Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.873
Filter
1.
Environ Sci Technol ; 58(14): 6391-6401, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38551030

ABSTRACT

Chromium (Cr) leached from iron (Fe) (oxyhydr)oxide-rich tropical laterites can substantially impact downstream groundwater, ecosystems, and human health. However, its partitioning into mineral hosts, its binding, oxidation state, and potential release are poorly defined. This is in part due to the current lack of well-designed and validated Cr-specific sequential extraction procedures (SEPs) for laterites. To fill this gap, we have (i) first optimized a Cr SEP for Fe (oxyhydr)oxide-rich laterites using synthetic and natural Cr-bearing minerals and laterite references, (ii) used a complementary suite of techniques and critically evaluated existing non-laterite and non-Cr-optimized SEPs, compared to our optimized SEP, and (iii) confirmed the efficiency of our new SEP through analyses of laterites from the Philippines. Our results show that other SEPs inadequately leach Cr host phases and underestimate the Cr fractions. Our SEP recovered up to seven times higher Cr contents because it (a) more efficiently dissolves metal-substituted Fe phases, (b) quantitatively extracts adsorbed Cr, and (c) prevents overestimation of organic Cr in laterites. With this new SEP, we can estimate the mineral-specific Cr fractionation in Fe-rich tropical soils more quantitatively and thus improve our knowledge of the potential environmental impacts of Cr from lateritic areas.


Subject(s)
Chromium , Iron , Humans , Chromium/chemistry , Ecosystem , Minerals , Oxidation-Reduction , Oxides/chemistry
2.
Environ Sci Technol ; 58(35): 15855-15863, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39163203

ABSTRACT

Heavy metal pollution is a critical environmental issue that has garnered significant attention from the international community. Subcritical hydrothermal liquefaction (HTL) as an emerging green technology has demonstrated remarkable promise in environmental remediation. However, there is limited research on the remediation of highly toxic Cr(VI) using HTL. This study reveals that the HTL reaction of biomass enables the simultaneous reduction and precipitation of Cr(VI). At 280 °C, the reduction of Cr(VI) was nearly complete, with a high reduction rate of 98.9%. The reduced Cr as Cr(OH)3 and Cr2O3 was primarily enriched in hydrochar, accounting for over 99.9% of the total amount. This effective enrichment resulted in the removal of Cr(VI) from the aqueous phase while simultaneously yielding clean liquid compounds like organic acids and furfural. Furthermore, the elevated temperature facilitated the formation of Cr(III) and enhanced its accumulation within hydrochar. Notably, the resulting hydrochar and small oxygenated compounds, especially aldehyde, served as electron donors for Cr(VI) reduction. Additionally, the dissolved Cr facilitated the depolymerization and deoxygenation processes of macromolecular compounds with lignin-like structures, leading to more small oxygenated compounds and subsequently influencing Cr(VI) reduction. These findings have substantial implications for green and sustainable development.


Subject(s)
Biomass , Chromium , Chromium/chemistry , Electrons , Environmental Restoration and Remediation , Oxidation-Reduction
3.
Environ Sci Technol ; 58(5): 2564-2573, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38278139

ABSTRACT

The role of pH in sequestration of Cr(VI) by zerovalent magnesium (ZVMg) was characterized by global fitting of a kinetic model to time-series data from unbuffered batch experiments with varying initial pH values. At initial pH values ranging from 2.0 to 6.8, ZVMg (0.5 g/L) completely reduced Cr(VI) (18.1 µM) within 24 h, during which time pH rapidly increased to a plateau value of ∼10. Time-series correlation analysis of the pH and aqueous Cr(VI), Cr(III), and Mg(II) concentration data suggested that these conditions are controlled by combinations of reactions (involving Mg0 oxidative dissolution and Cr(VI) sequestration) that evolve over the time course of each experiment. Since this is also likely to occur during any engineering applications of ZVMg for remediation, we developed a kinetic model for dynamic pH changes coupled with ZVMg corrosion processes. Using this model, the synchronous changes in Cr(VI) and Mg(II) concentrations were fully predicted based on the Langmuir-Hinshelwood kinetics and transition-state theory, respectively. The reactivity of ZVMg was different in two pH regimes that were pH-dependent at pH < 4 and pH-independent at the higher pH. This contrasting pH effect could be ascribed to the shift of the primary oxidant of ZVMg from H+ to H2O at the lower and higher pH regimes, respectively.


Subject(s)
Chromates , Water Pollutants, Chemical , Chromates/chemistry , Magnesium , Iron/chemistry , Water Pollutants, Chemical/analysis , Chromium/analysis , Chromium/chemistry , Kinetics , Hydrogen-Ion Concentration , Adsorption
4.
Environ Sci Technol ; 58(27): 12225-12236, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38885124

ABSTRACT

Nanoscale zerovalent iron synthesized using borohydride (B-NZVI) has been widely applied in environmental remediation in recent decades. However, the contribution of boron in enhancing the inherent reactivity of B-NZVI and its effectiveness in removing hexavalent chromium [Cr(VI)] have not been well recognized and quantified. To the best of our knowledge, herein, a core-shell structure of B-NZVI featuring an Fe-B alloy shell beneath the iron oxide shell is demonstrated for the first time. Alloyed boron can reduce H+, contributing to more than 35.6% of H2 generation during acid digestion of B-NZVIs. In addition, alloyed B provides electrons for Fe3+ reduction during Cr(VI) removal, preventing in situ passivation of the reactive particle surface. Meanwhile, the amorphous oxide shell of B-NZVI exhibits an increased defect density, promoting the release of Fe2+ outside the shell to reduce Cr(VI), forming layer-structured precipitates and intense Fe-O bonds. Consequently, the surface-area-normalized capacity and surface reaction rate of B-NZVI are 6.5 and 6.9 times higher than those of crystalline NZVI, respectively. This study reveals the importance of alloyed B in Cr(VI) removal using B-NZVI and presents a comprehensive approach for investigating electron pathways and mechanisms involved in B-NZVIs for contaminant removal.


Subject(s)
Borohydrides , Boron , Iron , Iron/chemistry , Borohydrides/chemistry , Boron/chemistry , Chromium/chemistry , Electrons , Alloys/chemistry
5.
Environ Sci Technol ; 58(39): 17485-17496, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39290141

ABSTRACT

Recovering chemical energy embedded in pollutants is significant in achieving carbon-neutral industrial wastewater treatment. Considering that industrial wastewater is usually treated in a decentralized manner, in situ utilization of chemical energy to achieve waste-to-treasure should be given priority. Herein, the chemical energy released by the electroreduction of Cr(VI) was used to enhance on-site H2O2 generation in a stacked flow-through electrochemical system. The driving force of water flow efficiently coupled O2 evolution with 2-e O2 reduction to facilitate H2O2 generation by transporting anode-produced O2 to the cathode. Meanwhile, the chemical energy released by Cr(VI) promoted O2 evolution and impeded H2 evolution by regulating the electrode potentials, accounting for the enhanced H2O2 generation. The system could completely reduce 10-100 ppm of Cr(VI), reaching the maximum H2O2 concentration of 2.41 mM. In particular, the H2O2 concentrations in the Cr(VI)-containing electrolyte were 10.6-88.1% higher than those in the Cr(VI) free electrolyte at 1.8-2.5 V. A 24-day continuous experiment demonstrated the high efficiency and stability of the system, achieving a 100% reduction efficiency for 100 ppm of Cr(VI) and producing ∼1.5 mM H2O2 at 1.8 V. This study presents a feasible strategy for Cr(VI) detoxification and synchronous on-site H2O2 generation, providing a new perspective for innovative Cr(VI) wastewater treatment toward resource utilization.


Subject(s)
Chromium , Hydrogen Peroxide , Hydrogen Peroxide/chemistry , Chromium/chemistry , Wastewater/chemistry , Catalysis , Oxidation-Reduction , Water Pollutants, Chemical , Electrodes
6.
Environ Sci Technol ; 58(36): 16186-16195, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39189695

ABSTRACT

Metal(loid)s in sewage sludge (SS) are effectively immobilized after pyrolysis. However, the bioavailability and fate of the immobilized metal(loid)s in SS-derived biochar (SSB) following land application remain largely unknown. Here, the speciation and bioavailability evolution of SSB-borne Cr and Zn in soil were systematically investigated by combining pot and field trials and X-ray absorption spectroscopy. Results showed that approximately 58% of Cr existing as Cr(III)-humic complex in SS were transformed into Fe (hydr)oxide-bound Cr(III), while nano-ZnS in SS was transformed into stable ZnS and ferrihydrite-bound species (accounting for over 90% of Zn in SSB) during pyrolysis. All immobilized metal(loid)s, including Cr and Zn, in SSB tended to be slowly remobilized during aging in soil. This study highlighted that SSB acted as a dual role of source and sink of metal(loid)s in soil and posed potential risks by serving a greater role of a metal(loid) source than a sink when applied to uncontaminated soils. Nevertheless, SSB could impede the translocation of metal(loid)s from soil to crop compared to SS, where coexisting elements, including Fe, P, and Zn, played critical roles. These findings provide new insights for understanding the fate of SSB-borne metal(loid)s in soil and assessing the viability of pyrolyzing SS for land application.


Subject(s)
Chromium , Pyrolysis , Sewage , Zinc , Sewage/chemistry , Zinc/chemistry , Chromium/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Charcoal/chemistry
7.
Environ Sci Technol ; 58(16): 7186-7195, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38598770

ABSTRACT

Remediation of large and dilute plumes of groundwater contaminated by oxidized pollutants such as chromate is a common and difficult challenge. Herein, we show that in situ formation of FeS nanoparticles (using dissolved Fe(II), S(-II), and natural organic matter as a nucleating template) results in uniform coating of aquifer material to create a regenerable reactive zone that mitigates Cr(VI) migration. Flow-through columns packed with quartz sand are amended first with an Fe2+ solution and then with a HS- solution to form a nano-FeS coating on the sand, which does not hinder permeability. This nano-FeS coating effectively reduces and immobilizes Cr(VI), forming Fe(III)-Cr(III) coprecipitates with negligible detachment from the sand grains. Preconditioning the sand with humic or fulvic acid (used as model natural organic matter (NOM)) further enhances Cr(VI) sequestration, as NOM provides additional binding sites of Fe2+ and mediates both nucleation and growth of FeS nanoparticles, as verified with spectroscopic and microscopic evidence. Reactivity can be easily replenished by repeating the procedures used to form the reactive coating. These findings demonstrate that such enhancement of attenuation capacity can be an effective option to mitigate Cr(VI) plume migration and exposure, particularly when tackling contaminant rebound post source remediation.


Subject(s)
Chromium , Groundwater , Oxidation-Reduction , Water Pollutants, Chemical , Groundwater/chemistry , Chromium/chemistry , Water Pollutants, Chemical/chemistry , Nanoparticles/chemistry , Environmental Restoration and Remediation/methods , Humic Substances , Ferrous Compounds/chemistry , Benzopyrans/chemistry
8.
Environ Sci Technol ; 58(19): 8501-8509, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38696244

ABSTRACT

Iron/chromium hydroxide coprecipitation controls the fate and transport of toxic chromium (Cr) in many natural and engineered systems. Organic coatings on soil and engineered surfaces are ubiquitous; however, mechanistic controls of these organic coatings over Fe/Cr hydroxide coprecipitation are poorly understood. Here, Fe/Cr hydroxide coprecipitation was conducted on model organic coatings of humic acid (HA), sodium alginate (SA), and bovine serum albumin (BSA). The organics bonded with SiO2 through ligand exchange with carboxyl (-COOH), and the adsorbed amounts and pKa values of -COOH controlled surface charges of coatings. The adsorbed organic films also had different complexation capacities with Fe/Cr ions and Fe/Cr hydroxide particles, resulting in significant differences in both the amount (on HA > SA(-COOH) ≫ BSA(-NH2)) and composition (Cr/Fe molar ratio: on BSA(-NH2) ≫ HA > SA(-COOH)) of heterogeneous precipitates. Negatively charged -COOH attracted more Fe ions and oligomers of hydrolyzed Fe/Cr species and subsequently promoted heterogeneous precipitation of Fe/Cr hydroxide nanoparticles. Organic coatings containing -NH2 were positively charged at acidic pH because of the high pKa value of the functional group, limiting cation adsorption and formation of coprecipitates. Meanwhile, the higher local pH near the -NH2 coatings promoted the formation of Cr(OH)3. This study advances fundamental understanding of heterogeneous Fe/Cr hydroxide coprecipitation on organics, which is essential for successful Cr remediation and removal in both natural and engineered settings, as well as the synthesis of Cr-doped iron (oxy)hydroxides for material applications.


Subject(s)
Chromium , Hydroxides , Iron , Hydroxides/chemistry , Iron/chemistry , Chromium/chemistry , Serum Albumin, Bovine/chemistry , Adsorption , Humic Substances , Water/chemistry , Chemical Precipitation , Alginates/chemistry
9.
Environ Res ; 248: 118265, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38266898

ABSTRACT

The poor light absorption and low carrier separation efficiency of Titanium dioxide (TiO2) limit its further application. The introduction of plasma metal Ag have the potential to solve these drawbacks owing to its plasma resonance effect. Thus core-shell structure Ag@TiO2 plasma photocatalysts was prepared by using facile reduction method in this work. More specifically, Ag@TiO2 composite catalysts with different Ag loading amounts were prepared in the presence of surfactant PVP. Ag@TiO2 demonstrates excellent light absorption performance and photoelectric separation efficiency compared with pure TiO2. As a result, it displays excellent performance of Cr(VI) reduction under visible light. The optimal composite catalysts Ag@TiO2-5P achieves exceptional visible-light-driven photocatalytic Cr(VI) reduction efficiency of 0.01416 min-1 that is 2.29 times greater than pure TiO2. To investigate the role of PVP, we also synthesized Ag@TiO2-5 without PVP. The experimental results show that although Ag@TiO2-5 Cr(VI) reduction performance is superior to pure TiO2, it significantly decreases compared with Ag@TiO2-5P. The results of TEM and optoelectronic testing show that agglomeration of Ag particles leads to a decrease in the photoelectric separation efficiency of Ag@TiO2-5. The smaller Ag particles provide more active sites and demonstrating a stronger overall local surface plasmon resonance (LSPR) effect. DMPO spin-trapping ESR spectra testing indicates that ∙O2- and ∙OH are the main reactive species. This research provides a potential strategy to prepare Ag-based plasma photocatalysts for environment protection.


Subject(s)
Silver , Surface Plasmon Resonance , Silver/chemistry , Titanium/chemistry , Chromium/chemistry , Light , Catalysis
10.
Environ Res ; 242: 117762, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38029812

ABSTRACT

The objective of this research is to conduct a comprehensive characterization of chitosan while also improving its attributes by crosslinking with malonic acid, with a focus on its efficacy in removing hexavalent chromium, arsenite and fluoride ions. Crosslinking chitosan in 1:0.5 mass ratio forming a film led to substantial enhancement in confiscation of these target pollutants. The characterization of the adsorbent involved several techniques, including FT-IR, TGA-DSC, SEM-EDX, XRD, and BET surface area analysis. In batch adsorption experiments, Chitosan-malonic acid (CMA) was employed to remove CrVI, AsIII and F- from aqueous solutions. These experiments were conducted while varying conditions such as pH, dosage, concentration, temperature, and time. Through the implementation of response surface methodology (RSM), parameters were optimized, resulting in over 95% removal of CrVI, AsIII and F- ions. The isotherm and kinetics data demonstrated a good fit with the Langmuir isotherm model and pseudo second-order kinetics, respectively. According to the Langmuir isotherm, the maximum adsorption capacities on CMA for CrVI, AsIII and F- were determined to be 687.05 mg g-1, 26.72 mg g-1 and 51.38 mg g-1 respectively under optimum pH of 4.0, 7.0 and 5.0 respectively under ambient temperature of 303 K. Thermodynamic analysis indicated that the adsorption process was spontaneous and driven by enthalpy. The regenerability of the adsorbent was validated through five adsorption-desorption cycles, signifying its reusability. An assessment of the adsorbent's sustainability indicated an eco-friendly synthesis, as reflected by the low E-factor value of 0.0028.


Subject(s)
Chitosan , Malonates , Water Pollutants, Chemical , Water Purification , Chitosan/chemistry , Spectroscopy, Fourier Transform Infrared , Adsorption , Water Pollutants, Chemical/chemistry , Water Purification/methods , Thermodynamics , Chromium/chemistry , Kinetics , Ions , Hydrogen-Ion Concentration
11.
Environ Res ; 252(Pt 3): 119043, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38692422

ABSTRACT

It is of great significance to establish an effective method for removing Cr(VI) from wastewater. Herein, Fe-doped g-C3N4 (namely Fe-g-C3N4-2) was synthesized and then employed as photocatalyst to conduct the test of Cr(VI) reduction. Notably, the embedding of Fe ion in g-C3N4 can offer the Fe2+/Fe3+ redox couples, so reducing the interfacial resistance of charge transfer and suppressing the recombination of photogenerated electrons and holes. The impurity energy levels will form in g-C3N4 after the introduction of Fe ion, thereby boosting the light absorption capacity of catalyst. Thus, Fe-g-C3N4-2 showed good performance in photocatalytic Cr(VI) reduction, and the reduction efficiency of Cr(VI) can reach 39.9% within 40 min. Different with many previous studies, current work unexpectedly found that the addition of p-benzoquinone (BQ) can promote the Cr(VI) reduction, and the reduction efficiency of Cr(VI) over Fe-g-C3N4-2 was as high as 93.2% in the presence of BQ (1.5 mM). Further analyses showed that BQ can be reduced to hydroquinone (HQ) by photogenerated electrons, and UV light can also directly induce BQ to generate HQ by using H2O as the hydrogen donor. The HQ with reducing ability can accelerate the Cr(VI) reduction. In short, current work shared some novel insights into photocatalytic Cr(VI) reduction in the presence of BQ. Future research should consider possible reactions between photogenerated electrons and BQ. For the UV-induced photocatalysis, the suitability of BQ as the scavenger of O2•‒ must be given carefully consideration.


Subject(s)
Benzoquinones , Chromium , Iron , Oxidation-Reduction , Benzoquinones/chemistry , Chromium/chemistry , Catalysis , Iron/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/radiation effects , Photochemical Processes , Nitrogen Compounds/chemistry , Nitrogen Compounds/radiation effects , Graphite
12.
Environ Res ; 244: 117921, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38101721

ABSTRACT

The novel glutamic acid crosslinked chitosan membrane (CsG) was fabricated and tested for its adsorption capabilities for the removal of multiple pollutants like Cr (VI), cyanide, fluoride and diclofenac sodium from wastewater. This fabricated CsG membrane was characterized by various techniques like FT-IR, SEM, EDX and XRD, BET to assess its structural, compositional and morphological properties. The working parameters studied by batch experiments were solution pH, CsG dose, contact time, pollutant concentration and solution temperature. The CsG membrane exhibited maximum adsorption capacity of 410.7 mg/g, 310.2 mg/g, 14.3 mg/g, 132.7 mg/g for Cr (VI), cyanide, fluoride and diclofenac respectively. The validation of the operational parameters was performed by Response Surface Methodology (RSM). The experimental data fitted well with Langmuir isotherm model and followed pseudo second order kinetics for all the four targeted contaminants. The spontaneity of the process was checked by thermodynamics studies. The high partition coefficients of 7669 L/kg Cr(VI), 23,309 L/kg (CN-), 649 L/kg (F-) and 2613 L/kg (DFC) are the indicators of excellent attractive interaction between CsG membrane and target toxicants. The CsG membrane showed efficient regenerative adsorption properties up to 5 adsorption-desorption cycles. Overall, the developed novel CsG membrane promised as an effective material for the removal of multiple number of pollutants from water.


Subject(s)
Chitosan , Environmental Pollutants , Water Pollutants, Chemical , Water Purification , Chitosan/chemistry , Glutamic Acid , Spectroscopy, Fourier Transform Infrared , Fluorides , Chromium/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Hydrogen-Ion Concentration , Thermodynamics , Adsorption , Kinetics , Cyanides
13.
Environ Res ; 259: 119532, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38960360

ABSTRACT

The development of effective photocatalysts for the reduction of Cr(VI) and the degradation of antibiotics remains a challenge. The present work reports the development of a novel heterojunction composite material, BiOCl/BaTiO3@Co-BDC-MOF (BOC/BTO@Co-MOF), based on solvothermal techniques. To characterize the surface and bulk features of the material, techniques such as FE-SEM, HR-TEM, BET/BJH, XPS, FT-IR, p-XRD, and UV-Vis-DRS were used. Based on the results, the BiOCl/BaTiO3 nanocomposites are uniformly dispersed on the rod-shaped Co-BDC MOF, resulting in a layered texture on the surface. A further advantage of the composite structure is the strong interfacial enhancement facilitating the separation of photoexcited electron-hole pairs. Also, compared to its pristine counterparts, the heterostructure material exhibited excellent surface area and pore properties. The photocatalytic efficiency towards reduction and degradation of Cr(VI)/SMX pollutants were evaluated by optimizing various analytical parameters, such as pH, catalytic loading concentrations, analyte concentration, and scavenger role. The specially designed BOC/BTO@Co-MOF composite achieved a 96.5% Cr(VI) reduction and 98.2% SMX degradation under 60.0-90.0 min of visible light illumination at pH 3.0. This material is highly reusable and has a six-time recycling potential. The findings of this study contribute to a better understanding of the efficient decontamination of inorganic and organic pollutants in water purification systems.


Subject(s)
Chromium , Sulfamethoxazole , Titanium , Water Pollutants, Chemical , Chromium/chemistry , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Sulfamethoxazole/chemistry , Catalysis , Bismuth/chemistry , Barium Compounds/chemistry , Metal-Organic Frameworks/chemistry , Nanocomposites/chemistry , Photochemical Processes
14.
Environ Res ; 259: 119584, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38992758

ABSTRACT

The growing concern of water pollution is a critical issue stemming from industrialization and urbanization. One of the specific concerns within this broader problem is the toxicity associated with chromium (Cr), especially in its Cr (VI) form. Transition metal carbides/nitrides (MXenes) are attractive materials for the treatment of water due to their unique properties such as layered structure, high surface area, conductivity, flexibility, scalable manufacture, and surface functions. Adsorption and photocatalysis reactions are the two promising methods for the removal of Cr (VI) by using MXenes. Still, most of the previous reviews were limited to the single application area. Hence, this review covers recent developments in MXene-based composites, highlighting their dual role as both adsorbents and photocatalysts in the removal of Cr (VI). MXene-based composites are found to be effective in both adsorption and photodegradation of Cr (VI). Most MXene-based composites have demonstrated exceptional removal efficiency for Cr (VI), achieving impressive adsorption capacities ranging from 100 to 1500 mg g-1 and degradation percentages between 80% and 100% in a relatively short period. The active functional groups present on the surface of MXene have a viable impact on the adsorption and photodegradation performance. The mechanism of Cr (VI) removal is explained, with MXenes playing a key role in electrostatic attraction for adsorption and as co-catalysts in photocatalysis. However, MXene-based composites have limitations such as instability, competition with co-existing ions, and regeneration challenges. Further research is needed to address these limitations. Additionally, MXene-based composites hold promise for addressing water contamination, heavy metal removal, hydrogen production, energy storage, gas sensing, and biomedical applications.


Subject(s)
Chromium , Wastewater , Water Pollutants, Chemical , Chromium/chemistry , Wastewater/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods , Catalysis , Photolysis , Water Purification/methods , Industrial Waste/analysis , Transition Elements/chemistry
15.
Environ Res ; 258: 119423, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38889839

ABSTRACT

High concentration of chromium in aquatic environments is the trigger for researchers to remediate it from wastewater environments. However, conventional water treatment methods have not been satisfactory in removing chromium from water and wastewater over the last decade. Similarly, many adsorption studies have been focused on one aspect of the treatment, but this study dealt with all aspects of adsorption packages to come up with a concrete conclusion. Therefore, this study aimed to prepare pinecone biochar (PBC) via pyrolysis and apply it for Cr(VI) removal from wastewater. The PBC was characterized using FTIR, SEM-EDX, BET surface area, pHpzc, Raman analyses, TGA, and XRD techniques. Chromium adsorption was studied under the influence of PBC dose, solution pH, initial Cr(VI) concentration, and contact time. The characteristics of PBC are illustrated by FTIR spectroscopic functional groups, XRD non-crystallite structure, SEM rough surface morphology, and high BET surface area125 m2/g, pore volume, 0.07 cm3/g, and pore size 1.4 nm. On the other hand, the maximum Cr (VI) adsorption of 69% was found at the experimental condition of pH 2, adsorbent dosage 0.25 mg/50 mL, initial Cr concentration 100 mg/L, and contact time of 120 min. Similarly, the experimental data were well-fitted with the Langmuir adsorption isotherm at R2 0.96 and the pseudo-second-order kinetics model at R2 0.99. This implies the adsorption process is mainly attributed to monolayer orientation between the adsorbent and adsorbate. In the thermodynamics study of adsorption, ΔG was found to be negative implying the adsorption process was feasible and spontaneous whereas the positive values of ΔH and ΔS indicated the adsorption process was endothermic and increasing the degree of randomness, respectively. Finally, adsorbent regeneration and reusability were successful up to three cycles. In conclusion, biochar surface modification and reusability improvements are urgently required before being applied at the pilot scale.


Subject(s)
Charcoal , Chromium , Thermodynamics , Wastewater , Water Pollutants, Chemical , Chromium/chemistry , Adsorption , Charcoal/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , Wastewater/chemistry , Water Purification/methods , Waste Disposal, Fluid/methods
16.
Environ Res ; 260: 119768, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39134114

ABSTRACT

The development of biocompatible adsorbents is vital for environmental remediation to control and reduce pollution and waste accumulation in ecosystems. Biocompatible hydrogels represent an innovative class of materials that are primarily composed of polymer chain units forming their structural framework. They have a high affinity for water molecules. This research thus aims to incorporate iron oxide particles into the gelatin matrix to produce gelatin hydrogel beads to remove hexavalent chromium from an aqueous solution. The synthesized beads, known for their consistent size, low friction, high specific surface area, mechanical stability, and lightweight characteristics, demonstrated their suitability for various industrial applications. The effectiveness of these hydrogels in removing hexavalent chromium ions was confirmed through a thorough analysis using techniques such as FTIR, TGA, SEM, EDX, VSM, and XPS. Batch experiments revealed that the gelatin-based nanocomposite beads exhibited optimal adsorption efficiency under acidic conditions, lower initial concentrations of chromium ions, extended contact time, and elevated temperature (50-60 °C). The composite achieved a maximum removal efficiency of 99% at pH 1, with an adsorbent dose of 0.5 g at 50 °C, and an initial concentration of 50 mg per liter. The use of 0.7 N NaOH in the regeneration process resulted in a commendable 70.5% desorption efficiency, enabling potential reuse and regeneration. Significantly, the desorption efficiency remained consistently high even after four desorption-readsorption cycles, contributing to the economic and environmental sustainability of chromium removal. Additionally, the study determined that the sorption process was feasible, spontaneous, and endothermic. These collective findings suggest that magnetic gelatin hydrogel beads could serve as a cost-effective alternative adsorbent for the efficient removal of chromium ions from aqueous solutions.


Subject(s)
Chromium , Gelatin , Hydrogels , Magnetite Nanoparticles , Water Pollutants, Chemical , Water Purification , Hydrogels/chemistry , Gelatin/chemistry , Water Pollutants, Chemical/chemistry , Chromium/chemistry , Chromium/isolation & purification , Adsorption , Magnetite Nanoparticles/chemistry , Water Purification/methods , Biocompatible Materials/chemistry
17.
Environ Res ; 252(Pt 4): 119065, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723990

ABSTRACT

The present research study combines chitin from shrimp waste with the oxide-rich metakaolin. Metakaolin is a blend of mixed oxides rich in silica and alumina with good adsorbent properties. The chitin@metakaolin (CHt@M.K.) composite was synthesized and characterized using FTIR, SEM, TGA, XRD and XPS techniques. Cr(VI) removal studies were compared for chitin and CHt@M.K. through adsorption. It was found that the adsorption capacity of CHt@M.K. is 278.88 mg/g, almost double that of chitin, at pH 5.0 in just 120 min of adsorption. Isotherm models like Langmuir, Freundlich, Temkin and Dubinin-Radushkevich were investigated to comprehend the adsorption process. It was revealed that Langmuir adsorption isotherm is most suitable to elucidate Cr(VI) adsorption on CHt@M.K. The adsorption kinetics indicate that pseudo first order was followed, indicating that the physisorption was the process that limited the sorption process rate. The positive enthalpy change (20.23 kJ/mol) and positive entropy change (0.083 kJ/mol K) showed that the adsorption process was endothermic and more random at the solid-liquid interface. The negative free energy change over entire temperature range was an indicator of spontaneity of the process. Apart from all these, the non-covalent interactions between Cr(VI) and composite were explained by quantum calculations based models.


Subject(s)
Animal Shells , Chitin , Chromium , Water Pollutants, Chemical , Chitin/chemistry , Animals , Chromium/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Animal Shells/chemistry , Brachyura/chemistry , Kinetics
18.
Ecotoxicol Environ Saf ; 284: 116928, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39208576

ABSTRACT

The Chinese medicine residue (CMR) is composed of wet substances, so using hydrothermal carbonization (HTC) to recover renewable energy from the residue is a suitable treatment method. Chromium (Cr), a kind of heavy metal element, is enriched in hydrochar and severely restricts its effective utilization. An in-depth analysis of the migration path and mechanism of Cr in hydrochar is helpful in promoting energy utilization for CMR. Here, licorice, a significant Chinese medicine, was selected as the example to analyze the evolutions of its pore and chemical structures and their effects on the migration mechanism of Cr during the HTC process. The products obtained under various HTC conditions were analyzed using nitrogen adsorption, FTIR, and 13C NMR. The results show that, considering reaction time and relevant reactions as the primary factors during the HTC process, the migration pathway of Cr in hydrochar undergoes two stages, and they are the accompanying migration stage and the recovery aggregation stage. Active adsorption sites for Cr may exist within the pore structure of hydrochar. In the HTC process, hydrolysis, decarboxylation, and decarbonylation reactions are the direct drivers of Cr migration, while aromatization is the underlying cause of Cr recovery and aggregation. It is hypothesized that Cr catalyzes the acetylene cyclotrimerization reaction, thereby promoting the formation of aromatic structures in hydrochar and integrating into the hydrochar carbon skeleton.


Subject(s)
Chromium , Glycyrrhiza , Glycyrrhiza/chemistry , Chromium/chemistry , Adsorption , Drugs, Chinese Herbal/chemistry , Carbon/chemistry , Spectroscopy, Fourier Transform Infrared , Charcoal/chemistry , Porosity , Water Pollutants, Chemical/chemistry
19.
Ecotoxicol Environ Saf ; 282: 116721, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39047364

ABSTRACT

In this paper, magnetic nanopowders of Fe19.5Ni40Co19.5Cr19.5Y1.5 high-entropy alloy compositions were successfully prepared by the liquid phase reduction method, which represented a breakthrough from the traditional process of preparing high-entropy alloy nanopowders. The powders had a high specific surface area of 136.23 m2/g and exhibited sustained, efficient, and rapid degradation characteristics for high concentrations of CR and ultra-high concentrations of Cr(VI) wastewater. It was demonstrated that the removal rate of CR remained at 100 % after 100 cycles and 81 % of Cr after 8 cycles of the powder without changing the pH and room temperature. The powders also demonstrated good soft magnetic properties, which allowed them to be conveniently separated and recycled using magnetic field treatment, thus addressing the issue of recycling raw materials without causing secondary pollution in wastewater treatment. Furthermore, the analyzed powders also exhibited fast and efficient degradation effects.


Subject(s)
Alloys , Chromium , Wastewater , Water Pollutants, Chemical , Chromium/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Alloys/chemistry , Powders , Waste Disposal, Fluid/methods , Water Purification/methods , Recycling
20.
Ecotoxicol Environ Saf ; 281: 116616, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917589

ABSTRACT

The urgent need to address the severe environmental risk posed by chromium-contaminated industrial wastewater necessitates the development of eco-friendly cleanup methodologies. Utilizing the Ficus benghalensis plant extracts, the present study aims to develop green zinc oxide nanoparticles for the removal of Cr metal ions from wastewater. The leaves of Ficus benghalensis, often known as the banyan tree, were used to extract a solution for synthesizing ZnO NPs. These nanoparticles were developed with the goal of efficiently eliminating chromium (Cr) from industrial effluents. Batch studies were carried out to assess the efficiency of these synthesized ZnO NPs in treating leather industrial effluent, with aiming for optimal chromium removal. This involved measuring the nanoparticles' capacity to adsorb Cr ions from wastewater samples by comparing chromium levels before and after treatment. Removal efficiency for Cr was estimated through the batches such as optimization of pH, contact time, initial Cr concentration and sorbent dose of ZnO NPs were of the batches. These synthesized ZnO NPs were found to be successful in lowering chromium levels in wastewater to meet permissible limit. The nanoparticles exhibited their highest absorption capacity, reaching 94 % (46 mg/g) at pH 4, with a contact time of 7 hours with the optimum sorbent dose of 0.6 g/L. Hence, the excellent adsorption capabilities of these nanoparticles, together with their environmentally benign manufacturing technique, provide a long-term and efficient solution for chromium-contaminated wastewater treatment. Its novel nature has the potential to significantly improve the safety and cleanliness of water ecosystems, protecting the both i.e. human health and the environment.


Subject(s)
Chromium , Ficus , Green Chemistry Technology , Plant Extracts , Wastewater , Water Pollutants, Chemical , Zinc Oxide , Zinc Oxide/chemistry , Ficus/chemistry , Chromium/analysis , Chromium/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Plant Extracts/chemistry , Green Chemistry Technology/methods , Industrial Waste/analysis , Adsorption , Metal Nanoparticles/chemistry , Waste Disposal, Fluid/methods , Water Purification/methods , Nanoparticles/chemistry , Plant Leaves/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL