Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Int J Cancer ; 154(12): 2176-2188, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38346928

ABSTRACT

Conventional type 1 dendritic cells (cDC1s) play a crucial role in antitumor immunity through the induction and activation of tumor-specific CD8+ cytotoxic T cells (CTLs). The chemokine XCL1 is a major chemotactic factor for cDC1s and its receptor XCR1 is selectively expressed on cDC1s. Here, we investigated the effect of intratumoral delivery of a highly active form of murine XCL1 (mXCL1-V21C/A59C) on cDC1-mediated antitumor immunity using a hydrophilic gel patch. The hydrophilic gel patch containing mXCL1-V21C/A59C increased cDC1 accumulation in the tumor masses and promoted their migration to the regional lymph nodes, resulting in enhanced induction of tumor-specific CTLs. Tumor-infiltrating cDC1s not only expressed XCR1 but also produced CXCL9, a ligand for CXCR3 which is highly expressed on CTLs and NK cells. Consequently, CTLs and NK cells were increased in the tumor masses of mice treated with mXCL1-V21C/A59C, while immunosuppressive cells such as monocyte-derived suppressive cells and regulatory T cells were decreased. We also confirmed that anti-CXCL9 treatment decreased the tumor infiltration of CTLs. The intratumoral delivery of mXCL1-V21C/A59C significantly decreased tumor growth and prolonged survival in E.G7-OVA and B16-F10 tumor-bearing mice. Furthermore, the antitumor effect of mXCL1-V21CA59C was enhanced in combination with anti-programmed cell death protein 1 treatment. Finally, using The Cancer Genome Atlas database, we found that XCL1 expression was positively correlated with tumor-infiltrating cDC1s and a better prognosis in melanoma patients. Collectively, our findings provide a novel therapeutic approach to enhance tumor-specific CTL responses through the selective recruitment of CXCL9-expressing cDC1s into the tumor masses.


Subject(s)
Chemokines, C , Melanoma , Humans , Mice , Animals , T-Lymphocytes, Cytotoxic , Killer Cells, Natural , Melanoma/metabolism , Dendritic Cells , CD8-Positive T-Lymphocytes , Chemokine CXCL9/metabolism , Chemokines, C/genetics
2.
Brain Behav Immun ; 118: 178-189, 2024 May.
Article in English | MEDLINE | ID: mdl-38428650

ABSTRACT

Elevated levels of cytokines in maternal circulation increase the offspring's risk for neuropsychiatric disease. Because of their low homeostatic levels, circulating maternal cytokines during normal pregnancies have not been considered to play a role in fetal brain development and offspring behavior. Here we report that the T/NK cell chemotactic cytokine XCL1, a local paracrine immune signal, can function as a pregnancy hormone and is required for the proper development of placenta and male offspring approach-avoidance behavior. We found that circulating XCL1 levels were at a low pregestational level throughout pregnancy except for a midgestational rise and fall. Blunted elevation in maternal plasma XCL1 in dams with a genetic 5HT1A receptor deficit or following neutralization by anti-XCL1 antibodies increased the expression of tissue damage associated factors in WT fetal placenta and led to increased innate anxiety and stress reactivity in the WT male offspring. Therefore, chemokines like XCL1 may act as pregnancy hormones to regulate placenta development and offspring emotional behavior.


Subject(s)
Anxiety , Chemokines, C , Female , Male , Pregnancy , Chemokines, C/genetics , Cytokines/metabolism , Hormones , Animals , Mice
3.
Int J Cancer ; 146(8): 2182-2193, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31904872

ABSTRACT

Most genome-wide association studies (GWASs) identify genetic variants for breast cancer occurrence. In contrast, few are for recurrence and mortality. We conducted a GWAS on breast cancer survival after diagnosis in estrogen receptor-positive patients, including 953 Taiwanese patients with 159 events. Through Cox proportional hazard models estimation, we identified 24 risk SNPs with p < 1 × 10-5 . Based on imputation and integrated analysis, one SNP, rs1024176 (located in 1q24.2, p = 2.43 × 10-5 ) was found to be a functional variant associated with breast cancer survival and XCL1 gene expression. A series of experimental approaches, including cell-based analyses and CRISPR/Cas9 genome-editing system, were then used and identified the transcription factor MYBL2 was able to discriminately bind to the A allele of rs1024176, the protective variant for breast cancer survival, which promoted XCL1 expression, but not to the G allele of rs1024176. The chemokine XCL1 attracts type 1 dendritic cells (DC1s) to the tumor microenvironment. In breast cancer tissues, we applied a two-step Mendelian randomization analysis, using expression quantitative trait loci as instrumental variables, to confirm higher XCL1 expression was correlated with higher DC1 signatures and favorable disease progression, through the causal effect of rs1024176-A allele. Our study supports the genetic effect on preventing breast cancer survival through XCL1-induced DC1 recruitment in tumor microenvironment.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/immunology , Chemokines, C/genetics , Chemokines, C/immunology , Adult , Aged , Aged, 80 and over , Breast Neoplasms/pathology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/immunology , Chemokines, C/biosynthesis , Dendritic Cells/immunology , Dendritic Cells/pathology , Female , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Humans , Middle Aged , Proportional Hazards Models , Quantitative Trait Loci , Trans-Activators/genetics , Trans-Activators/immunology , Young Adult
4.
Oral Dis ; 26(8): 1668-1676, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32562323

ABSTRACT

BACKGROUND: The expression of XCR1 receptor and its metamorphic ligand lymphotactin (hLtn) has been shown in cancers but their precise role in tumorigenesis is poorly understood including the significance of the physiologically existing hLtn monomeric (CC3) and dimeric (W55D) confirmations where the latter thought to function as the receptor antagonist. The aim of this study was to explore the functional role of bioengineered hLtn variants and the role of fibroblasts in XCR1/hLtn expression regulation in oral cancer cells (OCCL). MATERIAL AND METHODS: qRT-PCR and flow cytometry were performed to evaluate mRNA and protein expression of XCR1 and hLtn. Recombinant hLtn variants (wild-type, CC3 and W55D mutant) were designed, expressed, purified and evaluated using proliferation, adhesion and chemotaxis assays. XCR1 and hLtn expression regulation by fibroblasts was determined using indirect co-culture. XCR1 and hLtn expression in primary and metastatic OSCC tissue was assessed using immunohistochemistry. RESULTS: hLtn caused a significant decrease in OCCL XCR1 surface protein expression. hLtn CC3 mutant was highly functional facilitating proliferation and migration. Conditioned media from primary cancer-associated and senescent fibroblasts significantly upregulated XCR1 and hLtn mRNA expression in OCCL. Immunohistochemistry revealed higher XCR1 and hLtn expression in metastatic tumour deposits and surrounding stroma compared to primary OSCC tissue. CONCLUSIONS: The development of hLtn biological mutants, regulation of XCR1 expression by its ligand hLtn and crosstalk with fibroblasts are novel findings suggesting an important role for the XCR1/hLtn axis within the OSCC tumour microenvironment. These discoveries build upon previous studies and suggest that the hLtn/XCR1 axis has a significant role in stromal crosstalk and OSCC progression.


Subject(s)
Chemokines, C , Mouth Neoplasms , Cell Movement , Chemokines , Chemokines, C/genetics , Humans , Lymphokines , Mouth Neoplasms/genetics , Sialoglycoproteins , Tumor Microenvironment
5.
J Allergy Clin Immunol ; 142(6): 1781-1792.e12, 2018 12.
Article in English | MEDLINE | ID: mdl-29474842

ABSTRACT

BACKGROUND: The chemokine X-C motif chemokine ligand 1 (XCL1)-X-C motif chemokine receptor 1 (XCR1) axis has been reported to play a role in immune homeostasis and inflammation. However, it is not known whether this axis has a critical function in patients with allergic asthma. OBJECTIVE: In the present study we explored whether the invariant natural killer T (iNKT) cell-mediated XCL1-XCR1 axis regulated allergic asthma. METHODS: Ovalbumin (OVA)- or house dust mite-induced asthma was developed in XCL1 or XCR1 knockout (KO) mice. RESULTS: XCL1 or XCR1 KO mice showed attenuation in airway hyperresponsiveness (AHR), numbers of CD103+ dendritic cells (DCs), and TH2 responses in the lungs compared with wild-type (WT) mice during OVA- or house dust mite-induced asthma. These effects were reversed by intratracheal administration of recombinant XCL1 or adoptive transfer of CD103+ DCs but not CD11b+ DCs into XCL1 KO mice. Moreover, iNKT cells highly expressed XCL1 both in vitro and in vivo. On intranasal α-galactosyl ceramide challenge, CD103+ DC numbers in the lungs were increased in WT but not XCL1 KO mice. Furthermore, adoptive transfer of WT iNKT cells increased AHR, CD103+ DC recruitment, and TH2 responses in the lungs of CD1d KO mice during OVA-induced asthma, whereas adoptive transfer of XCL1-deficient iNKT cells did not. In human patients, percentages and XCL1 production capacity of iNKT cells from PBMCs were greater in patients with asthma than in healthy control subjects. CONCLUSION: These data demonstrate that the iNKT cell-mediated XCL1-XCR1 axis promotes AHR by recruiting CD103+ DCs into the lung in patients with allergic asthma.


Subject(s)
Asthma/immunology , Chemokines, C/immunology , Dendritic Cells/immunology , Natural Killer T-Cells/immunology , Receptors, Chemokine/immunology , Adult , Aged , Animals , Antigens, CD/immunology , Asthma/physiopathology , Carcinoma, Non-Small-Cell Lung/immunology , Chemokines, C/genetics , Female , Humans , Integrin alpha Chains/immunology , Lung Neoplasms/immunology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Receptors, Chemokine/genetics , Young Adult
6.
J Immunol ; 194(12): 5895-902, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25941327

ABSTRACT

The development of vaccines inducing efficient CD8(+) T cell responses is the focus of intense research. Dendritic cells (DCs) expressing the XCR1 chemokine receptor, also known as CD103(+) or CD8α(+) DCs, excel in the presentation of extracellular Ags to CD8(+) T cells. Because of its high numbers of DCs, including XCR1(+) DCs, the skin dermis is an attractive site for vaccine administration. By creating laser-generated micropores through the epidermis, we targeted a model protein Ag fused to XCL1, the ligand of XCR1, to dermal XCR1(+) DCs and induced Ag-specific CD8(+) and CD4(+) T cell responses. Efficient immunization required the emigration of XCR1(+) dermal DCs to draining lymph nodes and occurred irrespective of TLR signaling. Moreover, a single intradermal immunization protected mice against melanoma tumor growth in prophylactic and therapeutic settings, in the absence of exogenous adjuvant. The mild inflammatory milieu created in the dermis by skin laser microporation itself most likely favored the development of potent T cell responses in the absence of exogenous adjuvants. The existence of functionally equivalent XCR1(+) dermal DCs in humans should permit the translation of laser-assisted intradermal delivery of a tumor-specific vaccine targeting XCR1(+) DCs to human cancer immunotherapy. Moreover, considering that the use of adjuvants in vaccines is often associated with safety issues, the possibility of inducing protective responses against melanoma tumor growth independently of the administration of exogenous adjuvants should facilitate the development of safer vaccines.


Subject(s)
Cancer Vaccines/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Neoplasms/immunology , Receptors, Chemokine/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Cancer Vaccines/administration & dosage , Chemokines, C/genetics , Chemokines, C/metabolism , Disease Models, Animal , Injections, Intradermal , Melanoma, Experimental , Mice , Mice, Knockout , Myeloid Differentiation Factor 88/metabolism , Neoplasms/pathology , Neoplasms/therapy , Ovalbumin/genetics , Ovalbumin/immunology , Protein Binding , Receptors, Chemokine/genetics , T-Lymphocyte Subsets/immunology , Tumor Burden/immunology
7.
Appl Microbiol Biotechnol ; 101(21): 7889-7900, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28929328

ABSTRACT

Targeting antigen to dendritic cells (DCs) is a promising way to manipulate the immune response and to design prophylactic molecular vaccines. In this study, the cattle XCL1, ligand of XCR1, was fused to the type O foot-and-mouth disease virus (FMDV) multi-epitope protein (XCL-OB7) to create a molecular vaccine antigen, and an △XCL-OB7 protein with a mutation in XCL1 was used as the control. XCL-OB7 protein specifically bound to the XCR1 receptor, as detected by flow cytometry. Cattle vaccinated with XCL-OB7 showed a significantly higher antibody response than that to the △XCL-OB7 control (P < 0.05). In contrast, when XCL-OB7 was incorporated with poly (I:C) to prepare the vaccine, the antibody response of the immunized cattle was significantly decreased in this group and was lower than that in the △XCL-OB7 plus poly (I:C) group. The FMDV challenge indicated that cattle immunized with the XCL-OB7 alone or the △XCL-OB7 plus poly (I:C) obtained an 80% (4/5) clinical protective rate. However, cattle vaccinated with △XCL-OB7 plus poly (I:C) showed more effective inhibition of virus replication than that in the XCL-OB7 group after viral challenge, according to the presence of antibodies against FMDV non-structural protein 3B. This is the first test of DC-targeted vaccines in veterinary medicine to use XCL1 fused to FMDV antigens. This primary result showed that an XCL1-based molecular vaccine enhanced the antibody response in cattle. This knowledge should be valuable for the development of antibody-dependent vaccines for some infectious diseases in cattle.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antibodies, Viral/blood , Chemokines, C/pharmacology , Epitopes/immunology , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/prevention & control , Viral Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/genetics , Animals , Cattle , Chemokines, C/administration & dosage , Chemokines, C/genetics , Epitopes/genetics , Foot-and-Mouth Disease Virus/genetics , Poly I-C/administration & dosage , Poly I-C/pharmacology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
8.
Biochemistry ; 55(8): 1214-25, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26836755

ABSTRACT

Known for its distinct metamorphic behavior, XCL1 interconverts between a canonical chemokine folded monomer (XCL1mon) that interacts with the receptor, XCR1, and a unique dimer (XCL1dim) that interacts with glycosaminoglycans and inhibits HIV-1 activity. This study presents the first detailed analysis of the GAG binding properties of XCL1dim. Basic residues within a conformationally selective dimeric variant of XCL1 (W55D) were mutated and analyzed for their effects on heparin binding. Mutation of Arg23 and Arg43 greatly diminished the level of heparin binding in both heparin Sepharose chromatography and surface plasmon resonance assays. To assess the contributions of different GAG structures to XCL1 binding, we developed a solution fluorescence polarization assay and correlated affinity with the length and level of sulfation of heparan sulfate oligosaccharides. It was recently demonstrated that the XCL1 GAG binding form, XCL1dim, is responsible for preventing HIV-1 infection through interactions with gp120. This study defines a GAG binding surface on XCL1dim that includes residues that are important for HIV-1 inhibition.


Subject(s)
Chemokines, C/chemistry , Chemokines, C/metabolism , Glycosaminoglycans/metabolism , Binding Sites , Chemokines, C/genetics , Glycosaminoglycans/chemistry , HIV Infections/genetics , HIV Infections/metabolism , HIV-1/metabolism , Heparin/chemistry , Heparin/metabolism , Heparitin Sulfate/chemistry , Heparitin Sulfate/metabolism , Humans , Models, Molecular , Point Mutation , Protein Binding , Protein Folding , Protein Multimerization
9.
J Virol ; 89(17): 9061-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26085164

ABSTRACT

UNLABELLED: HIV-1 replication is regulated in vivo by a complex network of cytokines and chemokines. XCL1/lymphotactin, a unique metamorphic chemokine, was recently identified as a broad-spectrum endogenous HIV-1 inhibitor that blocks viral entry via direct interaction with the gp120 envelope glycoprotein. HIV-1 inhibition by XCL1 requires access to the alternative all-ß conformation, which interacts with glycosaminoglycans (GAGs) but not with the specific XCL1 receptor, XCR1. To investigate the structural determinants of the HIV-inhibitory function of XCL1, we performed a detailed structure-function analysis of a stabilized all-ß variant, XCL1 W55D. Individual alanine substitutions of two basic residues within the 40s' loop, K42 and R43, abrogated the ability of XCL1 to bind to the viral envelope and block HIV-1 infection; moreover, a loss of HIV-inhibitory function, albeit less marked, was seen upon individual mutation of three additional basic residues: R18, R35, and K46. In contrast, mutation of K42 to arginine did not cause any loss of function, suggesting that the interaction with gp120 is primarily electrostatic in nature. Strikingly, four of these five residues cluster to form a large (∼350 Å(2)) positively charged surface in the all-ß XCL1 conformation, whereas they are dissociated in the classic chemokine fold, which is inactive against HIV-1, providing a structural basis for the selective antiviral activity of the alternatively folded XCL1. Furthermore, we observed that changes to the N-terminal domain, which is proximal to the cluster of putative HIV-1 gp120-interacting residues, also affect the antiviral activity of XCL1. Interestingly, the complement of residues involved in HIV-1 blockade is partially overlapping, but distinct from those involved in the GAG-binding function of XCL1. These data identify key structural determinants of anti-HIV activity in XCL1, providing new templates for the development of HIV-1 entry inhibitors. IMPORTANCE: The host immune system controls HIV-1 infection through a wide array of inhibitory responses, including the induction of cytotoxic effector cells and the secretion of noncytolytic soluble antiviral factors such as cytokines and chemokines. We recently identified XCL1/lymphotactin, a chemokine primarily produced by CD8(+) T cells, as a novel endogenous factor with broad anti-HIV activity. Strikingly, only one of the two conformations that XCL1 can adopt in solution, the alternative all-ß fold, mediates antiviral activity. At variance with the classic HIV-inhibitory chemokines such as CCL5/RANTES, XCL1 acts via direct interaction with the external viral envelope glycoprotein, gp120. Here, we identify the interactive surface of XCL1 that is implicated in binding to the HIV-1 envelope and HIV-1 inhibition, providing a structural basis to explain why only the all-ß XCL1 conformer is effective against HIV-1. Our findings may be useful in guiding the rational design of new inhibitors of HIV-1 entry.


Subject(s)
Chemokines, C/metabolism , HIV Envelope Protein gp120/metabolism , HIV Infections/prevention & control , Receptors, G-Protein-Coupled/metabolism , Virus Internalization , Amino Acid Substitution/genetics , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Chemokines, C/genetics , Glycosaminoglycans/metabolism , HIV-1/growth & development , HIV-1/immunology , Humans , Protein Binding/genetics , Protein Folding , Structure-Activity Relationship
10.
Anesthesiology ; 125(3): 573-89, 2016 09.
Article in English | MEDLINE | ID: mdl-27387353

ABSTRACT

BACKGROUND: Recent studies indicated the involvement of some chemokines in the development of diabetic neuropathy; however, participation of the chemokine-C-motif ligand (XCL) subfamily remains unknown. The goal of this study was to examine how microglial inhibition by minocycline hydrochloride (MC) influences chemokine-C-motif ligand 1 (XCL1)-chemokine-C-motif receptor 1 (XCR1)/G protein-coupled receptor 5 expression and the development of allodynia/hyperalgesia in streptozotocin-induced diabetic neuropathy. METHODS: The studies were performed on streptozotocin (200 mg/kg, intraperitoneally)-induced mouse diabetic neuropathic pain model and primary glial cell cultures. The MC (30 mg/kg, intraperitoneally) was injected two times daily until day 21. XCL1 and its neutralizing antibody were injected intrathecally, and behavior was evaluated with von Frey and cold plate tests. Quantitative analysis of protein expression of glial markers, XCL1, and/or XCR1 was performed by Western blot and visualized by immunofluorescence. RESULTS: MC treatment diminished allodynia (0.9 ± 0.1 g; n = 7 vs. 3.8 ± 0.7 g; n = 7) and hyperalgesia (6.5 ± 0.6 s; n = 7 vs. 16.5 ± 1 s; n = 7) in the streptozotocin-induced diabetes. Repeated MC administration prevented microglial activation and inhibited the up-regulation of the XCL1/XCR1 levels. XCL1 administration (10 to 500 ng/5 µl; n = 9) in naive mice enhanced nociceptive transmission, and injections of neutralizing XCL1 (4 to 8 µg/5 µl; n = 10) antibody into the mice with diabetic neuropathic pain diminished allodynia/hyperalgesia. Microglia activation evoked in primary microglial cell cultures resulted in enhanced XCL1 release and XCR1 expression. Additionally, double immunofluorescence indicated the widespread coexpression of XCR1-expressing cells with spinal neurons. CONCLUSIONS: In diabetic neuropathy, declining levels of XCL1 evoked by microglia inhibition result in the cause of analgesia. The putative mechanism corroborating this finding can be related to lower spinal expression of XCR1 together with the lack of stimulation of these XCR1 receptors, which are localized on neurons.


Subject(s)
Chemokines, C/metabolism , Diabetic Neuropathies/physiopathology , Hyperalgesia/prevention & control , Microglia , Pain/prevention & control , Receptors, Chemokine/metabolism , Animals , Blotting, Western , Chemokines, C/genetics , Diabetic Neuropathies/metabolism , Disease Models, Animal , Fluorescent Antibody Technique , Gene Expression/genetics , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Male , Mice , Pain/metabolism , Pain/physiopathology , Receptors, Chemokine/genetics
11.
Biosci Biotechnol Biochem ; 80(5): 991-7, 2016 May.
Article in English | MEDLINE | ID: mdl-26836235

ABSTRACT

Murine contact hypersensitivity (CHS) is one of the most frequently used animal models of human allergic contact dermatitis. We investigated the inhibitory effects of soybean and soy isoflavone (SI) diets on 2,4-dinitrofluorobenzene- (DNFB) induced CHS in mice. The DNFB-induced ear swelling was inhibited in the soy- and SI-treated groups. Histopathological investigations revealed that oral feeding of soybean and SI attenuated ear tissue edema and reduced the number of Gr-1(+) cell infiltrations into ear tissues. DNA microarray analysis showed that the expression of Ccl24, Xcl1, Ifng, and Ccl17 in the ear tissues was lower in the soy-treated mice than in the positive controls. In addition, CCL24 mRNA and protein expression in the ear tissues were more highly suppressed in the soy- and SI-treated groups. These results suggest that soybean and SI consumption downregulated the gene and protein expression of CCL24, thereby affording protection against CHS in mice.


Subject(s)
Anti-Allergic Agents/administration & dosage , Dermatitis, Allergic Contact/diet therapy , Edema/diet therapy , Glycine max/chemistry , Isoflavones/administration & dosage , Administration, Oral , Animals , Anti-Allergic Agents/isolation & purification , Chemokine CCL17/genetics , Chemokine CCL17/immunology , Chemokine CCL24/genetics , Chemokine CCL24/immunology , Chemokines, C/genetics , Chemokines, C/immunology , Dermatitis, Allergic Contact/etiology , Dermatitis, Allergic Contact/immunology , Dermatitis, Allergic Contact/pathology , Diet , Dinitrofluorobenzene/toxicity , Disease Models, Animal , Ear/blood supply , Ear/pathology , Edema/chemically induced , Edema/immunology , Edema/pathology , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Isoflavones/isolation & purification , Mice , Mice, Inbred BALB C , Oligonucleotide Array Sequence Analysis , Receptors, Chemokine/genetics , Receptors, Chemokine/immunology , Signal Transduction
12.
Med Sci Monit ; 22: 1560-5, 2016 May 09.
Article in English | MEDLINE | ID: mdl-27156946

ABSTRACT

BACKGROUND Chemokines are a family of small proteins secreted by cells with chemotactic activity, and they play important roles in cell adhesion. However, the expression of chemokine XCL2 and CX3CL1 in lung cancers in different pathological stages remains unclear. MATERIAL AND METHODS XCL2 and CX3CL1 expression in lung cancers and adjacent non-cancerous tissues was detected by quantitative PCR and ELISA. The relative expression of both chemokines in lung cancers in different pathological stages was compared by immunohistochemical assay. RESULTS The relative expression level of XCL2 and CX3CL1 in lung cancer was significantly higher compared with adjacent normal tissues (P<0.001). The expression level of both chemokines was significantly increased with higher pathological stages, as indicated by immunohistochemical assay (P<0.05 or P <0.001). Their expression level in cancers with higher numbers of metastatic lymph nodes was also significantly increased compared with cancers with lower numbers of metastatic lymph nodes (P<0.05 or P<0.001). CONCLUSIONS The expression of XCL2 and CX3CL1 increases with increasing degree of malignancy, indicating that both chemokines might be important targets in gene therapy for lung cancer.


Subject(s)
Chemokine CX3CL1/biosynthesis , Chemokines, C/biosynthesis , Lung Neoplasms/metabolism , Cell Adhesion/physiology , Chemokine CX3CL1/genetics , Chemokine CX3CL1/metabolism , Chemokines, C/genetics , Chemokines, C/metabolism , Female , Gene Expression Profiling , Humans , Immunohistochemistry , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lymphatic Metastasis , Male , Neoplasm Staging , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction
13.
Biotechnol Lett ; 37(4): 779-85, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25515795

ABSTRACT

Fusokines are proteins formed by the fusion of two cytokines. They have greater bioavailability and therapeutic potential than individual cytokines or a combination of different cytokines. Interferon-gamma-inducible protein 10 (CXCL10) and lymphotactin (XCL1) are members of the chemotactic family of cytokines, which induce tumor regression by eliciting immune-system cell chemotaxis. We engineered a replication-deficient adenoviral system expressing CXCL10/XCL1 fusokine (Ad FIL) and assessed its chemotactic response in vitro and in vivo. The CXCL10/XCL1 fusokine elicited a greater chemotactic effect in IL-2 stimulated lymphocytes than individual or combined cytokines in vitro. CXCL10/XCL1 fusokine biological activity was demonstrated in vivo by intratumoral chemoattraction of CXCR3+ cells. Thus, this novel CXCL10/XCL1 fusokine may represent a potential tool for gene therapy treatment of cancer and other illnesses that require triggering immune-system cell recruitment.


Subject(s)
Chemokine CXCL10/metabolism , Chemokines, C/metabolism , Chemotaxis , Genetic Vectors , Lymphocytes/physiology , Mastadenovirus/genetics , Animals , Cell Line , Chemokine CXCL10/genetics , Chemokines, C/genetics , Humans , Lymphocytes/drug effects , Mice, Inbred C57BL
14.
Eur J Immunol ; 43(9): 2283-94, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23712827

ABSTRACT

γ-Chain (γc) cytokine receptor signaling is required for the development of all lymphocytes. Why γc signaling plays such an essential role is not fully understood, but induction of the serine/threonine kinase Pim1 is considered a major downstream event of γc as Pim1 prevents apoptosis and increases metabolic activity. Consequently, we asked whether Pim1 overexpression would suffice to restore lymphocyte development in γc-deficient mice. By analyzing Pim1-transgenic γc-deficient mice (Pim1(Tg) γc(KO) ), we show that Pim1 promoted T-cell development and survival in the absence of γc. Interestingly, such effects were largely limited to CD4(+) lineage αß T cells as CD4(+) T-cell numbers improved to near normal levels but CD8(+) T cells remained severely lymphopenic. Notably, Pim1 over-expression failed to promote development and survival of any T-lineage cells other than αß T cells, as we observed complete lack of γδ, NKT, FoxP3(+) T regulatory cells and TCR-ß(+) CD8αα IELs in Pim1(Tg) γc(KO) mice. Collectively, these results uncover distinct requirements for γc signaling between CD4(+) αß T cells and all other T-lineage cells, and they identify Pim1 as a novel effector molecule sufficient to drive CD4(+) αß T-cell development and survival in the absence of γc cytokine receptor signaling.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Chemokines, C/genetics , Proto-Oncogene Proteins c-pim-1/metabolism , Receptors, Cytokine/metabolism , Animals , CD8 Antigens/biosynthesis , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation , Cell Proliferation , Cell Survival , Chemokines, C/deficiency , Forkhead Transcription Factors/biosynthesis , Mice , Mice, Inbred C57BL , Mice, Knockout , Natural Killer T-Cells , Proto-Oncogene Proteins c-pim-1/biosynthesis , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Signal Transduction , T-Lymphocytes, Regulatory
15.
Biochemistry ; 51(45): 9067-75, 2012 Nov 13.
Article in English | MEDLINE | ID: mdl-23102260

ABSTRACT

The equilibrium unfolding reaction of Ltn, a metamorphic C-class chemokine, was monitored by tryptophan fluorescence to determine unfolding free energies. Measurements revealed that addition of 150 mM NaCl stabilized the Ltn chemokine fold by approximately 1 kcal/mol. Specific mutations involving Arg23 and Arg43 also increased the stability by 1 kcal/mol, suggesting their involvement in chloride ion coordination. This interaction was confirmed by nuclear magnetic resonance (NMR) salt titration studies that revealed chemical shift perturbations localized to these residues and backbone amides within the proximal 40s loop. The effects of NaCl on the free energy landscape were further verified by ZZ-exchange NMR spectroscopy. Our results suggest that changes in the electrostatic environment modulate the Gibbs free energy of folding and alter the forward and reverse rates of interconversion. These results demonstrate how solution ions can promote metamorphic folding by adjusting the relative stabilities of two unrelated Ltn native-state structures.


Subject(s)
Chemokines, C/chemistry , Protein Conformation , Binding Sites , Chemokines, C/genetics , Chlorides/chemistry , Humans , Kinetics , Mutation , Nuclear Magnetic Resonance, Biomolecular , Protein Denaturation , Protein Stability , Sodium Chloride/pharmacology , Static Electricity , Thermodynamics , Tryptophan/chemistry
16.
EMBO Rep ; 11(7): 541-7, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20508642

ABSTRACT

The Ada-Two-A-containing (ATAC) histone acetyltransferase and Mediator coactivator complexes regulate independent and distinct steps during transcription initiation and elongation. Here, we report the identification of a new stable molecular assembly formed between the ATAC and Mediator complexes in mouse embryonic stem cells. Moreover, we identify leucine zipper motif-containing protein 1 as a subunit of this meta-coactivator complex (MECO). Finally, we demonstrate that the MECO regulates a subset of RNA polymerase II-transcribed non-coding RNA genes. Our findings establish that transcription coactivator complexes can form stable subcomplexes to facilitate their combined actions on specific target genes.


Subject(s)
Chemokines, C/metabolism , Mediator Complex/metabolism , Multiprotein Complexes/metabolism , RNA, Untranslated/genetics , Animals , Cells, Cultured , Chemokines, C/chemistry , Chemokines, C/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fibroblasts/cytology , Fibroblasts/physiology , Gene Expression Regulation , Leucine Zippers , Mass Spectrometry , Mediator Complex/chemistry , Mediator Complex/genetics , Mice , Mice, Knockout , Peptides/genetics , Peptides/metabolism , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism
17.
Front Immunol ; 13: 1058204, 2022.
Article in English | MEDLINE | ID: mdl-36618360

ABSTRACT

Recent studies have indicated the involvement of chemokine-C-motif ligand 1 (XCL1) in nociceptive transmission; however, the participation of its two receptors, canonical chemokine-C-motif receptor 1 (XCR1) and integrin alpha-9 (ITGA9), recently recognized as a second receptor, has not been clarified to date. The aim was to explore by which of these receptors XCL1 reveals its pronociceptive properties and how the XCL1-XCR1 and XCL1-ITGA9 axes blockade/neutralization influence on pain-related behavior and opioid analgesia in the model of neuropathic pain. In our studies we used Albino Swiss mice which were exposed to the unilateral sciatic nerve chronic constriction injury (CCI) as a neuropathic pain model. Animals received single intrathecal (i.t.) injection of XCL1, XCL1 neutralizing antibodies, antagonist of XCR1 (vMIP-II) and neutralizing antibodies of ITGA9 (YA4), using lumbar puncture technique. Additionally we performed i.t. co-administration of abovementioned neutralizing antibodies and antagonists with single dose of morphine/buprenorphine. To assess pain-related behavior the von Frey and cold plate tests were used. To measure mRNA and protein level the RT-qPCR and Western Blot/Elisa/immunofluorescence techniques were performed, respectively. Statistical analysis was conducted using ANOVA with a Bonferroni correction. Presented studies have shown time-dependent upregulation of the mRNA and/or protein expression of XCL1 in the spinal cord after nerve injury as measured on day 1, 4, 7, 14, and 35. Our immunofluorescence study showed that XCL1 is released by astroglial cells located in the spinal cord, despite the neural localization of its receptors. Our results also provided the first evidence that the blockade/neutralization of both receptors, XCR1 and ITGA9, reversed hypersensitivity after intrathecal XCL1 administration in naive mice; however, neutralization of ITGA9 was more effective. In addition, the results proved that the XCL1 neutralizing antibody and, similarly, the blockade of XCR1 and neutralization of ITGA9 diminished thermal and mechanical hypersensitivity in nerve injury-exposed mice after 7 days. Additionally, neutralization of XCL1 improves morphine analgesia. Moreover, blockade of XCR1 positively influences buprenorphine effectiveness, and neutralization of ITGA9 enhances not only buprenorphine but also morphine analgesia. Therefore, blockade of the XCL1-ITGA9 interaction may serve as an innovative strategy for the polypharmacotherapy of neuropathic pain in combination with opioids.


Subject(s)
Buprenorphine , Chemokines, C , Neuralgia , Peripheral Nerve Injuries , Mice , Animals , Neuralgia/drug therapy , Neuralgia/etiology , Neuralgia/metabolism , Analgesics/pharmacology , Analgesics/therapeutic use , Analgesics, Opioid/therapeutic use , Morphine/pharmacology , Morphine/therapeutic use , Buprenorphine/therapeutic use , Animals, Laboratory , Receptors, Chemokine/metabolism , Peripheral Nerve Injuries/metabolism , Integrins/therapeutic use , Chemokines, C/genetics
18.
Fish Shellfish Immunol ; 31(5): 673-87, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21664274

ABSTRACT

The mammalian gamma-chain (γC) cytokine family consists of interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15 and IL-21. They signal through a receptor complex containing the common γC and a private alpha chain, and in the case of IL-2 and IL-15 an additional common IL-2/15Rß chain. Deficiency of γC signalling in mammals prevents CD4+ T cells from developing effector functions and CD8+ T cells from developing immunological memory. Thus γC cytokines are critical for the generation and peripheral homeostasis of naïve and memory T cells. This review will give an update on the γC ligands and receptor subunits in fish, and also present some new data on the cloning and expression of a second γC and two IL-2Rß chains in rainbow trout Oncorhynchus mykiss. In recent years, aided by the availability of sequenced fish genomes and expressed sequence tag databases, five of the six mammalian γC cytokines and their cognate receptors have been discovered in fish, with only the IL-9/IL-9R homologues apparently absent. Paralogues have been discovered in diploid fish and all the receptors described in the tetraploid rainbow trout, including γC itself, IL-2Rß, IL-4Rα, IL-13Rα1, IL-13Rα2 and IL-2/15Rα, have duplicates. As a consequence of the teleost and salmonid whole genome duplications, even more paralogues may yet be discovered. Some of the paralogues have changes in domain structures and show differential expression and modulation, suggesting the potential for a change in function. Functional characterisation of fish γC cytokines is beginning but made more difficult by the co-existence of so many paralogues of the ligands and their receptors. Initial functional studies have shown that fish γC cytokines can modulate the expression of key cytokines (e.g. interferon-γ, IL-10 and IL-22) of the adaptive immune response, and may thus have promise as adjuvants to improve vaccination efficiency in fish.


Subject(s)
Chemokines, C/immunology , Fishes/genetics , Fishes/immunology , Ligands , Receptors, Cytokine/immunology , Animals , Chemokines, C/genetics , Receptors, Cytokine/genetics
19.
Crit Care ; 15(3): R158, 2011 Jun 28.
Article in English | MEDLINE | ID: mdl-21711552

ABSTRACT

INTRODUCTION: Lymphocyte homeostasis is dependent on the γc cytokines. We hypothesised that sepsis in humans is associated with differential gene expression of the γc cytokines and their associated apoptosis mediators. METHODS: The study population consisted of a total of 60 patients with severe sepsis, 15 with gram negative bacteraemia, 10 healthy controls and 60 patients undergoing elective lung resection surgery. Pneumonia was diagnosed by CDC NNIC criteria. Gene expression in peripheral blood leukocytes (PBLs) of interleukin (IL)-2, 7, 15 and interferon (IFN)-γ, Bax, Bim, Bcl-2 was determined by qRT-PCR and IL-2 and IL-7 serum protein levels by ELISA. Gene expression of IL-2, 7 and IFN-γ was measured in peripheral blood leukocytes (PBL), cultured in the presence of lipopolysaccharide (LPS) and CD3 binding antibody (CD3ab) RESULTS: IL-2 gene expression was lower in the bacteraemia group compared with controls, and lower still in the sepsis group (P < 0.0001). IL-7 gene expression was similar in controls and bacteraemia, but lower in sepsis (P < 0.0001). IL-15 gene expression was similar in the three groups. Bcl-2 gene expression was less (P < 0.0001) and Bim gene expression was greater (P = 0.0003) in severe sepsis compared to bacteraemic and healthy controls. Bax gene expression was similar in the three groups.In lung resection surgery patients, post-operative pneumonia was associated with a perioperative decrease in IL-2 mRNA (P < 0.0001) and IL-7 mRNA (P = 0.003). IL-2 protein levels were reduced in sepsis and bacteraemia compared to controls (P = 0.02) but similar in pneumonia and non-pneumonia groups. IL-7 protein levels were similar in all groups.In cultured PBLs, IFN-γ gene expression was decreased in response to LPS and increased in response to CD3ab with sepsis: IL-7 gene expression increased in response to LPS in controls and to CD3ab with sepsis; Bcl-2 gene expression decreased in response to combined CD3ab and IL-2 with sepsis. CONCLUSIONS: Patients with infection and sepsis have deficient IL-2 and IL-7 gene expression in PBLs. Aberrant cytokine gene expression may precede the onset of infection.


Subject(s)
Apoptosis Regulatory Proteins/deficiency , Chemokines, C/deficiency , Postoperative Complications/genetics , Sepsis/metabolism , Aged , Aged, 80 and over , Apoptosis Regulatory Proteins/genetics , Bacteremia/genetics , Bacteremia/metabolism , CD3 Complex/immunology , Cells, Cultured , Chemokines, C/genetics , Cohort Studies , Female , Gene Expression Regulation, Bacterial , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/deficiency , Interleukin-2/deficiency , Interleukin-2/genetics , Interleukin-7/deficiency , Interleukin-7/genetics , Lipopolysaccharides/pharmacology , Male , Postoperative Complications/microbiology , Prospective Studies , Sepsis/genetics
20.
Pharmacol Rep ; 72(6): 1579-1592, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33185818

ABSTRACT

BACKGROUND: Every year, millions of people suffer from various forms of traumatic brain injury (TBI), and new approaches with therapeutic potential are required. Although chemokines are known to be involved in brain injury, the importance of X-C motif chemokine ligand 1 (XCL1) and its receptors, X-C motif chemokine receptor 1 (XCR1) and alpha-9 integrin (ITGA9), in the progression of TBI remain unknown. METHODS: Using RT-qPCR/Western blot/ELISA techniques, changes in the mRNA/protein levels of XCL1 and its two receptors, in brain areas at different time points were measured in a mouse model of TBI. Moreover, their cellular origin and possible changes in expression were evaluated in primary glial cell cultures. RESULTS: Studies revealed the spatiotemporal upregulation of the mRNA expression of XCL1, XCR1 and ITGA9 in all the examined brain areas (cortex, thalamus, and hippocampus) and at most of the evaluated stages after brain injury (24 h; 4, 7 days; 2, 5 weeks), except for ITGA9 in the thalamus. Moreover, changes in XCL1 protein levels occurred in all the studied brain structures; the strongest upregulation was observed 24 h after trauma. Our in vitro experiments proved that primary murine microglial and astroglial cells expressed XCR1 and ITGA9, however they seemed not to be a main source of XCL1. CONCLUSIONS: These findings indicate that the XCL1/XCR1 and XCL1/ITGA9 axes may participate in the development of TBI. The XCL1 can be considered as one of the triggers of secondary injury, therefore XCR1 and ITGA9 may be important targets for pharmacological intervention after traumatic brain injury.


Subject(s)
Brain Injuries, Traumatic/physiopathology , Chemokines, C/metabolism , Integrin alpha Chains/metabolism , Receptors, Chemokine/metabolism , Animals , Astrocytes/metabolism , Chemokines, C/genetics , Disease Models, Animal , Disease Progression , Integrin alpha Chains/genetics , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL