & development , Stenotrophomonas/genetics , Stenotrophomonas/growth & development
7.
Arch Microbiol ; 202(5): 1077-1084, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32030461

ABSTRACT

Plant material falling into the ultra-basic (pH 11.5-11.9) springs within The Cedars, an actively serpentinizing site in Sonoma County, California, is subject to conditions that mimic the industrial pretreatment of lignocellulosic biomass for biofuel production. We sought to obtain hemicellulolytic/cellulolytic bacteria from The Cedars springs that are capable of withstanding the extreme alkaline conditions wherein calcium hydroxide-rich water removes lignin, making cell wall polysaccharides more accessible to microorganisms and their enzymes. We enriched for such bacteria by adding plant debris from the springs into a synthetic alkaline medium with ground tissue of the biofuel crop switchgrass (Panicum virgatum L.) as the sole source of carbon. From the enrichment culture we isolated the facultative anaerobic bacterium Cellulomonas sp. strain FA1 (NBRC 114238), which tolerates high pH and catabolizes the major plant cell wall-associated polysaccharides cellulose, pectin, and hemicellulose. Strain FA1 in monoculture colonized the plant material and degraded switchgrass at a faster rate than the community from which it was derived. Cells of strain FA1 could be acclimated through subculturing to grow at a maximal concentration of 13.4% ethanol. A strain FA1-encoded ß-1, 4-endoxylanase expressed in E. coli was active at a broad pH range, displaying near maximal activity at pH 6-9. Discovery of this bacterium illustrates the value of extreme alkaline springs in the search for microorganisms with potential for consolidated bioprocessing of plant biomass to biofuels and other valuable bio-inspired products.


Subject(s)
Biofuels/microbiology , Cellulomonas/isolation & purification , Cellulomonas/metabolism , Endo-1,4-beta Xylanases/metabolism , Lignin/metabolism , Base Composition/genetics , Biomass , Cellulose/metabolism , Endo-1,4-beta Xylanases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Ethanol/metabolism , Panicum/chemistry , Panicum/genetics , Panicum/metabolism , Pectins/metabolism , Phylogeny , Plants/metabolism , Polysaccharides/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
8.
J Appl Microbiol ; 129(3): 590-600, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32259336

ABSTRACT

AIMS: This study was done to obtain denitrifiers that could be used for bioaugmentation in woodchip bioreactors to remove nitrate from agricultural subsurface drainage water. METHODS AND RESULTS: We isolated denitrifiers from four different bioreactors in Minnesota, and characterized the strains by measuring their denitrification rates and analysing their whole genomes. A total of 206 bacteria were isolated from woodchips and thick biofilms (bioslimes) that formed in the bioreactors, 76 of which were able to reduce nitrate at 15°C. Among those, nine potential denitrifying strains were identified, all of which were isolated from the woodchip samples. Although many nitrate-reducing strains were isolated from the bioslime samples, none were categorized as denitrifiers but instead as carrying out dissimilatory nitrate reduction to ammonium. CONCLUSIONS: Among the denitrifiers confirmed by 15 N stable isotope analysis and genome analysis, Cellulomonas cellasea strain WB94 and Microvirgula aerodenitrificans strain BE2.4 appear to be promising for bioreactor bioaugmentation due to their potential for both aerobic and anaerobic denitrification, and the ability of strain WB94 to degrade cellulose. SIGNIFICANCE AND IMPACT OF THE STUDY: Denitrifiers isolated in this study could be useful for bioaugmentation application to enhance nitrate removal in woodchip bioreactors.


Subject(s)
Agriculture/methods , Bioreactors/microbiology , Denitrification , Water Purification/methods , Wood/microbiology , Betaproteobacteria/isolation & purification , Betaproteobacteria/metabolism , Biodegradation, Environmental , Cellulomonas/isolation & purification , Cellulomonas/metabolism , Minnesota , Nitrates/isolation & purification , Nitrates/metabolism , Wood/metabolism
9.
J Appl Microbiol ; 126(3): 811-825, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30554465

ABSTRACT

AIMS: Lignocellulosic biomass deconstruction is a bottleneck for obtaining biofuels and value-added products. Our main goal was to characterize the secretome of a novel isolate, Cellulomonas sp. B6, when grown on residual biomass for the formulation of cost-efficient enzymatic cocktails. METHODS AND RESULTS: We identified 205 potential CAZymes in the genome of Cellulomonas sp. B6, 91 of which were glycoside hydrolases (GH). By secretome analysis of supernatants from cultures in either extruded wheat straw (EWS), grinded sugar cane straw (SCR) or carboxymethylcellulose (CMC), we identified which proteins played a role in lignocellulose deconstruction. Growth on CMC resulted in the secretion of two exoglucanases (GH6 and GH48) and two GH10 xylanases, while growth on SCR or EWS resulted in the identification of a diversity of CAZymes. From the 32 GHs predicted to be secreted, 22 were identified in supernatants from EWS and/or SCR cultures, including endo- and exoglucanases, xylanases, a xyloglucanase, an arabinofuranosidase/ß-xylosidase, a ß-glucosidase and an AA10. Surprisingly, among the xylanases, seven were GH10. CONCLUSIONS: Growth of Cellulomonas sp. B6 on lignocellulosic biomass induced the secretion of a diverse repertoire of CAZymes. SIGNIFICANCE AND IMPACT OF THE STUDY: Cellulomonas sp. B6 could serve as a source of lignocellulose-degrading enzymes applicable to bioprocessing and biotechnological industries.


Subject(s)
Bacterial Proteins/metabolism , Cellulomonas , Lignin/metabolism , Metabolome/physiology , Biomass , Cellulomonas/chemistry , Cellulomonas/enzymology , Cellulomonas/metabolism , Cellulomonas/physiology
10.
Arch Microbiol ; 198(8): 725-35, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27154570

ABSTRACT

Cellulomonas uda (DSM 20108/ATCC 21399) is one of the few described cellulolytic facultative anaerobes. Based on these characteristics, we initiated a physiological study of C. uda with the aim to exploit it for cellulase production in simple bioreactors with no or sporadic aeration. Growth, cellulase activity and fermentation product formation were evaluated in different media under both aerobic and anaerobic conditions and in experiments where C. uda was exposed to alternating aerobic/anaerobic growth conditions. Here we show that C. uda behaves as a true facultative anaerobe when cultivated on soluble substrates such as glucose and cellobiose, but for reasons unknown cellulase activity is only induced under aerobic conditions on insoluble cellulosic substrates and not under anaerobic conditions. These findings enhance knowledge on the limited number of described facultative cellulolytic anaerobes, and in addition it greatly limits the utility of C. uda as an 'easy to handle' cellulase producer with low aeration demands.


Subject(s)
Biofuels/microbiology , Bioreactors/microbiology , Cellulase/metabolism , Cellulomonas/metabolism , Cellulose/metabolism , Oxygen/metabolism , Cellobiose/metabolism , Cellulase/biosynthesis , Fermentation/physiology , Glucose/metabolism
11.
J Environ Sci (China) ; 27: 42-50, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25597661

ABSTRACT

A plasmid transfer-mediated bioaugmentation method for the enhancement of dichlorodiphenyltrichloroethane (DDT) degradation in soil was developed using the catabolic plasmid pDOD from Sphingobacterium sp. D-6. The pDOD plasmid could be transferred to soil bacteria, such as members of Cellulomonas, to form DDT degraders and thus accelerate DDT degradation. The transfer efficiency of pDOD was affected by the donor, temperature, moisture, and soil type. Approximately 50.7% of the DDT in the contaminated field was removed 210 days after the application of Escherichia coli TG I (pDOD-gfp). The results suggested that seeding pDOD into soil is an effective bioaugmentation method for enhancing the degradation of DDT.


Subject(s)
Cellulomonas/metabolism , DDT/metabolism , Environmental Restoration and Remediation/methods , Soil Microbiology , Soil Pollutants/metabolism , Sphingobacterium/genetics , Biodegradation, Environmental , Cellulomonas/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Plasmids/genetics
12.
J Microbiol Biotechnol ; 34(2): 457-466, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38044713

ABSTRACT

Cellobiose dehydrogenases (CDHs) are a group of enzymes belonging to the hemoflavoenzyme group, which are mostly found in fungi. They play an important role in the production of acid sugar. In this research, CDH annotated from the actinobacterium Cellulomonas palmilytica EW123 (CpCDH) was cloned and characterized. The CpCDH exhibited a domain architecture resembling class-I CDH found in Basidiomycota. The cytochrome c and flavin-containing dehydrogenase domains in CpCDH showed an extra-long evolutionary distance compared to fungal CDH. The amino acid sequence of CpCDH revealed conservative catalytic amino acids and a distinct flavin adenine dinucleotide region specific to CDH, setting it apart from closely related sequences. The physicochemical properties of CpCDH displayed optimal pH conditions similar to those of CDHs but differed in terms of optimal temperature. The CpCDH displayed excellent enzymatic activity at low temperatures (below 30°C), unlike other CDHs. Moreover, CpCDH showed the highest substrate specificity for disaccharides such as cellobiose and lactose, which contain a glucose molecule at the non-reducing end. The catalytic efficiency of CpCDH for cellobiose and lactose were 2.05 x 105 and 9.06 x 104 (M-1 s-1), respectively. The result from the Fourier-transform infrared spectroscopy (FT-IR) spectra confirmed the presence of cellobionic and lactobionic acids as the oxidative products of CpCDH. This study establishes CpCDH as a novel and attractive bacterial CDH, representing the first report of its kind in the Cellulomonas genus.


Subject(s)
Carbohydrate Dehydrogenases , Cellulomonas , Cellulomonas/genetics , Cellulomonas/metabolism , Cellobiose/metabolism , Lactose , Sugar Acids , Spectroscopy, Fourier Transform Infrared , Protocadherins
13.
Biodegradation ; 24(3): 437-50, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23135488

ABSTRACT

The reduction of hexavalent chromium, Cr(VI), to trivalent chromium, Cr(III), can be an important aspect of remediation processes at contaminated sites. Cellulomonas species are found at several Cr(VI) contaminated and uncontaminated locations at the Department of Energy site in Hanford, Washington. Members of this genus have demonstrated the ability to effectively reduce Cr(VI) to Cr(III) fermentatively and therefore play a potential role in Cr(VI) remediation at this site. Batch studies were conducted with Cellulomonas sp. strain ES6 to assess the influence of various carbon sources, iron minerals, and electron shuttling compounds on Cr(VI) reduction rates as these chemical species are likely to be present in, or added to, the environment during in situ bioremediation. Results indicated that the type of carbon source as well as the type of electron shuttle present influenced Cr(VI) reduction rates. Molasses stimulated Cr(VI) reduction more effectively than pure sucrose, presumably due to presence of more easily utilizable sugars, electron shuttling compounds or compounds with direct Cr(VI) reduction capabilities. Cr(VI) reduction rates increased with increasing concentration of anthraquinone-2,6-disulfonate (AQDS) regardless of the carbon source. The presence of iron minerals and their concentrations did not significantly influence Cr(VI) reduction rates. However, strain ES6 or AQDS could directly reduce surface-associated Fe(III) to Fe(II), which was capable of reducing Cr(VI) at a near instantaneous rate. These results suggest the rate limiting step in these systems was the transfer of electrons from strain ES6 to the intermediate or terminal electron acceptor whether that was Cr(VI), Fe(III), or AQDS.


Subject(s)
Carbon/metabolism , Cellulomonas/metabolism , Chromium/metabolism , Iron/metabolism , Biodegradation, Environmental , Electrons , Oxidation-Reduction
14.
Biochim Biophys Acta ; 1814(12): 1713-9, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21979581

ABSTRACT

An endo-1,3-ß-glucanase was purified from Tunicase®, a crude enzyme preparation from Cellulosimicrobium cellulans DK-1, and determined to be a 383-residue protein (Ala1-Leu383), comprising a catalytic domain of the glycoside hydrolase family 16 and a C-terminal carbohydrate-binding module family 13. The Escherichia coli expression system of the catalytic domain (Ala1-Thr256) was constructed, and the protein with N-terminal polyhistidine tag was purified using a Ni-nitrilotriacetic acid column. We analyzed enzymatic properties of the recombinant catalytic domain, its variants, and the Tunicase®-derived full-length endo-1,3-ß-glucanase. Substitution of Glu119 with Ala and deletion of Met123, both of the residues are located in the catalytic motif, resulted in the loss of hydrolytic activity. In comparison between the full-length enzyme and isolated catalytic domain, their hydrolytic activities for soluble substrates such as laminarin and laminarioligosaccharides were similar. In contrast, the hydrolytic activity of the full-length enzyme for insoluble substrates such as curdlan and yeast-glucan was significantly higher than that of the catalytic domain. It should be noted that the acid stabilities for the hydrolysis of laminarin were clearly different. Secondary structure analysis using circular dichroism showed that the full-length enzyme was more acid stable than was the catalytic domain, possibly because of domain interactions between the catalytic domain and the carbohydrate-binding module.


Subject(s)
Cellulomonas/enzymology , Cellulomonas/genetics , Glucan Endo-1,3-beta-D-Glucosidase/chemistry , Glucan Endo-1,3-beta-D-Glucosidase/genetics , Protein Interaction Domains and Motifs , Amino Acid Sequence , Catalytic Domain/genetics , Cellulomonas/chemistry , Cellulomonas/metabolism , Cloning, Molecular , Enzyme Activation/genetics , Enzyme Stability/genetics , Glucan Endo-1,3-beta-D-Glucosidase/isolation & purification , Glucan Endo-1,3-beta-D-Glucosidase/metabolism , Hydrolysis , Molecular Sequence Data , Protein Binding , Protein Interaction Domains and Motifs/genetics , Protein Interaction Domains and Motifs/physiology , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Sequence Homology, Amino Acid
15.
Environ Microbiol ; 14(3): 594-604, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21951594

ABSTRACT

The microbial degradation of cellulose contributes greatly to the cycling of carbon in terrestrial environments and feedbacks to the atmosphere, a process that is highly responsive to nitrogen inputs. Yet how key groups of cellulolytic microorganisms adaptively respond to the global conditions of nitrogen limitation and/or anthropogenic or climate nitrogen inputs is poorly understood. The actinobacterial genus Cellulomonas is of special interest because it incorporates the only species known to degrade cellulose aerobically and anaerobically. Furthermore, despite their inability to fix nitrogen, they are active decomposers in nitrogen-limited environments. Here we show that nitrogen limitation induced biofilm formation in Cellulomonas spp., a process that was coupled to carbon sequestration and storage in a curdlan-type biofilm matrix. The response was reversible and the curdlan matrix was solubilized and used as a carbon and energy source for biofilm dispersal once nitrogen sources became available. The biofilms attached strongly to cellulosic surfaces and, despite the growth limitation, produced cellulases and degraded cellulose more efficiently. The results show that biofilm formation is a competitive strategy for carbon and nitrogen acquisition and provide valuable insights linking nitrogen inputs to carbon sequestration and remobilization in terrestrial environments.


Subject(s)
Biofilms/growth & development , Cellulomonas/physiology , Nitrogen/metabolism , Biodegradation, Environmental , Carbon/metabolism , Cellulomonas/metabolism , Cellulose/metabolism , Climate , beta-Glucans/metabolism
16.
Environ Sci Technol ; 46(14): 7875-81, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-22697183

ABSTRACT

The consolidated bioprocessing (CBP) of corn stover pretreated via ammonia fiber expansion (AFEX-CS) into ethanol was investigated in a microbial electrolysis cell (MEC) driven by the exoelectrogen Geobacter sulfurreducens and the CBP bacterium Cellulomonas uda. C. uda was identified in a screening for its ethanologenic potential from AFEX-CS and for producing electron donors for G. sulfurreducens fermentatively. C. uda produced ethanol from AFEX-CS in MECs inoculated simultaneously or sequentially, with the concomitant conversion of the fermentation byproducts into electricity by G. sulfurreducens. The fermentation and electrical conversion efficiencies were high, but much of the AFEX-CS remained unhydrolyzed as nitrogen availability limited the growth of the CBP partner. Nitrogen supplementation stimulated the growth of C. uda, AFEX-CS hydrolysis and ethanologenesis. As a result, the synergistic activities of the CBP and exoelectrogen catalysts resulted in substantial energy recoveries from ethanologenesis alone (ca. 56%). The cogeneration of cathodic H(2) in the MEC further increased the energy recoveries to ca. 73%. This and the potential to optimize the activities of the microbial catalysts via culturing approaches and genetic engineering or adaptive evolution, make this platform attractive for the processing of agricultural wastes.


Subject(s)
Ammonia/pharmacology , Bioelectric Energy Sources , Electrolysis/instrumentation , Electrolysis/methods , Ethanol/metabolism , Hydrogen/metabolism , Zea mays/chemistry , Batch Cell Culture Techniques , Bioelectric Energy Sources/microbiology , Cellulomonas/drug effects , Cellulomonas/growth & development , Cellulomonas/metabolism , Electrodes , Fumarates/metabolism , Geobacter/drug effects , Geobacter/growth & development , Geobacter/metabolism , Nitrogen/pharmacology , Oxidation-Reduction/drug effects , Waste Products/analysis , Zea mays/drug effects
17.
Biotechnol Bioeng ; 108(2): 264-76, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20872821

ABSTRACT

Removal of hexavalent uranium (U(VI)) from aqueous solution was studied using a Gram-positive facultative anaerobe, Cellulomonas sp. strain ES6, under anaerobic, non-growth conditions in bicarbonate and PIPES buffers. Inorganic phosphate was released by cells during the experiments providing ligands for formation of insoluble U(VI) phosphates. Phosphate release was most probably the result of anaerobic hydrolysis of intracellular polyphosphates accumulated by ES6 during aerobic growth. Microbial reduction of U(VI) to U(IV) was also observed. However, the relative magnitudes of U(VI) removal by abiotic (phosphate-based) precipitation and microbial reduction depended on the buffer chemistry. In bicarbonate buffer, X-ray absorption fine structure (XAFS) spectroscopy showed that U in the solid phase was present primarily as a non-uraninite U(IV) phase, whereas in PIPES buffer, U precipitates consisted primarily of U(VI)-phosphate. In both bicarbonate and PIPES buffer, net release of cellular phosphate was measured to be lower than that observed in U-free controls suggesting simultaneous precipitation of U and PO4³â». In PIPES, U(VI) phosphates formed a significant portion of U precipitates and mass balance estimates of U and P along with XAFS data corroborate this hypothesis. High-resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray spectroscopy (EDS) of samples from PIPES treatments indeed showed both extracellular and intracellular accumulation of U solids with nanometer sized lath structures that contained U and P. In bicarbonate, however, more phosphate was removed than required to stoichiometrically balance the U(VI)/U(IV) fraction determined by XAFS, suggesting that U(IV) precipitated together with phosphate in this system. When anthraquinone-2,6-disulfonate (AQDS), a known electron shuttle, was added to the experimental reactors, the dominant removal mechanism in both buffers was reduction to a non-uraninite U(IV) phase. Uranium immobilization by abiotic precipitation or microbial reduction has been extensively reported; however, the present work suggests that strain ES6 can remove U(VI) from solution simultaneously through precipitation with phosphate ligands and microbial reduction, depending on the environmental conditions. Cellulomonadaceae are environmentally relevant subsurface bacteria and here, for the first time, the presence of multiple U immobilization mechanisms within one organism is reported using Cellulomonas sp. strain ES6.


Subject(s)
Cellulomonas/metabolism , Uranium/metabolism , Water Pollutants, Chemical/metabolism , Anaerobiosis , Buffers , Oxidation-Reduction , Phosphates/metabolism
18.
Antonie Van Leeuwenhoek ; 99(3): 681-95, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21190083

ABSTRACT

Cellulomonas flavigena strain KU (ATCC 53703) is a cellulolytic, Gram-positive bacterium which produces large quantities of an insoluble exopolysaccharide (EPS) when grown in minimal media with a high carbon-to-nitrogen (C/N) ratio. Earlier studies proved the EPS is structurally identical to the linear ß-1,3-glucan known as curdlan and provided evidence that the EPS functions as a carbon and energy reserve compound. We now report that C. flavigena KU also accumulates two intracellular, glucose-storage carbohydrates under conditions of carbon and energy excess. These carbohydrates were partially purified and identified as the disaccharide trehalose and a glycogen/amylopectin-type polysaccharide. A novel method is described for the sequential fractionation and quantitative determination of all three carbohydrates from culture samples. This fractionation protocol was used to examine the effects of C/N ratio and osmolarity on the accumulation of cellular carbohydrates in batch culture. Increasing the C/N of the growth medium caused a significant accumulation of curdlan and glycogen but had a relatively minor effect on accumulation of trehalose. In contrast, trehalose levels increased in response to increasing osmolarity, while curdlan levels declined and glycogen levels were generally unaffected. During starvation for an exogenous source of carbon and energy, only curdlan and glycogen showed substantial degradation within the first 24 h. These results support the conclusion that extracellular curdlan and intracellular glycogen can both serve as short-term reserve compounds for C. flavigena KU and that trehalose appears to accumulate as a compatible solute in response to osmotic stress.


Subject(s)
Cellulomonas/metabolism , Glycogen/metabolism , Trehalose/metabolism , beta-Glucans/metabolism , Cellulomonas/genetics , Chromatography, Thin Layer , Gene Expression Regulation, Bacterial
19.
Biodegradation ; 22(5): 983-95, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21318474

ABSTRACT

Microbially reduced iron minerals can reductively transform a variety of contaminants including heavy metals, radionuclides, chlorinated aliphatics, and nitroaromatics. A number of Cellulomonas spp. strains, including strain ES6, isolated from aquifer samples obtained at the U.S. Department of Energy's Hanford site in Washington, have been shown to be capable of reducing Cr(VI), TNT, natural organic matter, and soluble ferric iron [Fe(III)]. This research investigated the ability of Cellulomonas sp. strain ES6 to reduce solid phase and dissolved Fe(III) utilizing different carbon sources and various electron shuttling compounds. Results suggest that Fe(III) reduction by and growth of strain ES6 was dependent upon the type of electron donor, the form of iron present, and the presence of synthetic or natural organic matter, such as anthraquinone-2,6-disulfonate (AQDS) or humic substances. This research suggests that Cellulomonas sp. strain ES6 could play a significant role in metal reduction in the Hanford subsurface and that the choice of carbon source and organic matter addition can allow for independent control of growth and iron reduction activity.


Subject(s)
Carbon/metabolism , Cellulomonas/metabolism , Ferric Compounds/metabolism , Biodegradation, Environmental , Cellulomonas/isolation & purification , Electrons , Fresh Water/microbiology , Oxidation-Reduction , Water Pollutants, Chemical/metabolism
20.
J Microbiol Biotechnol ; 31(11): 1519-1525, 2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34489371

ABSTRACT

Hexavalent chromium (Cr(VI)) is recognized to be carcinogenic and toxic and registered as a contaminant in many drinking water regulations. It occurs naturally and is also produced by industrial processes. The reduction of Cr(VI) to Cr(III) has been a central topic for chromium remediation since Cr(III) is less toxic and less mobile. In this study, fermentative Fe(III)-reducing bacterial strains (Cellu-2a, Cellu-5a, and Cellu-5b) were isolated from a groundwater sample and were phylogenetically related to species of Cellulomonas by 16S rRNA gene analysis. One selected strain, Cellu-2a showed its capacity of reduction of both soluble iron (ferric citrate) and solid iron (hydrous ferric oxide, HFO), as well as aqueous Cr(VI). The strain Cellu-2a was able to reduce 15 µM Cr(VI) directly with glucose or sucrose as a sole carbon source under the anaerobic condition and indirectly with one of the substrates and HFO in the same incubations. The heterogeneous reduction of Cr(VI) by the surface-associated reduced iron from HFO by Cellu-2a likely assisted the Cr(VI) reduction. Fermentative features such as large-scale cell growth may impose advantages on the application of bacterial Cr(VI) reduction over anaerobic respiratory reduction.


Subject(s)
Biodegradation, Environmental , Cellulomonas/metabolism , Chromium/metabolism , Ferric Compounds/metabolism , Fermentation , Groundwater/microbiology , Phylogeny , RNA, Ribosomal, 16S , Republic of Korea
SELECTION OF CITATIONS
SEARCH DETAIL