Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 198
Filter
1.
Proc Natl Acad Sci U S A ; 121(10): e2217877121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38412124

ABSTRACT

Intestinal epithelial expression of the tight junction protein claudin-2, which forms paracellular cation and water channels, is precisely regulated during development and in disease. Here, we show that small intestinal epithelial claudin-2 expression is selectively upregulated in septic patients. Similar changes occurred in septic mice, where claudin-2 upregulation coincided with increased flux across the paracellular pore pathway. In order to define the significance of these changes, sepsis was induced in claudin-2 knockout (KO) and wild-type (WT) mice. Sepsis-induced increases in pore pathway permeability were prevented by claudin-2 KO. Moreover, claudin-2 deletion reduced interleukin-17 production and T cell activation and limited intestinal damage. These effects were associated with reduced numbers of neutrophils, macrophages, dendritic cells, and bacteria within the peritoneal fluid of septic claudin-2 KO mice. Most strikingly, claudin-2 deletion dramatically enhanced survival in sepsis. Finally, the microbial changes induced by sepsis were less pathogenic in claudin-2 KO mice as survival of healthy WT mice injected with cecal slurry collected from WT mice 24 h after sepsis was far worse than that of healthy WT mice injected with cecal slurry collected from claudin-2 KO mice 24 h after sepsis. Claudin-2 upregulation and increased pore pathway permeability are, therefore, key intermediates that contribute to development of dysbiosis, intestinal damage, inflammation, ineffective pathogen control, and increased mortality in sepsis. The striking impact of claudin-2 deletion on progression of the lethal cascade activated during sepsis suggests that claudin-2 may be an attractive therapeutic target in septic patients.


Subject(s)
Claudin-2 , Sepsis , Animals , Humans , Mice , Claudin-2/genetics , Claudin-2/metabolism , Dysbiosis/genetics , Dysbiosis/metabolism , Intestinal Barrier Function , Intestinal Mucosa/metabolism , Permeability , Sepsis/metabolism , Tight Junctions/metabolism , Up-Regulation
2.
Genes Dev ; 33(3-4): 180-193, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30692208

ABSTRACT

Claudin-2 promotes breast cancer liver metastasis by enabling seeding and early cancer cell survival. We now demonstrate that the PDZ-binding motif of Claudin-2 is necessary for anchorage-independent growth of cancer cells and is required for liver metastasis. Several PDZ domain-containing proteins were identified that interact with the PDZ-binding motif of Claudin-2 in liver metastatic breast cancer cells, including Afadin, Arhgap21, Pdlim2, Pdlim7, Rims2, Scrib, and ZO-1. We specifically examined the role of Afadin as a potential Claudin-2-interacting partner that promotes breast cancer liver metastasis. Afadin associates with Claudin-2, an interaction that requires the PDZ-binding motif of Claudin-2. Loss of Afadin also impairs the ability of breast cancer cells to form colonies in soft agar and metastasize to the lungs or liver. Immunohistochemical analysis of Claudin-2 and/or Afadin expression in 206 metastatic breast cancer tumors revealed that high levels of both Claudin-2 and Afadin in primary tumors were associated with poor disease-specific survival, relapse-free survival, lung-specific relapse, and liver-specific relapse. Our findings indicate that signaling downstream from a Claudin-2/Afadin complex enables the efficient formation of breast cancer metastases. Moreover, combining Claudin-2 and Afadin as prognostic markers better predicts the potential of breast cancer to metastasize to soft tissues.


Subject(s)
Breast Neoplasms/physiopathology , Claudin-2/metabolism , Liver Neoplasms/secondary , Lung Neoplasms/secondary , Microfilament Proteins/metabolism , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Claudin-2/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/genetics , Liver Neoplasms/physiopathology , Lung Neoplasms/genetics , Lung Neoplasms/physiopathology , Microfilament Proteins/genetics , Neoplasm Metastasis , PDZ Domains , Prognosis , Survival Analysis , Tumor Cells, Cultured
3.
Nat Immunol ; 15(7): 676-86, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24908389

ABSTRACT

The molecular checkpoints that drive inflammatory bowel diseases are incompletely understood. Here we found more T cells expressing the transcription factor PU.1 and interleukin 9 (IL-9) in patients with ulcerative colitis. In an animal model, citrine reporter mice had more IL-9-expressing mucosal T cells in experimental oxazolone-induced colitis. IL-9 deficiency suppressed acute and chronic colitis. Mice with PU.1 deficiency in T cells were protected from colitis, whereas treatment with antibody to IL-9 suppressed colitis. Functionally, IL-9 impaired intestinal barrier function and prevented mucosal wound healing in vivo. Thus, our findings suggest that the TH9 subset of helper T cells serves an important role in driving ulcerative colitis by regulating intestinal epithelial cells and that TH9 cells represent a likely target for the treatment of chronic intestinal inflammation.


Subject(s)
Colitis/etiology , Intestinal Mucosa/immunology , Proto-Oncogene Proteins/physiology , Receptors, Interleukin-9/physiology , Signal Transduction/physiology , T-Lymphocyte Subsets/physiology , T-Lymphocytes, Helper-Inducer/immunology , Trans-Activators/physiology , Animals , Claudin-2/genetics , Colitis/immunology , Colitis, Ulcerative/immunology , Humans , Interleukin-9/immunology , Mice , Mice, Inbred BALB C , Th2 Cells/immunology , Wound Healing
4.
Arch Biochem Biophys ; 751: 109846, 2024 01.
Article in English | MEDLINE | ID: mdl-38056686

ABSTRACT

Plasma-activated medium (PAM) has various biological activities including anticancer and antimicrobial. However, the effect on chemoresistance in cancer cells has not been clarified in detail. Solid cancer cells form a microenvironment in the body and acquire resistance against anticancer drugs. So far, we reported that claudin-2 (CLDN2), a component of tight junctions, suppresses the anticancer drug-induced cytotoxicity of spheroids that mimic in vivo tumors. Here, we found that the protein level of CLDN2 is downregulated by the sublethal concentration of PAM in human lung adenocarcinoma-derived A549 and PC-3 cells. A cycloheximide pulse-chase assay showed that PAM accelerates the degradation of CLDN2 protein. The PAM-induced reduction of CLDN2 protein was inhibited by a lysosome inhibitor, indicating PAM may enhance the lysosomal degradation of CLDN2. The paracellular permeability to doxorubicin (DXR), an anthracycline antitumor drug, was enhanced by PAM. In the spheroids, the accumulation and toxicity of DXR were enhanced by PAM. In addition, oxidative stress and the expression of nuclear factor erythroid 2-related factor 2, one of the key factors for the acquisition of chemoresistance, were attenuated by PAM. The improvement effect of PAM on chemoresistance was suppressed by the exogenous CLDN2 overexpression. These results indicate that PAM has the ability to downregulate CLDN2 expression and may become an adjuvant drug against lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Antineoplastic Agents , Lung Neoplasms , Humans , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Claudin-2/metabolism , Down-Regulation , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Resistance, Neoplasm , Lung Neoplasms/pathology , Tumor Microenvironment
5.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338808

ABSTRACT

Peyer's patches (PPs) are part of the gut-associated lymphatic tissue (GALT) and represent the first line of the intestinal immunological defense. They consist of follicles with lymphocytes and an overlying subepithelial dome with dendritic cells and macrophages, and they are covered by the follicle-associated epithelium (FAE). A sealed paracellular pathway in the FAE is crucial for the controlled uptake of luminal antigens. Quercetin is the most abundant plant flavonoid and has a barrier-strengthening effect on tight junctions (TJs), a protein complex that regulates the paracellular pathway. In this study, we aimed to analyze the effect of quercetin on porcine PPs and the surrounding villus epithelium (VE). We incubated both tissue types for 4 h in Ussing chambers, recorded the transepithelial electrical resistance (TEER), and measured the unidirectional tracer flux of [3H]-mannitol. Subsequently, we analyzed the expression, protein amount, and localization of three TJ proteins, claudin 1, claudin 2, and claudin 4. In the PPs, we could not detect an effect of quercetin after 4 h, neither on TEER nor on the [3H]-mannitol flux. In the VE, quercetin led to a higher TEER value, while the [3H]-mannitol flux was unchanged. The pore-forming claudin 2 was decreased while the barrier-forming claudin 4 was increased and the expression was upregulated. Claudin 1 was unchanged and all claudins could be located in the paracellular membrane by immunofluorescence microscopy. Our study shows the barrier-strengthening effect of quercetin in porcine VE by claudin 4 upregulation and a claudin 2 decrease. Moreover, it underlines the different barrier properties of PPs compared to the VE.


Subject(s)
Peyer's Patches , Quercetin , Animals , Swine , Quercetin/pharmacology , Quercetin/metabolism , Peyer's Patches/metabolism , Claudin-4/metabolism , Claudin-2/metabolism , Claudin-1/metabolism , Intestine, Small/metabolism , Claudins/metabolism , Tight Junctions/metabolism , Mannitol/pharmacology
6.
J Sci Food Agric ; 104(4): 2518-2525, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37938188

ABSTRACT

BACKGROUND: Xylobiose, a non-digestible disaccharide, largely contributes to the beneficial physiological effects of xylooligosaccharides. However, there is insufficient evidence to assess the direct effect of xylobiose on intestinal barrier function. Here, we investigated the intestinal barrier function in human intestinal Caco-2 cells treated with xylobiose. RESULTS: In total, 283 genes were upregulated and 256 genes were downregulated in xylobiose-treated Caco-2 cells relative to the controls. We focused on genes related to intestinal barrier function, such as tight junction (TJ) and heat shock protein (HSP). Xylobiose decreased the expression of the TJ gene Claudin 2 (CLDN2) and increased the expression of the cytoprotective HSP genes HSPB1 and HSPA1A, which encode HSP27 and HSP70, respectively. Immunoblot analysis confirmed that xylobiose suppressed CLDN2 expression and enhanced HSP27 and HSP70 expression. A quantitative reverse transcription-PCR and promoter assays indicated that xylobiose post-transcriptionally regulated CLDN2 and HSPB1 levels. Additionally, selective inhibition of phosphatidyl-3-inositol kinase (PI3K) inhibited xylobiose-mediated CLDN2 expression, whereas HSP27 expression induced by xylobiose was sensitive to the inhibition of PI3K, mitogen-activated protein kinase kinase and Src. CONCLUSION: The results of the present study reveal that xylobiose suppresses CLDN2 and increases HSP27 expression in intestinal Caco-2 cells via post-transcriptional regulation, potentially strengthening intestinal barrier integrity; however, these effects seem to occur via different signaling pathways. Our findings may help to assess the physiological role of xylobiose. © 2023 Society of Chemical Industry.


Subject(s)
Claudin-2 , HSP27 Heat-Shock Proteins , Humans , Caco-2 Cells , HSP27 Heat-Shock Proteins/metabolism , Claudin-2/metabolism , Intestinal Mucosa/metabolism , Intestinal Barrier Function , Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/genetics , Disaccharides/pharmacology , Phosphatidylinositol 3-Kinases/metabolism
7.
Biochem Soc Trans ; 51(4): 1437-1445, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37387353

ABSTRACT

Claudin-2 is a tight junction protein expressed in leaky epithelia where it forms paracellular pores permeable to cations and water. The paracellular pore formed by claudin-2 is important in energy-efficient cation and water transport in the proximal tubules of the kidneys. Mounting evidence now suggests that claudin-2 may modulate cellular processes often altered in disease, including cellular proliferation. Also, dysregulation of claudin-2 expression has been linked to various diseases, including kidney stone disease and renal cell carcinoma. However, the mechanisms linking altered claudin-2 expression and function to disease are poorly understood and require further investigation. The aim of this review is to discuss the current understanding of the role of claudin-2 in kidney function and dysfunction. We provide a general overview of the claudins and their organization in the tight junction, the expression, and function of claudin-2 in the kidney, and the evolving evidence for its role in kidney disease.


Subject(s)
Claudin-2 , Kidney Tubules, Proximal , Claudin-2/metabolism , Kidney Tubules, Proximal/metabolism , Biological Transport/physiology , Kidney/metabolism , Tight Junctions/metabolism , Water/metabolism
8.
Curr Opin Nephrol Hypertens ; 32(4): 359-365, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37074688

ABSTRACT

PURPOSE OF REVIEW: Most kidney stones are composed of calcium, and the greatest risk factor for kidney stone formation is hypercalciuria. Patients who form kidney stones often have reduced calcium reabsorption from the proximal tubule, and increasing this reabsorption is a goal of some dietary and pharmacological treatment strategies to prevent kidney stone recurrence. However, until recently, little was known about the molecular mechanism that mediates calcium reabsorption from the proximal tubule. This review summarizes newly uncovered key insights and discusses how they may inform the treatment of kidney stone formers. RECENT FINDINGS: Studies examining claudin-2 and claudin-12 single and double knockout mice, combined with cell culture models, support complementary independent roles for these tight junction proteins in contributing paracellular calcium permeability to the proximal tubule. Moreover, a family with a coding variation in claudin-2 causing hypercalciuria and kidney stones have been reported, and reanalysis of Genome Wide Association Study (GWAS) data demonstrates an association between noncoding variations in CLDN2 and kidney stone formation. SUMMARY: The current work begins to delineate the molecular mechanisms whereby calcium is reabsorbed from the proximal tubule and suggests a role for altered claudin-2 mediated calcium reabsorption in the pathogenesis of hypercalciuria and kidney stone formation.


Subject(s)
Calcium , Hypercalciuria , Kidney Calculi , Kidney Calculi/genetics , Kidney Calculi/physiopathology , Kidney Calculi/prevention & control , Kidney Calculi/therapy , Hypercalciuria/genetics , Hypercalciuria/physiopathology , Hypercalciuria/prevention & control , Hypercalciuria/therapy , Calcium/metabolism , Humans , Animals , Claudin-2/genetics , Claudin-2/metabolism , Claudins/genetics , Claudins/metabolism , Genome-Wide Association Study , Kidney Tubules, Proximal/physiopathology
9.
J Med Virol ; 95(1): e28402, 2023 01.
Article in English | MEDLINE | ID: mdl-36515414

ABSTRACT

Functional and structural damage of the intestinal mucosal barrier significantly contribute to translocation of gut microbial products into the bloodstream and are largely involved in HIV-1 associated chronic immune activation. This microbial translocation is largely due to a progressive exhaustion of intestinal macrophage phagocytic function, which leads to extracellular accumulation of microbial derived components and results in HIV-1 disease progression. This study aims to better understand whether the modulation of gut microbiota promotes an intestinal immune restoration in people living with HIV (PLWH). Long-term virologically suppressed PLWH underwent blood, colonic, and fecal sampling before (T0) and after 6 months (T6) of oral bacteriotherapy. Age- and gender-matched uninfected controls (UC) were also included. 16S rRNA gene sequencing was applied to all participants' fecal microbiota. Apoptosis machinery, mitochondria, and apical junctional complex (AJC) morphology and physiological functions were analyzed in gut biopsies. At T0, PLWH showed a different pattern of gut microbial flora composition, lower levels of occludin (p = 0.002) and zonulin (p = 0.01), higher claudin-2 levels (p = 0.002), a reduction of mitochondria number (p = 0.002), and diameter (p = 0.002), as well as increased levels of lipopolysaccharide (LPS) (p = 0.018) and cCK18 (p = 0.011), compared to UC. At T6, an increase in size (p = 0.005) and number (p = 0.008) of mitochondria, as well as amelioration in AJC structures (p < 0.0001) were observed. Restoration of bacterial richness (Simpson index) and biodiversity (Shannon index) was observed in all PLWH receiving oral bacteriotherapy (p < 0.05). Increased mitochondria size (p = 0.005) and number (p = 0.008) and amelioration of AJC structure (p < 0.0001) were found at T6 compared to T0. Moreover, increased occludin and zonulin concentration were observed in PLWH intestinal tracts and decreased levels of claudin-2, LPS, and cCK18 were found after oral bacteriotherapy (T0 vs. T6, p < 0.05 for all these measures). Oral bacteriotherapy supplementation might restore the balance of intestinal flora and support the structural and functional recovery of the gut mucosa in antiretroviral therapy treated PLWH.


Subject(s)
Gastrointestinal Microbiome , HIV Infections , HIV-1 , Intestinal Mucosa , Humans , Claudin-2 , HIV Infections/immunology , HIV Infections/microbiology , HIV-1/genetics , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Lipopolysaccharides , Mitochondria/metabolism , Occludin/metabolism , RNA, Ribosomal, 16S/genetics
10.
Pancreatology ; 23(1): 9-17, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36509643

ABSTRACT

BACKGROUND AND AIMS: The role of intestinal-barrier in acute pancreatitis(AP) is poorly understood. We aimed to assess structural and functional changes in the intestinal-barrier in patients with early AP (time from onset<2 weeks) and the effect of enteral nutrition on them. METHODS: In this prospective observational study, patients with early AP not on enteral nutrition were compared with controls for baseline intestinal-permeability(lactulose: mannitol ratio(L:M)), endotoxinemia(serum IgM/IgG anti-endotoxin antibodies), bacterial-translocation(serum bacterial 16S rRNA) and duodenal epithelial tight-junction structure by immunohistochemistry(IHC) for tight-junction proteins(claudin-2,-3,-4, zonula occludens-1(ZO1), junctional adhesion molecule(JAM) and occludin) and electron microscopy. These parameters were reassessed after 2 weeks enteral feeding in a AP patients subset. RESULTS: 96 patients with AP(age: 38.0 ± 14.5 years; etiology: biliary[46.8%]/alcohol[39.6%]; severe:53.2%, mortality:11.4%) and 40 matched controls were recruited. Patients with AP had higher baseline intestinal permeability(median L:M 0.176(IQR 0.073-0.376) vs 0.049(0.024-0.075) in controls; p < 0.001) and more frequent bacteraemia(positive bacterial 16S rRNA in 24/48 AP vs 0/21 controls; p < 0.001) with trend towards higher serum endotoxinemia(median IgG anti-endotoxin 78(51.2-171.6) GMU/ml vs 51.2(26.16-79.2) in controls; p = 0.061). Claudin-2, claudin-3, ZO1 were downregulated in both duodenal crypts and villi while claudin-4 and JAM were downregulated in duodenal villi and crypts respectively. 22 AP patients reassessed after initiation of enteral nutrition showed trend towards improving intestinal permeability, serum endotoxinemia and bacteraemia, with significant improvement in claudin-2,-3 in duodenal villi. CONCLUSION: Patients with AP have significant disturbances in intestinal barrier structure and function in first 2 weeks from onset that persist despite institution of enteral nutrition.


Subject(s)
Bacteremia , Pancreatitis , Humans , Young Adult , Adult , Middle Aged , RNA, Ribosomal, 16S/genetics , Claudin-2 , Acute Disease , Intestinal Mucosa , Immunoglobulin G , Permeability
11.
J Am Soc Nephrol ; 33(4): 699-717, 2022 04.
Article in English | MEDLINE | ID: mdl-35031570

ABSTRACT

BACKGROUND: The tight junction proteins claudin-2 and claudin-10a form paracellular cation and anion channels, respectively, and are expressed in the proximal tubule. However, the physiologic role of claudin-10a in the kidney has been unclear. METHODS: To investigate the physiologic role of claudin-10a, we generated claudin-10a-deficient mice, confirmed successful knockout by Southern blot, Western blot, and immunofluorescence staining, and analyzed urine and serum of knockout and wild-type animals. We also used electrophysiologic studies to investigate the functionality of isolated proximal tubules, and studied compensatory regulation by pharmacologic intervention, RNA sequencing analysis, Western blot, immunofluorescence staining, and respirometry. RESULTS: Mice deficient in claudin-10a were fertile and without overt phenotypes. On knockout, claudin-10a was replaced by claudin-2 in all proximal tubule segments. Electrophysiology showed conversion from paracellular anion preference to cation preference and a loss of paracellular Cl- over HCO3- preference. As a result, there was tubular retention of calcium and magnesium, higher urine pH, and mild hypermagnesemia. A comparison with other urine and serum parameters under control conditions and sequential pharmacologic transport inhibition, and unchanged fractional lithium excretion, suggested compensative measures in proximal and distal tubular segments. Changes in proximal tubular oxygen handling and differential expression of genes regulating fatty acid metabolism indicated proximal tubular adaptation. Western blot and immunofluorescence revealed alterations in distal tubular transport. CONCLUSIONS: Claudin-10a is the major paracellular anion channel in the proximal tubule and its deletion causes calcium and magnesium hyper-reabsorption by claudin-2 redistribution. Transcellular transport in proximal and distal segments and proximal tubular metabolic adaptation compensate for loss of paracellular anion permeability.


Subject(s)
Claudin-2 , Claudins/metabolism , Animals , Cations/metabolism , Kidney Tubules, Proximal/metabolism , Mice , Permeability , Tight Junctions/physiology
12.
Chem Biodivers ; 20(6): e202300572, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37218365

ABSTRACT

This study aims to explore the protective effects of Picroside III, an active ingredient of Picrorhiza scrophulariiflora, on the intestinal epithelial barrier in tumor necrosis factor-α (TNF-α) induced Caco-2 cells and dextran sulfate sodium (DSS) induced colitis in mice. Results show that Picroside III significantly alleviated clinical signs of colitis including body weight loss, disease activity index increase, colon shortening, and colon tissue damage. It also increased claudin-3, ZO-1 and occludin expressions and decreased claudin-2 expression in the colon tissues of mice with colitis. In vitro, Picroside III also significantly promoted wound healing, decreased the permeability of cell monolayer, upregulated the expressions of claudin-3, ZO-1 and occludin and downregulated the expression of claudin-2 in TNF-α treated Caco-2 cells. Mechanism studies show that Picroside III significantly promoted AMP-activated protein kinase (AMPK) phosphorylation in vitro and in vivo, and blockade with AMPK could significantly attenuate the upregulation of Picroside III in ZO-1 and occludin expressions and the downregulation of claudin-2 expression in TNF-α treated Caco-2 cells. In conclusion, this study demonstrates that Picroside III attenuated DSS-induced colitis by promoting colonic mucosal wound healing and epithelial barrier function recovery via the activation of AMPK.


Subject(s)
Colitis , Picrorhiza , Humans , Mice , Animals , Picrorhiza/metabolism , Caco-2 Cells , Claudin-2/metabolism , Tumor Necrosis Factor-alpha/metabolism , Occludin/metabolism , Occludin/pharmacology , AMP-Activated Protein Kinases/metabolism , Claudin-3/metabolism , Colitis/chemically induced , Colitis/drug therapy , Intestinal Mucosa , Disease Models, Animal
13.
Int J Mol Sci ; 25(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38203447

ABSTRACT

Endothelial cells in brain capillaries are crucial for the function of the blood-brain barrier (BBB), and members of the tight junction protein family of claudins are regarded to be primarily responsible for barrier properties. Thus, the analysis of bioactive substances that can affect the BBB's permeability is of great importance and may be useful for the development of new therapeutic strategies for brain pathologies. In our study, we tested the hypothesis that the application of the glucocorticoid prednisolone affects the murine blood-brain barrier in vivo. Isolated brain tissue of control and prednisolone-injected mice was examined by employing immunoblotting and confocal laser scanning immunofluorescence microscopy, and the physiological and behavioral effects were analyzed. The control tissue samples revealed the expression of barrier-forming tight junction proteins claudin-1, -3, and -5 and of the paracellular cation and water-channel-forming protein claudin-2. Prednisolone administration for 7 days at doses of 70 mg/kg caused physiological and behavioral effects and downregulated claudin-1 and -3 and the channel-forming claudin-2 without altering their localization in cerebral blood vessels. Changes in the expression of these claudins might have effects on the ionic and acid-base balance in brain tissue, suggesting the relevance of our findings for therapeutic options in disorders such as cerebral edema and psychiatric failure.


Subject(s)
Claudins , Prednisolone , Animals , Mice , Prednisolone/pharmacology , Claudin-2 , Claudin-1 , Endothelial Cells , Brain
14.
Int J Mol Sci ; 25(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38203449

ABSTRACT

Ionizing radiation (IR) causes disturbances in the functions of the gastrointestinal tract. Given the therapeutic potential of ouabain, a specific ligand of the Na,K-ATPase, we tested its ability to protect against IR-induced disturbances in the barrier and transport properties of the jejunum and colon of rats. Male Wistar rats were subjected to 6-day intraperitoneal injections of vehicle or ouabain (1 µg/kg/day). On the fourth day of injections, rats were exposed to total-body X-ray irradiation (10 Gy) or a sham irradiation. Isolated tissues were examined 72 h post-irradiation. Electrophysiological characteristics and paracellular permeability for sodium fluorescein were measured in an Ussing chamber. Histological analysis and Western blotting were also performed. In the jejunum tissue, ouabain exposure did not prevent disturbances in transepithelial resistance, paracellular permeability, histological characteristics, as well as changes in the expression of claudin-1, -3, -4, tricellulin, and caspase-3 induced by IR. However, ouabain prevented overexpression of occludin and the pore-forming claudin-2. In the colon tissue, ouabain prevented electrophysiological disturbances and claudin-2 overexpression. These observations may reveal a mechanism by which circulating ouabain maintains tight junction integrity under IR-induced intestinal dysfunction.


Subject(s)
Claudin-2 , Ouabain , Male , Rats , Animals , Ouabain/pharmacology , Rats, Wistar , Sodium-Potassium-Exchanging ATPase , Intestines
15.
Int J Mol Sci ; 24(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38003485

ABSTRACT

The urothelium is a vital permeability barrier that prevents the uncontrolled flow of urinary components into and out of the bladder interstitium. Our study addressed the question of possible sex-specific variations in the urothelium of healthy mice and their impact on chronic bladder inflammation. We found that healthy female bladders have a less robust barrier function than male bladders, as indicated by significant differences in transepithelial electrical resistance (TEER) values. These differences could be attributed to detected higher claudin 2 mRNA expression and a less pronounced glycocalyx in females than in males. In addition, TEER measurements showed delayed barrier recovery in chronically inflamed female bladders. We found subtle differences in the expressions of genes involved in the regulation of the actin cytoskeleton between the sexes, as well as pronounced urothelial hyperplasia in females compensating for attenuated barrier function. The identified genetic variations in glycosylation pathways may also contribute to this divergence. Our findings add to the growing body of literature on the intricate sex-specific nuances of urothelial permeability function and their implications for chronic bladder inflammation. Understanding these differences could lead to tailored diagnostic and therapeutic approaches in the treatment of bladder disorders in the future.


Subject(s)
Cystitis , Urinary Bladder , Female , Male , Mice , Animals , Urinary Bladder/metabolism , Cystitis/metabolism , Hematuria , Claudin-2/metabolism , Urothelium/metabolism
16.
Int J Mol Sci ; 24(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37298151

ABSTRACT

Epigenetic changes, host-gut microbiota interactions, and environmental factors contribute to inflammatory bowel disease (IBD) onset and progression. A healthy lifestyle may help to slow down the chronic or remitting/relapsing intestinal tract inflammation characteristic of IBD. In this scenario, the employment of a nutritional strategy to prevent the onset or supplement disease therapies included functional food consumption. Its formulation consists of the addition of a phytoextract enriched in bioactive molecules. A good candidate as an ingredient is the Cinnamon verum aqueous extract. Indeed, this extract, subjected to a process of gastrointestinal digestion simulation (INFOGEST), exhibits beneficial antioxidant and anti-inflammatory properties in an in vitro model of the inflamed intestinal barrier. Here, we deepen the study of the mechanisms related to the effect of digested cinnamon extract pre-treatment, showing a correlation between transepithelial electrical resistance (TEER) decrement and alterations in claudin-2 expression under Tumor necrosis factor-α/Interleukin-1ß (TNF-α/IL-1) ß cytokine administration. Our results show that pre-treatment with cinnamon extract prevents TEER loss by claudin-2 protein level regulation, influencing both gene transcription and autophagy-mediated degradation. Hence, cinnamon polyphenols and their metabolites probably work as mediators in gene regulation and receptor/pathway activation, leading to an adaptive response against renewed insults.


Subject(s)
Cinnamomum zeylanicum , Inflammatory Bowel Diseases , Humans , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Claudin-2 , Interleukin-1beta/genetics , Plant Bark/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Gene Expression
17.
Am J Physiol Cell Physiol ; 323(4): C1251-C1263, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35968893

ABSTRACT

Conditions that cause the loss of epithelial barrier integrity are often accompanied by dysregulation of tight junction protein expression and/or localization. Recently, we have reported that patients with mutations in SLC12A2, the gene encoding the basolateral Na+-K+-2Cl- cotransporter (NKCC1), suffer from severe gastrointestinal deficits, including chronic gastrointestinal inflammation, gastrointestinal hemorrhage, intestinal obstruction, and constipation. Although the intestinal inflammation observed in patients with loss of NKCC1 function may or may not be due to tight junction dysfunction, we investigated whether the loss of NKCC1 function affects paracellular ion transport and epithelial barrier function. Wild-type HT29-MTX-E12 and CRISPR/Cas9-mediated NKCC1 knockout (KO) HT29 clones were tested for tight junction protein expression and localization. Tightness of epithelial cell monolayer was assessed by measurement of transepithelial electrical resistance and permeability of molecular tracers in transwell filters. Tight junction protein localization was assessed by immunofluorescence. Loss of NKCC1 expression strongly increases the expression of claudin-2 and occludin in epithelial cell monolayers. Loss of NKCC1 significantly reduces the transepithelial electrical resistance (TER) indicating an increase in paracellular ions flux, consistent with upregulation of the cation-selective and channel-forming claudin-2. In addition, NKCC1-KO monolayers showed a significant increase in the paracellular flux of small molecules like fluorescein (0.33 kDa), whereas the permeability of higher molecular weight TRITC-Dextran (4 kDa and 70 kDa) remained unchanged. Thus, NKCC1 regulates tight junction protein expression and loss of NKCC1 function affects epithelial barrier integrity.


Subject(s)
Claudin-2 , Tight Junctions , Cations/metabolism , Claudin-2/genetics , Claudin-2/metabolism , Dextrans/metabolism , Fluoresceins/metabolism , Humans , Inflammation/metabolism , Intestinal Mucosa/metabolism , Occludin/genetics , Occludin/metabolism , Permeability , Solute Carrier Family 12, Member 2/genetics , Solute Carrier Family 12, Member 2/metabolism , Tight Junction Proteins/metabolism , Tight Junctions/metabolism
18.
Am J Physiol Gastrointest Liver Physiol ; 323(3): G219-G238, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35787179

ABSTRACT

The endocannabinoid system of the gastrointestinal tract is involved in the control of intestinal barrier function. Whether the cannabinoid 1 (CB1) receptor is expressed on the intestinal epithelium and acutely regulates barrier function has not been determined. Here, we tested the hypothesis that ligands of the CB1 receptor acutely modulate small intestinal permeability and that this is associated with altered distribution of tight junction proteins. We examined the acute effects of CB1 receptor ligands on small intestinal permeability both in chow-fed and 2-wk high-fat diet (HFD)-fed mice using Ussing chambers. We assessed the distribution of CB1 receptor and tight junction proteins using immunofluorescence and the expression of CB1 receptor using PCR. A low level of CB1 expression was found on the intestinal epithelium. CB1 receptor was highly expressed on enteric nerves in the lamina propria. Neither the CB1/CB2 agonist CP55,940 nor the CB1 neutral antagonist AM6545 altered the flux of 4kDa FITC dextran (FD4) across the jejunum or ileum of chow-fed mice. Remarkably, both CP55,940 and AM6545 reduced FD4 flux across the jejunum and ileum in HFD-fed mice that have elevated baseline intestinal permeability. These effects were absent in CB1 knockout mice. CP55,940 reduced the expression of claudin-2, whereas AM6545 had little effect on claudin-2 expression. Neither ligand altered the expression of ZO-1. Our data suggest that CB1 receptor on the intestinal epithelium regulates tight junction protein expression and restores barrier function when it is increased following exposure to a HFD for 2 wk.NEW & NOTEWORTHY The endocannabinoid system of the gastrointestinal tract regulates homeostasis by acting as brake on motility and secretion. Here we show that when exposed to a high fat diet, intestinal permeability is increased and activation of the CB1 receptor on the intestinal epithelium restores barrier function. This work further highlights the role of the endocannabinoid system in regulating intestinal homeostasis when it is perturbed.


Subject(s)
Diet, High-Fat , Intestinal Mucosa , Receptor, Cannabinoid, CB1 , Animals , Claudin-2/metabolism , Diet, High-Fat/adverse effects , Endocannabinoids/physiology , Intestinal Mucosa/physiology , Mice , Permeability , Receptor, Cannabinoid, CB1/physiology
19.
Am J Nephrol ; 53(11-12): 839-846, 2022.
Article in English | MEDLINE | ID: mdl-36450225

ABSTRACT

BACKGROUND: In metabolic acidosis, a negative calcium balance is induced by decreased renal tubular calcium reabsorption. This occurs independently of the action of parathyroid hormone or vitamin D and was attributed to a direct action of metabolic acidosis on the renal tubular cells. The latter has been verified by recent studies on the molecular levels in the kidney. SUMMARY: Whereas the regulatory role of urinary calcium excretion was traditionally assigned to the transcellular calcium transport in the distal convoluted tubule (DCT) and connecting tubule (CNT), most of the calcium reabsorption from the glomerular filtrate paracellularly occurs through the tight junctions in the proximal tubule (PT) and the thick ascending limb (TAL) of Henle's loop. Interestingly, all these nephron segments participate in producing hypercalciuria caused by metabolic acidosis. Claudin-2 is the major route of paracellular calcium transport in the PT and was downregulated in rats with 5 days' NH4Cl loading. In the TAL, the lumen-positive voltage produced by apical K+ recycling drives paracellular reabsorption of Ca2+ and Mg2+ via the claudin-16/19 complex. Activation of calcium-sensing receptor (CaSR) by extracellular calcium upregulates claudin-14, which in turn interacts with the claudin-16/19 complex and inhibits its cation permeability. This TAL CaSR-claudins axis was activated by chronic NH4Cl loading in rats. Finally, the major transcellular calcium transporters TRPV5 and 28K calcium-binding protein in the DCT-CNT were also downregulated by NH4Cl or acetazolamide administration in mice. KEY MESSAGES: Both paracellular and transcellular calcium transport pathways in the kidney are regulated by metabolic acidosis and lead to renal calcium wasting. In the PT, claudin-2 is downregulated by acidic pH. In the TAL of Henle's loop, CaSR is stimulated by the ionized calcium released from bone and upregulates claudin-14, which in turn inhibits the claudin-16/19 complex and leads to calcium and magnesium wasting. Finally, the transcellular calcium transporters, TRPV5 and calbindin-D28K, are downregulated by metabolic acidosis in the DCT and CNT.


Subject(s)
Acidosis , Calcium , Mice , Rats , Animals , Calcium/metabolism , Hypercalciuria , Claudin-2 , Claudins/metabolism , Kidney/metabolism
20.
Ann Hematol ; 101(5): 1009-1013, 2022 May.
Article in English | MEDLINE | ID: mdl-35166891

ABSTRACT

Based on previous studies showing abnormalities in the intestinal pathophysiology characterized by disruption in the gut barrier functions, and alteration in the intestinal microbial load and composition, we set out in the study to examine the expression of genes that might be involved in mediating these changes in Townes sickle cell disease (SCD) mice at 6 months old compared to non-SCD control mice. Using qPCR on total RNA isolated from the intestine, we found downregulation of the TJ genes JAM-A, Occludin, and ZO-1 in both the small intestine and colon. E-Cadherin and MUC2 were also downregulated. In contrast, gene encoding claudin-2 that mediates increase permeability to water and ions was upregulated in the small intestine. Claudin-2 upregulation is usually also associated with ongoing inflammation. Intestinal epithelium also includes Paneth cells that produce antimicrobial peptides (AMPs) that regulate intestinal microbial community. We also found that the expression of the genes encoding the AMPs defensin-α4 was reduced in the small intestine and colon and defensin-α1 in the colon in the SCD mice. Our findings are novel and provide direction for further studies into the characteristics and mechanisms of the intestinal pathophysiologic changes observed in SCD.


Subject(s)
Anemia, Sickle Cell , Microbiota , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/metabolism , Animals , Claudin-2/metabolism , Defensins/metabolism , Humans , Intestinal Mucosa , Mice , Permeability , Tight Junctions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL