Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
7.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34462347

ABSTRACT

Global aridification is projected to intensify. Yet, our knowledge of its potential impacts on species ranges remains limited. Here, we investigate global aridity velocity and its overlap with three sectors (natural protected areas, agricultural areas, and urban areas) and terrestrial biodiversity in historical (1979 through 2016) and future periods (2050 through 2099), with and without considering vegetation physiological response to rising CO2 Both agricultural and urban areas showed a mean drying velocity in history, although the concurrent global aridity velocity was on average +0.05/+0.20 km/yr-1 (no CO2 effects/with CO2 effects; "+" denoting wetting). Moreover, in drylands, the shifts of vegetation greenness isolines were found to be significantly coupled with the tracks of aridity velocity. In the future, the aridity velocity in natural protected areas is projected to change from wetting to drying across RCP (representative concentration pathway) 2.6, RCP6.0, and RCP8.5 scenarios. When accounting for spatial distribution of terrestrial taxa (including plants, mammals, birds, and amphibians), the global aridity velocity would be -0.15/-0.02 km/yr-1 ("-" denoting drying; historical), -0.12/-0.15 km/yr-1 (RCP2.6), -0.36/-0.10 km/yr-1 (RCP6.0), and -0.75/-0.29 km/yr-1 (RCP8.5), with amphibians particularly negatively impacted. Under all scenarios, aridity velocity shows much higher multidirectionality than temperature velocity, which is mainly poleward. These results suggest that aridification risks may significantly influence the distribution of terrestrial species besides warming impacts and further impact the effectiveness of current protected areas in future, especially under RCP8.5, which best matches historical CO2 emissions [C. R. Schwalm et al., Proc. Natl. Acad. Sci. U.S.A. 117, 19656-19657 (2020)].


Subject(s)
Biodiversity , Climate Change/mortality , Droughts/mortality , Adaptation, Biological , Animals , Ecosystem , Global Warming/statistics & numerical data , Humans , Temperature
8.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in English | MEDLINE | ID: mdl-34845023

ABSTRACT

Variation in temperature is known to influence mortality patterns in ectotherms. Even though a few experimental studies on model organisms have reported a positive relationship between temperature and actuarial senescence (i.e., the increase in mortality risk with age), how variation in climate influences the senescence rate across the range of a species is still poorly understood in free-ranging animals. We filled this knowledge gap by investigating the relationships linking senescence rate, adult lifespan, and climatic conditions using long-term capture-recapture data from multiple amphibian populations. We considered two pairs of related anuran species from the Ranidae (Rana luteiventris and Rana temporaria) and Bufonidae (Anaxyrus boreas and Bufo bufo) families, which diverged more than 100 Mya and are broadly distributed in North America and Europe. Senescence rates were positively associated with mean annual temperature in all species. In addition, lifespan was negatively correlated with mean annual temperature in all species except A. boreas In both R. luteiventris and A. boreas, mean annual precipitation and human environmental footprint both had negligible effects on senescence rates or lifespans. Overall, our findings demonstrate the critical influence of thermal conditions on mortality patterns across anuran species from temperate regions. In the current context of further global temperature increases predicted by Intergovernmental Panel on Climate Change scenarios, a widespread acceleration of aging in amphibians is expected to occur in the decades to come, which might threaten even more seriously the viability of populations and exacerbate global decline.


Subject(s)
Aging/metabolism , Anura/metabolism , Aging/physiology , Animals , Biodiversity , Bufonidae/metabolism , Climate Change/mortality , Europe , Global Warming/mortality , North America , Ranidae/metabolism , Temperature
9.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34903648

ABSTRACT

Decades of air pollution regulation have yielded enormous benefits in the United States, but vehicle emissions remain a climate and public health issue. Studies have quantified the vehicle-related fine particulate matter (PM2.5)-attributable mortality but lack the combination of proper counterfactual scenarios, latest epidemiological evidence, and detailed spatial resolution; all needed to assess the benefits of recent emission reductions. We use this combination to assess PM2.5-attributable health benefits and also assess the climate benefits of on-road emission reductions between 2008 and 2017. We estimate total benefits of $270 (190 to 480) billion in 2017. Vehicle-related PM2.5-attributable deaths decreased from 27,700 in 2008 to 19,800 in 2017; however, had per-mile emission factors remained at 2008 levels, 48,200 deaths would have occurred in 2017. The 74% increase from 27,700 to 48,200 PM2.5-attributable deaths with the same emission factors is due to lower baseline PM2.5 concentrations (+26%), more vehicle miles and fleet composition changes (+22%), higher baseline mortality (+13%), and interactions among these (+12%). Climate benefits were small (3 to 19% of the total). The percent reductions in emissions and PM2.5-attributable deaths were similar despite an opportunity to achieve disproportionately large health benefits by reducing high-impact emissions of passenger light-duty vehicles in urban areas. Increasingly large vehicles and an aging population, increasing mortality, suggest large health benefits in urban areas require more stringent policies. Local policies can be effective because high-impact primary PM2.5 and NH3 emissions disperse little outside metropolitan areas. Complementary national-level policies for NOx are merited because of its substantial impacts-with little spatial variability-and dispersion across states and metropolitan areas.


Subject(s)
Public Health , Transportation , Vehicle Emissions/prevention & control , Air Pollutants/economics , Air Pollution/economics , Air Pollution/prevention & control , Cause of Death/trends , Climate Change/economics , Climate Change/mortality , Cost of Illness , Greenhouse Gases/economics , Humans , Inhalation Exposure/economics , Inhalation Exposure/prevention & control , Particulate Matter/economics , Transportation/classification , United States
10.
Proc Natl Acad Sci U S A ; 117(47): 29720-29729, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33139533

ABSTRACT

Forest vulnerability to drought is expected to increase under anthropogenic climate change, and drought-induced mortality and community dynamics following drought have major ecological and societal impacts. Here, we show that tree mortality concomitant with drought has led to short-term (mean 5 y, range 1 to 23 y after mortality) vegetation-type conversion in multiple biomes across the world (131 sites). Self-replacement of the dominant tree species was only prevalent in 21% of the examined cases and forests and woodlands shifted to nonwoody vegetation in 10% of them. The ultimate temporal persistence of such changes remains unknown but, given the key role of biological legacies in long-term ecological succession, this emerging picture of postdrought ecological trajectories highlights the potential for major ecosystem reorganization in the coming decades. Community changes were less pronounced under wetter postmortality conditions. Replacement was also influenced by management intensity, and postdrought shrub dominance was higher when pathogens acted as codrivers of tree mortality. Early change in community composition indicates that forests dominated by mesic species generally shifted toward more xeric communities, with replacing tree and shrub species exhibiting drier bioclimatic optima and distribution ranges. However, shifts toward more mesic communities also occurred and multiple pathways of forest replacement were observed for some species. Drought characteristics, species-specific environmental preferences, plant traits, and ecosystem legacies govern postdrought species turnover and subsequent ecological trajectories, with potential far-reaching implications for forest biodiversity and ecosystem services.


Subject(s)
Droughts/mortality , Forests , Biodiversity , Climate Change/mortality , Ecosystem , Species Specificity , Trees/physiology
13.
Environ Health Prev Med ; 26(1): 69, 2021 Jul 03.
Article in English | MEDLINE | ID: mdl-34217207

ABSTRACT

BACKGROUND: Ambient temperature may contribute to seasonality of mortality; in particular, a warming climate is likely to influence the seasonality of mortality. However, few studies have investigated seasonality of mortality under a warming climate. METHODS: Daily mean temperature, daily counts for all-cause, circulatory, and respiratory mortality, and annual data on prefecture-specific characteristics were collected for 47 prefectures in Japan between 1972 and 2015. A quasi-Poisson regression model was used to assess the seasonal variation of mortality with a focus on its amplitude, which was quantified as the ratio of mortality estimates between the peak and trough days (peak-to-trough ratio (PTR)). We quantified the contribution of temperature to seasonality by comparing PTR before and after temperature adjustment. Associations between annual mean temperature and annual estimates of the temperature-unadjusted PTR were examined using multilevel multivariate meta-regression models controlling for prefecture-specific characteristics. RESULTS: The temperature-unadjusted PTRs for all-cause, circulatory, and respiratory mortality were 1.28 (95% confidence interval (CI): 1.27-1.30), 1.53 (95% CI: 1.50-1.55), and 1.46 (95% CI: 1.44-1.48), respectively; adjusting for temperature reduced these PTRs to 1.08 (95% CI: 1.08-1.10), 1.10 (95% CI: 1.08-1.11), and 1.35 (95% CI: 1.32-1.39), respectively. During the period of rising temperature (1.3 °C on average), decreases in the temperature-unadjusted PTRs were observed for all mortality causes except circulatory mortality. For each 1 °C increase in annual mean temperature, the temperature-unadjusted PTR for all-cause, circulatory, and respiratory mortality decreased by 0.98% (95% CI: 0.54-1.42), 1.39% (95% CI: 0.82-1.97), and 0.13% (95% CI: - 1.24 to 1.48), respectively. CONCLUSION: Seasonality of mortality is driven partly by temperature, and its amplitude may be decreasing under a warming climate.


Subject(s)
Cardiovascular Diseases/mortality , Climate Change/mortality , Mortality/trends , Respiratory Tract Diseases/mortality , Cause of Death , Cold Temperature/adverse effects , Hot Temperature/adverse effects , Humans , Japan/epidemiology , Regression Analysis , Seasons , Time
15.
Nature ; 494(7438): 463-7, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23395960

ABSTRACT

The extinction rate of populations is predicted to rise under increasing rates of environmental change. If a population experiencing increasingly stressful conditions lacks appropriate phenotypic plasticity or access to more suitable habitats, then genetic change may be the only way to avoid extinction. Evolutionary rescue from extinction occurs when natural selection enriches a population for more stress-tolerant genetic variants. Some experimental studies have shown that lower rates of environmental change lead to more adapted populations or fewer extinctions. However, there has been little focus on the genetic changes that underlie evolutionary rescue. Here we demonstrate that some evolutionary trajectories are contingent on a lower rate of environmental change. We allowed hundreds of populations of Escherichia coli to evolve under variable rates of increase in concentration of the antibiotic rifampicin. We then genetically engineered all combinations of mutations from isolates evolved under lower rates of environmental change. By assessing fitness of these engineered strains across a range of drug concentrations, we show that certain genotypes are evolutionarily inaccessible under rapid environmental change. Rapidly deteriorating environments not only limit mutational opportunities by lowering population size, but they can also eliminate sets of mutations as evolutionary options. As anthropogenic activities are leading to environmental change at unprecedented rapidity, it is critical to understand how the rate of environmental change affects both demographic and genetic underpinnings of evolutionary rescue.


Subject(s)
Adaptation, Physiological/genetics , Biological Evolution , Climate Change , Extinction, Biological , Genetic Fitness/genetics , Models, Biological , Mutagenesis/genetics , Adaptation, Physiological/drug effects , Antibiotics, Antitubercular/pharmacology , Climate Change/mortality , Climate Change/statistics & numerical data , Colony Count, Microbial , DNA Mutational Analysis , DNA-Directed RNA Polymerases , Dose-Response Relationship, Drug , Escherichia coli/cytology , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli Proteins/genetics , Genes, Bacterial/genetics , Genetic Fitness/drug effects , Genotype , Human Activities , Microbial Sensitivity Tests , Mutagenesis/drug effects , Mutation/genetics , Population Density , Rifampin/pharmacology , Time Factors
16.
Environ Res ; 172: 475-485, 2019 05.
Article in English | MEDLINE | ID: mdl-30849737

ABSTRACT

BACKGROUND: In recent years, a number of studies have been conducted with the aim of analysing the impact that high temperatures will have on mortality over different time horizons under different climate scenarios. Very few of these studies take into account the fact that the threshold temperature used to define a heat wave will vary over time, and there are practically none which calculate this threshold temperature for each geographical area on the assumption that there will be variations at a country level. OBJECTIVE: To analyse the impact that high temperatures will have on mortality across the periods 2021-2050 and 2051-2100 under a high-emission climate scenario (RCP8.5), in a case: (a) where adaptation processes are not taken into account; and (b) where complete adaptation processes are taken into account. MATERIAL AND METHODS: Based on heat-wave definition temperature (Tthreshold) values previously calculated for the reference period, 2000-2009, for each Spanish provincial capital, and their impact on daily mortality as measured by population attributable risk (PAR), the impact of high temperatures on mortality will be calculated for the above-mentioned future periods. Two hypotheses will be considered, namely: (a) that Tthreshold does not vary over time (scenario without adaptation to heat); and, (b) that Tthreshold does vary over time, with the percentile to which said Tthreshold corresponds being assumed to remain constant (complete adaptation to heat). The temperature data were sourced from projections generated by Coupled Model Intercomparison Project (CMIP5) climate models adapted to each region's local characteristics by the State Meteorological Agency (Agencia Estatal de Meteorología/AEMET). Population-growth projections were obtained from the National Statistics Institute (Instituto Nacional de Estadística/INE). In addition, an economic estimate of the resulting impact will be drawn up. RESULTS: The mean value of maximum daily temperatures will rise, in relation to those of the reference period (2000-2009), by 1.6°C across the period 2021-2050 and by 3.3°C across the period 2051-2100. In a case where there is no heat-adaptation process, overall annual mortality attributable to high temperatures in Spain would amount to 1414 deaths/year (95% CI: 1089-1771) in the period 2021-2050, rising to 12,896 deaths/year (95% CI: 9852-15,976) in the period 2051-2100. In a case where there is a heat-adaptation process, annual mortality would be 651 deaths/year (95% CI: 500-807) in the period 2021-2050, and 931 deaths per year (95% CI: 770-1081) in the period 2051-2100. These results display a high degree of heterogeneity. The savings between a situation that does envisage and one that does not envisage an adaptive process is €49,100 million/year over the 2051-2100 time horizon. CONCLUSION: A non-linear increase in maximum daily temperatures was observed, which varies widely from some regions to others, with an increase in mean values for Spain as a whole that is not linear over time. The high degree of heterogeneity found in heat-related mortality by region and the great differences observed on considering an adaptive versus a non-adaptive process render it necessary for adaptation plans to be implemented at a regional level.


Subject(s)
Acclimatization , Climate Change , Hot Temperature , Climate Change/mortality , Climate Change/statistics & numerical data , Humans , Mortality/trends , Spain
17.
Public Health ; 174: 110-117, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31326760

ABSTRACT

OBJECTIVES: Without urgent action, climate change will put the health of future populations at risk. Policies to reduce these risks require support from today's populations; however, there are few studies assessing public support for such policies. Willingness to pay (WtP), a measure of the maximum a person is prepared to pay for a defined benefit, is widely used to assess public support for policies. We used WtP to investigate whether there is public support to reduce future health risks from climate change and if individual and contextual factors affect WtP, including perceptions of the seriousness of the impacts of climate change. STUDY DESIGN: A cross-sectional British survey. METHODS: Questions about people's WtP for policies to reduce future climate change-related deaths and their perceptions of the seriousness of climate change impacts were included in a British survey of adults aged 16 years and over (n=1859). We used contingent valuation, a survey-based method for eliciting WtP for outcomes like health which do not have a direct market value. RESULTS: The majority (61%) were willing to pay to reduce future increases in climate change-related deaths in Britain. Those regarding climate change impacts as not at all serious were less willing to pay than those regarding the impacts as extremely serious (OR 0.04, 95% CI 0.02-0.09). Income was also related to WtP; the highest-income group were twice as likely to be willing to pay as the lowest-income group (OR 2.14, 95% CI 1.40-3.29). CONCLUSIONS: There was public support for policies to address future health impacts of climate change; the level of support varied with people's perceptions of the seriousness of these impacts and their financial circumstances. Our study adds to evidence that health, including the health of future populations, is an outcome that people value and suggests that framing climate change around such values may help to accelerate action.


Subject(s)
Climate Change/mortality , Health Policy/economics , Public Health , Adult , Cross-Sectional Studies , Female , Forecasting , Humans , Male , Surveys and Questionnaires , United Kingdom/epidemiology
18.
Stroke ; 49(4): 828-834, 2018 04.
Article in English | MEDLINE | ID: mdl-29523649

ABSTRACT

BACKGROUND AND PURPOSE: Global warming has attracted worldwide attention. Numerous studies have indicated that stroke is associated with temperature; however, few studies are available on the projections of the burden of stroke attributable to future climate change. We aimed to investigate the future trends of stroke years of life lost (YLL) associated with global warming. METHODS: We collected death records to examine YLL in Tianjin, China, from 2006 to 2011. We fitted a standard time-series Poisson regression model after controlling for trends, day of the week, relative humidity, and air pollution. We estimated temperature-YLL associations with a distributed lag nonlinear model. These models were then applied to the local climate projections to estimate temperature-related YLL in the 2050s and 2070s. We projected temperature-related YLL from stroke in Tianjin under 19 global-scale climate models and 3 different greenhouse gas emission scenarios. RESULTS: The results showed a slight decrease in YLL with percent decreases of 0.85%, 0.97%, and 1.02% in the 2050s and 0.94%, 1.02%, and 0.91% in the 2070s for the 3 scenarios, respectively. The increases in heat-related annual YLL and the decreases in cold-related YLL under the high emission scenario were the strongest. The monthly analysis showed that the most significant increase occurred in the summer months, particularly in August, with percent changes >150% in the 2050s and up to 300% in the 2070s. CONCLUSIONS: Future changes in climate are likely to lead to an increase in heat-related YLL, and this increase will not be offset by adaptation under both medium emission and high emission scenarios. Health protections from hot weather will become increasingly necessary, and measures to reduce cold effects will also remain important.


Subject(s)
Global Warming/mortality , Life Expectancy , Stroke/mortality , China/epidemiology , Cities , Climate Change/mortality , Forecasting , Greenhouse Gases , Humans , Nonlinear Dynamics , Retrospective Studies , Seasons , Temperature
19.
PLoS Med ; 15(7): e1002624, 2018 07.
Article in English | MEDLINE | ID: mdl-30063708

ABSTRACT

In a Perspective, Hannah Nissan and Declan Conway discuss the implications of uncertainty about projected impacts of climate change on health.


Subject(s)
Climate Change , Global Health/trends , Health Status , Climate Change/mortality , Environmental Monitoring , Forecasting , Health Status Indicators , Humans , Risk Assessment , Risk Factors , Time Factors
20.
PLoS Med ; 15(7): e1002629, 2018 07.
Article in English | MEDLINE | ID: mdl-30063714

ABSTRACT

BACKGROUND: Heatwaves are a critical public health problem. There will be an increase in the frequency and severity of heatwaves under changing climate. However, evidence about the impacts of climate change on heatwave-related mortality at a global scale is limited. METHODS AND FINDINGS: We collected historical daily time series of mean temperature and mortality for all causes or nonexternal causes, in periods ranging from January 1, 1984, to December 31, 2015, in 412 communities within 20 countries/regions. We estimated heatwave-mortality associations through a two-stage time series design. Current and future daily mean temperature series were projected under four scenarios of greenhouse gas emissions from 1971-2099, with five general circulation models. We projected excess mortality in relation to heatwaves in the future under each scenario of greenhouse gas emissions, with two assumptions for adaptation (no adaptation and hypothetical adaptation) and three scenarios of population change (high variant, median variant, and low variant). Results show that, if there is no adaptation, heatwave-related excess mortality is expected to increase the most in tropical and subtropical countries/regions (close to the equator), while European countries and the United States will have smaller percent increases in heatwave-related excess mortality. The higher the population variant and the greenhouse gas emissions, the higher the increase of heatwave-related excess mortality in the future. The changes in 2031-2080 compared with 1971-2020 range from approximately 2,000% in Colombia to 150% in Moldova under the highest emission scenario and high-variant population scenario, without any adaptation. If we considered hypothetical adaptation to future climate, under high-variant population scenario and all scenarios of greenhouse gas emissions, the heatwave-related excess mortality is expected to still increase across all the countries/regions except Moldova and Japan. However, the increase would be much smaller than the no adaptation scenario. The simple assumptions with respect to adaptation as follows: no adaptation and hypothetical adaptation results in some uncertainties of projections. CONCLUSIONS: This study provides a comprehensive characterisation of future heatwave-related excess mortality across various regions and under alternative scenarios of greenhouse gas emissions, different assumptions of adaptation, and different scenarios of population change. The projections can help decision makers in planning adaptation and mitigation strategies for climate change.


Subject(s)
Climate Change/mortality , Greenhouse Effect/mortality , Hot Temperature/adverse effects , Cause of Death , Environmental Exposure/adverse effects , Greenhouse Effect/prevention & control , Greenhouse Gases/adverse effects , Humans , Risk Assessment , Risk Factors , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL