Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
1.
Environ Monit Assess ; 194(5): 326, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35381908

ABSTRACT

This study investigated, for the first time, the role of cerium oxide nanoparticles (CeO2 NPs) on dairy effluent nitrate and phosphate bioremediation using different inoculum sources. Two inoculum sources (wastewater and sludge) were obtained from the dairy wastewater treatment plant unit. A culture was prepared to be tested in the treatment of nitrate and phosphate effluent, and the role of CeO2 NPs was checked to be completely efficient after 5 days of incubation. The reduction efficiency of nitrate using sludge as inoculum source was improved up to 89.01% and 68.12% for phosphate compared to control. In the case of using wastewater as an inoculum source, the nitrate reduction was improved up to 83.30% and 87.75% for phosphate compared to control. The bacterial richness showed a significant variance (higher richness) between control and other samples. The optimal concentration of CeO2 NPs for inoculum richness and nitrate and phosphate reduction was (sludge: 1 × 10-10 ppm) and (wastewater: 1 × 10-12 ppm). The results revealed that CeO2 NPs could enhance the microbial growth of different inoculum sources that have a key role in dairy effluent nitrate and phosphate bioremediation.


Subject(s)
Cerium , Metal Nanoparticles , Nanoparticles , Biodegradation, Environmental , Cerium/analysis , Environmental Monitoring , Nitrates , Phosphates
2.
Biotechnol Appl Biochem ; 68(6): 1216-1226, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32974969

ABSTRACT

Cerium is the most abundant rare earth metal in the earth's crust, and it has deleterious effects on aquatic ecosystems from fertilizer runoff. Scenedesmus obliquus is an oil-rich microalga that grows rapidly and is sensitive to many kinds of toxins. Given that microalgae are useful indicators of eutrophication and toxic stress, it was found that lower concentrations of cerium (0.50-5.00 mg·L-1 ) stimulated algal growth and increased chlorophyll a content, whereas higher concentrations (above 50.00 mg·L-1 ) had an inhibitory effect on algal growth and chlorophyll a content. The algal growth rate and chlorophyll a content peaked at a cerium concentration of 5.00 mg·L-1 . Both the donor and acceptor sides of photosystem II (PSII) reaction centers were sensitive to cerium-induced stress. Specifically, high concentrations of cerium damaged the oxygen evolving complex and PSII reaction center and suppressed electron transport at the donor and receptor side of the reaction center, influencing the absorption, transfer, and application of light energy in S. obliquus XJ002. In addition, we established a simple method to quantify the intracellular lipid content of S. obliquus XJ002, and the optimum staining conditions for Nile red were as follows: volume percentage of dimethyl sulfoxide was 2%, the concentration of Nile red was 2.0 µg·mL-1 , and the staining time of Nile red was 5 min. The addition of cerium resulted in a significant increase in the total lipid content of XJ002. When the concentration of cerium was 50 mg·L-1 , the total lipid content was 16.26% higher than the control group. This information will enhance our ability to utilize microelement fertilizer in biomass accumulation programs and will help to further reveal the key regulatory factors in the lipid metabolism, and would lay the foundation for promoting the research of microalgae bioenergy.


Subject(s)
Cerium/pharmacology , Chlorophyll A/antagonists & inhibitors , Fluorescent Dyes/pharmacology , Lipids/biosynthesis , Photosystem II Protein Complex/metabolism , Scenedesmus/drug effects , Cerium/analysis , Chlorophyll A/metabolism , Dose-Response Relationship, Drug , Electron Transport , Fluorescent Dyes/analysis , Scenedesmus/growth & development , Scenedesmus/metabolism
3.
Ecotoxicol Environ Saf ; 206: 111193, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32890924

ABSTRACT

Rare earth elements (REEs) have received enormous attention in recent years. However, there are many gaps in the understanding of their behavior in the soil-plant system. The aim of this study is to investigate the behavior of three most common REEs (La, Ce, Nd) in the soil-plant system directly on soil samples using barley (Hordeum vulgare L.) in a vegetation experiment. We attribute the absence of significant changes in plant biomass and photosynthetic pigment content to the reduced availability of REEs in soil samples. The concentration of water-soluble forms of La, Ce and Nd didn't exceed 1 mg/kg, while the concentration of exchangeable forms varied and decreased in a row La > Ce > Nd. The transfer factor (TF) from soil to above-ground biomass was low for all three elements (<1). The stem-to-leaf TF increased with the increase in REEs concentration in soil. The concentration in plant material increased in the row Ce < Nd < La. REEs concentrations in barley leaves didn't exceed 1-3% of the corresponding element concentration in soil samples. REEs concentration in plant tissues is in close direct correlation with the REEs total concentration in soil, water-soluble and exchange forms. REEs concentration in barley leaves is 3-4 times higher than in the stems and for the group with extraneous concentration of 200 mg/kg for La, Ce and Nd was 6.20 ± 1.48, 2.10 ± 0.51, 6.90 ± 3.00 mg/kg, respectively. We show that there were no major changes in barley plants, but further study is needed of the relationship between the absorption of lanthanides by plants and the content of various forms of lanthanides in the soil.


Subject(s)
Cerium/analysis , Hordeum/drug effects , Lanthanum/analysis , Neodymium/analysis , Soil Pollutants/analysis , Soil/chemistry , Biological Transport , Biomass , Cerium/metabolism , Hordeum/growth & development , Hordeum/metabolism , Lanthanum/metabolism , Models, Theoretical , Neodymium/metabolism , Photosynthesis/drug effects , Soil Pollutants/metabolism
4.
Ecotoxicol Environ Saf ; 187: 109845, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31654865

ABSTRACT

The extensive use of nano-fabricated products in daily life is releasing a large volume of engineered nanoparticles (ENPs) in the environment having unknown consequences. Meanwhile, little efforts have been paid to immobilize and prevent the entry of these emerging contaminants in the food chain through plant uptake. Herein, we investigated the biochar role in cerium oxide nanoparticles (CeO2NPs) bioaccumulation and subsequent translocation in wheat (Triticum aestivum L.) as well as impact on growth, photosynthesis and gas-exchange related physiological parameters. Results indicated that CeO2NPs up to 500 mg L-1 level promoted the plant growth by triggering photosynthesis, transpiration and stomatal conductance. Higher NPs concentration (2000 mg CeO2NPs L-1) has negatively affected the plant growth and photosynthesis related processes. Conversely, biochar amendment with CeO2NPs considerably reduced (~9 folds) the plants accumulated contents of Ce even at 2000 mg L-1 exposure level of CeO2NPs through surface complexation process and alleviated the phyto-toxic effects of NPs on plant growth. XPS and FTIR analysis confirmed the role of biochar-mediated carboxylate and hydroxyl groups bonding with CeO2NPs. These findings provides an inside mechanistic understanding about biochar interaction with nano-pollutants to inhibit their bioavailability to plant body.


Subject(s)
Cerium/analysis , Charcoal/chemistry , Nanoparticles/analysis , Photosynthesis/drug effects , Soil Pollutants/analysis , Triticum/drug effects , Biological Availability , Cerium/metabolism , Environmental Restoration and Remediation/methods , Nanoparticles/metabolism , Soil/chemistry , Soil Pollutants/metabolism , Triticum/metabolism
5.
J Sci Food Agric ; 100(13): 4950-4958, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32484244

ABSTRACT

BACKGROUND: The transformation of nanoparticles (NPs) internalized in plant tissues is the human digestive system that can provide a better understanding of the impact of NPs on the human system. The presented methodology was developed to study the bioaccessibility of cerium oxide (CeO2 ) and copper oxide (CuO) NPs from radish after the in vitro simulation of gastrointestinal digestion using single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS). RESULTS: Radish plants were cultivated hydroponically in a growth medium containing: (i) CeO2 NPs and (ii) CuO NPs. Both cerium (Ce) and copper (Cu) were found in all organs of the radish plants after analysis by standalone ICP-MS. This confirms the bioaccumulation of CeO2 and CuO NPs and the translocation of their Ce and Cu to the aerial parts of the plant. Less Ce (4.095 µg g-1 ) has been detected in leaves than in roots (1.156 mg g-1 ) while Cu content in leaves was 5.245 µg g-1 and in roots was 10.41 µg g-1 . Analysis of the digestive extracts obtained after the in vitro simulation of gastro (pepsin) and gastrointestinal (pancreatin) digestion showed that Ce has easy access to human system at least by 73%. CONCLUSION: The size of CeO2 NPs in digestive extracts showed no significant changes. However, the results obtained for CuO NPs digestion were variable and suggested that CuO NPs dissolved during the digestion process. The CuO NPs were observed in roots after the gastrointestinal digestion concluding that CuO NPs recovered after the initial dissolution. © 2020 Society of Chemical Industry.


Subject(s)
Cerium/analysis , Copper/analysis , Metal Nanoparticles/analysis , Raphanus/chemistry , Biological Transport , Cerium/metabolism , Copper/metabolism , Digestion , Gastrointestinal Tract/metabolism , Humans , Hydroponics , Mass Spectrometry , Plant Tubers/chemistry , Plant Tubers/metabolism , Raphanus/growth & development , Raphanus/metabolism
6.
Molecules ; 24(20)2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31635398

ABSTRACT

Cerium oxide (CeO2) nanoparticles (NPs) are used in polishing products and absorbents, as promoters in wound healing, and as organopesticide decontaminants. While systemic bioaccumulation and organ toxicity has been described after inhalation, data on CeO2 NPs' transdermal permeation are lacking. Our study was an in vitro investigation of the permeation of 17-nm CeO2 NPs dispersed in synthetic sweat (1 g L-1) using excised human skin on Franz cells. Experiments were performed using intact and needle-abraded skin, separately. The average amount of Ce into intact and damaged skin samples was 3.64 ± 0.15 and 7.07 ± 0.78 µg cm-2, respectively (mean ± SD, p = 0.04). Ce concentration in the receiving solution was 2.0 ± 0.4 and 3.3 ± 0.7 ng cm-2 after 24 h (p = 0.008). The Ce content was higher in dermal layers of damaged skin compared to intact skin (2.93 ± 0.71 µg cm-2 and 0.39 ± 0.16 µg cm-2, respectively; p = 0.004). Our data showed a very low dermal absorption and transdermal permeation of cerium, providing a first indication of Ce skin uptake due to contact with CeO2.


Subject(s)
Cerium/analysis , Skin/injuries , Cerium/toxicity , Female , Humans , Metal Nanoparticles , Microscopy, Electron, Transmission , Middle Aged , Skin/chemistry , Skin Absorption
7.
J Microsc ; 269(3): 338-345, 2018 03.
Article in English | MEDLINE | ID: mdl-29125617

ABSTRACT

When polymorphonuclear leukocytes (PMNs) phagocytose opsonised zymosan particles (OPZ), free radicals and reactive oxygen species (ROS) are formed in the phagosomes. ROS production is mediated by NADPH oxidase (Nox), which transfers electrons in converting oxygen to superoxide (O2- ). Nox-generated O2- is rapidly converted to other ROS. Free radical-forming secretory vesicles containing the Nox redox center flavocytochrome b558, a membrane protein, and azurophil granules with packaged myeloperoxidase (MPO) have been described. Presuming the probable fusion of these vesicular and granular organelles with phagosomes, the translation process of the enzymes was investigated using energy-filtering and energy-dispersive spectroscopy-scanning transmission electron microscopy. In this work, the primary method for imaging cerium (Ce) ions demonstrated the localisation of H2 O2 generated by phagocytosing PMNs. The MPO activity of the same PMNs was continuously monitored using 0.1% 3,3'-diaminobenzidine-tetrahydrochloride (DAB) and 0.01% H2 O2 . A detailed view of these vesicular and granular structures was created by overlaying each electron micrograph with pseudocolors: blue for Ce and green for nitrogen (N).


Subject(s)
Cytochrome b Group/analysis , Microscopy, Electron, Scanning Transmission/methods , NADPH Oxidases/analysis , Neutrophils/enzymology , Neutrophils/physiology , Peroxidase/analysis , Phagocytosis , Spectrum Analysis/methods , Cerium/analysis , Humans , Image Processing, Computer-Assisted/methods , Phagosomes/enzymology
8.
Inorg Chem ; 57(23): 14872-14881, 2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30427192

ABSTRACT

In this work, the morphology, composition, crystal, and electronic structure of Ca8Mg(SiO4)4Cl2 (CMSOC) prepared by a high-temperature solid-state reaction technique are characterized first. To investigate the site occupancies of Eu3+ and Ce3+ in CMSOC, the emission spectra under well-chosen wavelength excitations and the corresponding excitation spectra by monitoring of the specific wavelength emissions are measured in detail for singly doped samples with different concentrations. Two kinds of Eu3+ or Ce3+ luminescence spectra are found. On the basis of the chemical environments of two Ca2+ sites and dielectric chemical bond theory, the sites of these two kinds of Eu3+ and Ce3+ luminescence spectra are respectively assigned. Because energy transfer between the two types of luminescent centers, concentration-dependent emission-wavelength shifting, and luminescence concentration quenching are negligible, the emission spectra of Eu3+ and Ce3+ give us a hint of their occupation preferences on two Ca2+ sites. The results indicate that, with an increase of the doping concentration, the Eu3+ ions with smaller cationic size show an occupation preference on the smaller Ca2+(1) sites, but the Ce3+ ions with larger cationic size are inclined to enter the larger Ca2+(2) sites. These opposite occupation preferences of Eu3+ and Ce3+ in CMSOC are thought to be the cationic-size-driven site selection.


Subject(s)
Cerium/analysis , Europium/analysis , Luminescence , Luminescent Agents/chemistry , Calcium/chemistry , Chlorides/chemistry , Energy Transfer , Ions/analysis , Luminescent Agents/chemical synthesis , Luminescent Measurements , Magnesium/chemistry , Particle Size , Silicates/chemistry , Surface Properties
9.
Environ Geochem Health ; 40(1): 295-301, 2018 Feb.
Article in English | MEDLINE | ID: mdl-27995354

ABSTRACT

A total of 60 children (31 males and 29 females) between the ages of 3 and 12 years were randomly selected from Lanzhou City in Gansu Province, northwest China. Hand (soil/dust) SD samples from these children were collected using hand wipes. We determined the approximate amounts of hand SD and the concentrations of three tracer soil elements (Ce, Y, and V) in these samples. The approximate amounts of hand SD ranged from 42.28 to 173.76 mg, with a median value of 85.42 mg. In addition, the mean amounts of hand SD estimated using the concentrations of Ce, Y, and V in the samples were 4.63, 3.43, and 3.42 mg, respectively. The amount of hand SD varied greatly among the age groups: primary school children had more hand SD than kindergarten children, males had more hand SD than females, and children from rural areas had more hand SD than those from urban areas. The rates of daily ingestion of hand SD for kindergarten and primary school children were estimated to be 7.73 and 6.61 mg/day, respectively.


Subject(s)
Cerium/analysis , Dust , Eating , Hand , Mouth , Soil , Vanadium/analysis , Yttrium/analysis , Child , Child, Preschool , China , Dust/analysis , Female , Humans , Male , Mass Spectrometry/methods , Sex Factors , Soil/chemistry
10.
Biotechnol Bioeng ; 114(5): 1016-1024, 2017 05.
Article in English | MEDLINE | ID: mdl-27987304

ABSTRACT

As components of electronic scrap, rare earth minerals are an interesting but little used source of raw materials that are highly important for the recycling industry. Currently, there exists no cost-efficient technology to separate rare earth minerals from an electronic scrap mixture. In this study, phage surface display has been used as a key method to develop peptides with high specificity for particular inorganic targets in electronic scrap. Lanthanum phosphate doped with cerium and terbium as part of the fluorescent phosphors of spent compact fluorescent lamps (CFL) was used as a target material of economic interest to test the suitability of the phage display method to the separation of rare earth minerals. One random pVIII phage library was screened for peptide sequences that bind specifically to the fluorescent phosphor LaPO4 :Ce3+ ,Tb3+ (LAP). The library contained at least 100 binding pVIII peptides per phage particle with a diversity of 1 × 109 different phage per library. After three rounds of enrichment, a phage clone containing the surface peptide loop RCQYPLCS was found to bind specifically to LAP. Specificity and affinity of the identified phage bound peptide was confirmed by using binding and competition assays, immunofluorescence assays, and zeta potential measurements. Binding and immunofluorescence assays identified the peptide's affinity for the fluorescent phosphor components CAT (CeMgAl11 O19 :Tb3+ ) and BAM (BaMgAl10 O17 :Eu2+ ). No affinity was found for other fluorescent phosphor components such as YOX (Y2 O3 :Eu3+ ). The binding specificity of the RCQYPLCS peptide loop was improved 3-51-fold by using alanine scanning mutagenesis. The identification of peptides with high specificity and affinity for special components in the fluorescent phosphor in CFLs provides a potentially new strategic approach to rare earth recycling. Biotechnol. Bioeng. 2017;114: 1016-1024. © 2016 Wiley Periodicals, Inc.


Subject(s)
Cell Surface Display Techniques/methods , Equipment Reuse , Fluorescent Dyes/metabolism , Lanthanum/isolation & purification , Lanthanum/metabolism , Peptides/metabolism , Amino Acids , Cerium/analysis , Cerium/chemistry , Fluorescent Dyes/chemistry , Lanthanum/analysis , Lanthanum/chemistry , Peptides/chemistry
11.
Luminescence ; 32(5): 800-805, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28124455

ABSTRACT

In spectral analysis, a chemical component is usually identified by its characteristic spectra, especially the peaks. If two components have overlapping spectral peaks, they are generally considered to be indiscriminate in current analytical chemistry textbooks and related literature. However, if the intensities of the overlapping major spectral peaks are additive, and have different rates of change with respect to variations in the concentration of the individual components, a simple method, named the 'common-origin ray', for the simultaneous determination of two components can be established. Several case studies highlighting its applications are presented.


Subject(s)
Dynamic Light Scattering/methods , Signal Processing, Computer-Assisted , Spectrometry, Fluorescence/methods , Spectrophotometry, Ultraviolet/methods , Cerium/analysis , Chlorpromazine/analysis , Europium/analysis , Isomerism , Models, Theoretical , Naphthols/analysis , Naphthols/chemistry , Phenylalanine/analysis , Phenylalanine/chemistry , Promethazine/analysis , Quantum Dots , Tryptophan/analysis , Tryptophan/chemistry , beta-Cyclodextrins/chemistry
12.
Water Sci Technol ; 75(12): 2755-2764, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28659515

ABSTRACT

The recovery of rare earth ions from industrial wastewater has aroused wide concern in recent years. In present work, we synthesized a novel three-dimensional adsorbent (denoted as LF-AA) by grafting loofah fiber with acrylic acid via ultraviolet radiation. The LF-AA was washed by boiling water and subjected to soxhlet extraction with acetone and then fully characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM). Rare earth ion (Ce(III)) was selected as a model to validate its adsorption property. The saturation adsorption capacity for Ce(III) reaches 527.5 mg/g. Not only was this material highly efficient at adsorbing Ce(III) from aqueous solutions, it also proved to have ideal performance in regeneration; the total adsorption capacity of LF-AA for Ce(III) after six successive cycles decreased only 6.40% compared with the initial capacity of LF-AA. More importantly, the LF-AA can be easily separated from aqueous solutions because of its three-dimensional sponge natural structure. This study provides a new insight into the fabrication of biomass adsorbent and demonstrated that the LF-AA can be used as excellent adsorbent for the recovery of rare earth ions from wastewater.


Subject(s)
Cerium/analysis , Waste Disposal, Fluid/methods , Wastewater , Water Pollutants, Chemical/analysis , Adsorption , Biomass , Cerium/chemistry , Hydrogen-Ion Concentration , Kinetics , Polymerization , Spectroscopy, Fourier Transform Infrared , Ultraviolet Rays , Water Pollutants, Chemical/chemistry
13.
Anal Bioanal Chem ; 408(19): 5157-67, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27129977

ABSTRACT

Cerium dioxide nanoparticles (CeO2NPs) are among the most broadly used engineered nanoparticles that will be increasingly released into the environment. Thus, understanding their uptake, transportation, and transformation in plants, especially food crops, is critical because it represents a potential pathway for human consumption. One of the primary challenges for the endeavor is the inadequacy of current analytical methodologies to characterize and quantify the nanomaterial in complex biological samples at environmentally relevant concentrations. Herein, a method was developed using single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) technology to simultaneously detect the size and size distribution of particulate Ce, particle concentration, and dissolved cerium in the shoots of four plant species including cucumber, tomato, soybean, and pumpkin. An enzymatic digestion method with Macerozyme R-10 enzyme previously used for gold nanoparticle extraction from the tomato plant was adapted successfully for CeO2NP extraction from all four plant species. This study is the first to report and demonstrate the presence of dissolved cerium in plant seedling shoots exposed to CeO2NPs hydroponically. The extent of plant uptake and accumulation appears to be dependent on the plant species, requiring further systematic investigation of the mechanisms.


Subject(s)
Cerium/pharmacokinetics , Nanoparticles/analysis , Plants/metabolism , Spectrophotometry, Atomic/methods , Water Pollution, Chemical/analysis , Cerium/analysis , Reproducibility of Results , Sensitivity and Specificity
14.
Anal Bioanal Chem ; 408(19): 5137-45, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26960902

ABSTRACT

Nanoparticles (NPs) entering water systems are an emerging concern as NPs are more frequently manufactured and used. Single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) methods were validated to detect Zn- and Ce-containing NPs in surface and drinking water using a short dwell time of 0.1 ms or lower, ensuring precision in single particle detection while eliminating the need for sample preparation. Using this technique, information regarding NP size, size distribution, particle concentration, and dissolved ion concentrations was obtained simultaneously. The fates of Zn- and Ce-NPs, including those found in river water and added engineered NPs, were evaluated by simulating a typical drinking water treatment process. Lime softening, alum coagulation, powdered activated carbon sorption, and disinfection by free chlorine were simulated sequentially using river water. Lime softening removed 38-53 % of Zn-containing and ZnO NPs and >99 % of Ce-containing and CeO2 NPs. Zn-containing and ZnO NP removal increased to 61-74 % and 77-79 % after alum coagulation and disinfection, respectively. Source and drinking water samples were collected from three large drinking water treatment facilities and analyzed for Zn- and Ce-containing NPs. Each facility had these types of NPs present. In all cases, particle concentrations were reduced by a minimum of 60 % and most were reduced by >95 % from source water to finished drinking water. This study concludes that uncoated ZnO and CeO2 NPs may be effectively removed by conventional drinking water treatments including lime softening and alum coagulation.


Subject(s)
Cerium/analysis , Drinking Water/chemistry , Metal Nanoparticles/analysis , Spectrophotometry, Atomic/methods , Water Pollutants, Chemical/analysis , Water Purification/methods , Zinc Oxide/analysis , Drinking Water/analysis , Reproducibility of Results , Sensitivity and Specificity
15.
J Environ Manage ; 184(Pt 3): 552-559, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27789090

ABSTRACT

Terbium and rare earths recovery from fluorescent powders of exhausted lamps by acid leaching with hydrochloric acid was the objective of this study. In order to investigate the factors affecting leaching a series of experiments was performed in according to a full factorial plan with four variables and two levels (42). The factors studied were temperature, concentration of acid, pulp density and leaching time. Experimental conditions of terbium dissolution were optimized by statistical analysis. The results showed that temperature and pulp density were significant with a positive and negative effect, respectively. The empirical mathematical model deducted by experimental data demonstrated that terbium content was completely dissolved under the following conditions: 90 °C, 2 M hydrochloric acid and 5% of pulp density; while when the pulp density was 15% an extraction of 83% could be obtained at 90 °C and 5 M hydrochloric acid. Finally a flow sheet for the recovery of rare earth elements was proposed. The process was tested and simulated by commercial software for the chemical processes. The mass balance of the process was calculated: from 1 ton of initial powder it was possible to obtain around 160 kg of a concentrate of rare earths having a purity of 99%. The main rare earths elements in the final product was yttrium oxide (86.43%) following by cerium oxide (4.11%), lanthanum oxide (3.18%), europium oxide (3.08%) and terbium oxide (2.20%). The estimated total recovery of the rare earths elements was around 70% for yttrium and europium and 80% for the other rare earths.


Subject(s)
Household Articles , Hydrochloric Acid/chemistry , Lighting , Recycling/methods , Terbium/chemistry , Cerium/analysis , Cerium/chemistry , Europium/analysis , Europium/chemistry , Lanthanum/analysis , Lanthanum/chemistry , Oxides/analysis , Oxides/chemistry , Research Design , Terbium/analysis , Yttrium/analysis , Yttrium/chemistry
16.
Anal Chem ; 87(17): 8827-36, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26239283

ABSTRACT

Patterns in rare earth element (REE) concentrations are essential instruments to assess geochemical processes in Earth and environmental sciences. Excursions in the "cerium anomaly" are widely used to inform on past redox conditions in sediments. This proxy resources to the specificity of cerium to adopt both the +III and +IV oxidation states, while most rare earths are purely trivalent and share very similar reactivity and transport properties. In practical terms, the level of cerium anomaly is established through elemental point quantification and profiling. All these models rely on a supposed homogeneity of the cerium oxidation state within the samples. However, this has never been demonstrated, whereas the cerium concentration can significantly vary within a sample, as shown for fossils, which would vastly complicate interpretation of REE patterns. Here, we report direct micrometric mapping of Ce speciation through synchrotron X-ray absorption spectroscopy and production of local rare earth patterns in paleontological fossil tissues through X-ray fluorescence mapping. The sensitivity of the approach is demonstrated on well-preserved fishes and crustaceans from the Late Cretaceous (ca. 95 million years (Myr) old). The presence of Ce under the +IV form within the fossil tissues is attributed to slightly oxidative local conditions of burial and agrees well with the limited negative cerium anomaly observed in REE patterns. The [Ce(IV)]/[Ce(tot)] ratio appears remarkably stable at the microscale within each fossil and is similar between fossils from the locality. Speciation maps were obtained from an original combination of synchrotron microbeam X-ray fluorescence, absorption spectroscopy, and diffraction, together with light and electron microscopy. This work also highlights the need for more systematic studies of cerium geochemistry at the microscale in paleontological contexts, in particular across fossil histologies.


Subject(s)
Cerium/analysis , Fossils , Animals , Fishes , Oxidation-Reduction , Synchrotrons , X-Ray Absorption Spectroscopy
17.
Environ Sci Technol ; 49(5): 2921-8, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25648544

ABSTRACT

Information about changes in physiological and agronomic parameters through the life cycle of plants exposed to engineered nanoparticles (NPs) is scarce. In this study, corn (Zea mays) plants were cultivated to full maturity in soil amended with either nCeO2 or nZnO at 0, 400, and 800 mg/kg. Gas exchange was monitored every 10 days, and at harvest, bioaccumulation of Ce and Zn in tissues was determined by ICP-OES/MS. The effects of NPs exposure on nutrient concentration and distribution in ears were also evaluated by ICP-OES and µ-XRF. Results showed that nCeO2 at both concentrations did not impact gas exchange in leaves at any growth stage, while nZnO at 800 mg/kg reduced net photosynthesis by 12%, stomatal conductance by 15%, and relative chlorophyll content by 10% at day 20. Yield was reduced by 38% with nCeO2 and by 49% with nZnO. Importantly, µ-XRF mapping showed that nCeO2 changed the allocation of calcium in kernels, compared to controls. In nCeO2 treated plants, Cu, K, Mn, and Zn were mainly localized at the insertion of kernels into cobs, but Ca and Fe were distributed in other parts of the kernels. Results showed that nCeO2 and nZnO reduced corn yield and altered quality of corn.


Subject(s)
Cerium/analysis , Life Cycle Stages/drug effects , Nanoparticles , Seeds/drug effects , Zea mays/drug effects , Zinc Oxide/analysis , Animals , Optical Imaging/methods
18.
Environ Res ; 142: 207-14, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26164115

ABSTRACT

The stability of engineered nanoparticles (ENPs) in complex aqueous matrices is a key determinant of their fate and potential toxicity towards the aquatic environment and human health. Metal oxide nanoparticles, such as CeO2 ENPs, are increasingly being incorporated into a wide range of industrial and commercial applications, which will undoubtedly result in their (unintentional) release into the environment. Hereby, the behaviour and fate of CeO2 ENPs could potentially serve as model for other nanoparticles that possess similar characteristics. The present study examined the stability and settling of CeO2 ENPs (7.3±1.4 nm) as well as Ce(3+) ions in 10 distinct natural surface waters during 7d, under stagnant and isothermal experimental conditions. Natural water samples were collected throughout Flanders (Belgium) and were thoroughly characterized. For the majority of the surface waters, a substantial depletion (>95%) of the initially added CeO2 ENPs was observed just below the liquid surface of the water samples after 7d. In all cases, the reduction was considerably higher for CeO2 ENPs than for Ce(3+) ions (<68%). A first-order kinetics model was able to describe the observed time-dependant removal of both CeO2 ENPs (R(2)≥0.998) and Ce(3+) ions (R(2)≥0.812) from the water column, at least in case notable sedimentation occurred over time. Solution-pH appeared to be a prime parameter governing nanoparticle colloidal stability. Moreover, the suspended solids (TSS) content also seemed to be an important factor affecting the settling rate and residual fraction of CeO2 ENPs as well as Ce(3+) ions in natural surface waters. Correlation results also suggest potential association and co-precipitation of CeO2 ENPs with aluminium- and iron-containing natural colloidal material. The CeO2 ENPs remained stable in dispersion in surface water characterized by a low pH, ionic strength (IS), and TSS content, indicating the eventual stability and settling behaviour of the nanoparticles was likely determined by a combination of physicochemical parameters. Finally, ionic release from the nanoparticle surface was also examined and appeared to be negligible in all of the tested natural waters.


Subject(s)
Cerium/analysis , Metal Nanoparticles/analysis , Water Pollutants, Chemical/analysis , Belgium , Environmental Monitoring , Fresh Water/analysis , Hydrogen-Ion Concentration
19.
Part Fibre Toxicol ; 12: 5, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25888760

ABSTRACT

OBJECTIVE: The development of nanotechnology has spurred concerns about the health effects of exposure to nanoparticles (NPs) and ultrafine particles (UFPs). Toxicological data on NPs and UFPs may provide evidence to support the development of regulations to reduce the risk of particle exposure. We tried to provide fundamental data to determine differences in cytotoxicity induced by ambient UFPs and engineered metal oxide NPs (ZnO, NiO, and CeO2). METHODS: UFPs were sampled by using of a nano micro-orifice uniform deposit impactor. Physicochemical characterization of the UFPs and nano metal oxide particles were studied by scanning electron microscopy and transmission electron microscopy. Cellular toxicity induced by the different particles was assessed by using of comprehensive approaches and compared after A549 cells were exposured to the particles. RESULTS: All of the measured particles could damage A549 cells at concentrations ranging from 25 to 200 µg/mL. The lowest survival ratio and the highest lactate dehydrogenase level were caused by nano-ZnO particles, but the highest levels of intracellular reactive oxygen species (ROS) and percentages of apoptosis were observed in cells treated with the soluble fraction of ambient fine particles (PM1.8) at 200 µg/mL. Relatively high concentrations of anthropogenic metals, including Zn, Ni, Fe, and Cu, may be responsible for the higher toxicity of fine ambient particles compared with the ambient coarse particles and UFPs. The selected heavy metals (Zn, Ni, Fe, and Cu) were found to be located in the perinuclear and cytoplasmic areas of A549 cells. The distribution pattern of metals from ambient particles showed that distributions of the metals in A549 cells were not uniform and followed the pattern Cu>Zn>Fe>Ni, suggesting that Cu was absorbed by A549 cells more easily than the other metals. CONCLUSIONS: Metal nanoparticles oxides and UFPs at low concentration could damage to cells, but the manufactured metal oxide nanoparticles are not highly toxic to lung cells compared to environmental particles. The local concentration effect of heavy metals in A549 cells, as well as the induction of oxidative stress by the particles, may be responsible for the damage observed to the cells.


Subject(s)
Cerium/toxicity , Nanoparticles/toxicity , Nickel/toxicity , Particulate Matter/toxicity , Zinc Oxide/toxicity , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Cerium/analysis , Cerium/chemistry , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanoparticles/analysis , Nanoparticles/chemistry , Nickel/analysis , Nickel/chemistry , Particle Size , Particulate Matter/analysis , Particulate Matter/chemistry , Reactive Oxygen Species/metabolism , Surface Properties , Zinc Oxide/analysis , Zinc Oxide/chemistry
20.
Am J Orthod Dentofacial Orthop ; 147(4 Suppl): S88-100, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25836349

ABSTRACT

INTRODUCTION: This study provides insight into surface and elemental analyses of orthodontic retrieved miniscrew implants (MSIs). The sole purpose was to investigate the behavior of MSIs while they are in contact with bone and soft tissues, fluids, and food in the oral cavity. The information thus gathered may help to understand the underlying process of success or failure of MSIs and can be helpful in improving their material composition and design. METHODS: The study was carried out on 28 titanium-alloy MSIs (all from the same manufacturer) split into 3 groups: 18 MSIs were retrieved after successful orthodontic treatment, 5 were failed MSIs, and 5 were as-received MSIs serving as the controls. All MSIs were subjected to energy dispersive x-ray microanalysis to investigate the changes in surface elemental composition and to scanning electron microscopy to analyze their surface topography. Data thus obtained were subjected to suitable statistical analyses. RESULTS: Scanning electron microscope analysis showed surface manufacturing imperfections of the as-received MSIs in the form of stripes. Their elemental composition was confirmed to the specifications of the American Society for Testing of Materials for surgical implants. Retrieved MSIs exhibited generalized surface dullness; variable corrosion; craters in the head, neck, body, and tip regions; and blunting on tips and threads. Energy dispersive x-ray analyses showed deposition of additional elements: calcium had greater significance in its proportion in the body region by 0.056 weight percent; iron was seen in greater proportion in the failed retrieved MSIs compared with the successful miniscrews; cerium was seen in greater proportions in the head region by 0.128 weight percent and in the neck region by 0.147 weight percent than in the body and tip regions of retrieved MSIs. CONCLUSIONS: Retrieved MSIs showed considerable surface and structural alterations such as dullness, corrosion, and blunting of threads and tips. Their surfaces showed interactions and adsorption of several elements, such as calcium, at the body region. A high content of iron was found on the failed MSIs, and cerium was seen in the head and neck regions of retrieved MSIs.


Subject(s)
Bone Screws , Dental Alloys/chemistry , Orthodontic Anchorage Procedures/instrumentation , Titanium/chemistry , Adolescent , Adsorption , Alloys , Aluminum/analysis , Calcium/analysis , Cerium/analysis , Child , Corrosion , Electron Probe Microanalysis , Equipment Failure , Female , Humans , Iron/analysis , Male , Materials Testing , Microscopy, Electron, Scanning , Miniaturization , Orthodontic Appliance Design , Surface Properties , Titanium/analysis , Vanadium/analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL