Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
J Biol Chem ; 299(10): 105222, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37673337

ABSTRACT

Many microorganisms use both biological and nonbiological molecules as sources of carbon and energy. This resourcefulness means that some microorganisms have mechanisms to assimilate pollutants found in the environment. One such organism is Comamonas testosteroni, which metabolizes 4-methylbenzenesulfonate and 4-methylbenzoate using the TsaMBCD pathway. TsaM is a Rieske oxygenase, which in concert with the reductase TsaB consumes a molar equivalent of NADH. Following this step, the annotated short-chain dehydrogenase/reductase and aldehyde dehydrogenase enzymes TsaC and TsaD each regenerate a molar equivalent of NADH. This co-occurrence ameliorates the need for stoichiometric addition of reducing equivalents and thus represents an attractive strategy for integration of Rieske oxygenase chemistry into biocatalytic applications. Therefore, in this work, to overcome the lack of information regarding NADH recycling enzymes that function in partnership with Rieske non-heme iron oxygenases (Rieske oxygenases), we solved the X-ray crystal structure of TsaC to a resolution of 2.18 Å. Using this structure, a series of substrate analog and protein variant combination reactions, and differential scanning fluorimetry experiments, we identified active site features involved in binding NAD+ and controlling substrate specificity. Further in vitro enzyme cascade experiments demonstrated the efficient TsaC- and TsaD-mediated regeneration of NADH to support Rieske oxygenase chemistry. Finally, through in-depth bioinformatic analyses, we illustrate the widespread co-occurrence of Rieske oxygenases with TsaC-like enzymes. This work thus demonstrates the utility of these NADH recycling enzymes and identifies a library of short-chain dehydrogenase/reductase enzyme prospects that can be used in Rieske oxygenase pathways for in situ regeneration of NADH.


Subject(s)
Bacterial Proteins , Comamonas testosteroni , Oxygenases , Aldehyde Dehydrogenase/metabolism , NAD/metabolism , Oxygenases/metabolism , Substrate Specificity , Comamonas testosteroni/enzymology , Comamonas testosteroni/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Nonheme Iron Proteins/chemistry , Nonheme Iron Proteins/genetics , Nonheme Iron Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Protein Structure, Tertiary , Models, Molecular , Protein Stability , Computational Biology
2.
J Biol Chem ; 297(6): 101416, 2021 12.
Article in English | MEDLINE | ID: mdl-34800435

ABSTRACT

Phthalate, a plasticizer, endocrine disruptor, and potential carcinogen, is degraded by a variety of bacteria. This degradation is initiated by phthalate dioxygenase (PDO), a Rieske oxygenase (RO) that catalyzes the dihydroxylation of phthalate to a dihydrodiol. PDO has long served as a model for understanding ROs despite a lack of structural data. Here we purified PDOKF1 from Comamonas testosteroni KF1 and found that it had an apparent kcat/Km for phthalate of 0.58 ± 0.09 µM-1s-1, over 25-fold greater than for terephthalate. The crystal structure of the enzyme at 2.1 Å resolution revealed that it is a hexamer comprising two stacked α3 trimers, a configuration not previously observed in RO crystal structures. We show that within each trimer, the protomers adopt a head-to-tail configuration typical of ROs. The stacking of the trimers is stabilized by two extended helices, which make the catalytic domain of PDOKF1 larger than that of other characterized ROs. Complexes of PDOKF1 with phthalate and terephthalate revealed that Arg207 and Arg244, two residues on one face of the active site, position these substrates for regiospecific hydroxylation. Consistent with their roles as determinants of substrate specificity, substitution of either residue with alanine yielded variants that did not detectably turnover phthalate. Together, these results provide critical insights into a pollutant-degrading enzyme that has served as a paradigm for ROs and facilitate the engineering of this enzyme for bioremediation and biocatalytic applications.


Subject(s)
Bacterial Proteins/chemistry , Comamonas testosteroni/enzymology , Oxygenases/chemistry , Bacterial Proteins/genetics , Catalysis , Comamonas testosteroni/genetics , Crystallography, X-Ray , Oxygenases/genetics , Protein Domains , Substrate Specificity
3.
Arch Microbiol ; 203(7): 4101-4112, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34057546

ABSTRACT

Para-toluic acid, a major pollutant in industrial wastewater, is hazardous to human health. It has been demonstrated that Gram-negative bacteria are among the most effective degraders of para-toluic acid. In this study, the ability of Comamonas testosteroni strain 3a2, isolated from a petrochemical industry wastewater, to degrade para-toluic acid was investigated. The effect of different carbon (glucose and ethylene glycol) and nitrogen sources (urea, yeast extract, peptone, NaNO3, NH4NO3) on the biodegradation of para-toluic acid by the isolate 3a2 was evaluated. Furthermore, ring hydroxylating dioxygenase genes were amplified by PCR and their expression was evaluated during the biodegradation of para-toluic acid. The results indicated that strain 3a2 was able to degrade up to 1000 mg/L of para-toluic acid after 14 h. The highest degradation yield was recorded in the presence of yeast extract as nitrogen source. However, the formation of terephthalic acid and phthalic acid was noted during para-toluic acid degradation by the isolate 3a2. Toluate 1,2-dioxygenase, terephthalate 1,2 dioxygenase, and phthalate 4,5 dioxygenase genes were detected in the genomic DNA of 3a2. The induction of ring hydroxylating dioxygenase genes was proportional to the concentration of each hydrocarbon. This study showed that the isolate 3a2 can produce terephthalate and phthalate during the para-toluic acid biodegradation, which were also degraded after 24 h.


Subject(s)
Comamonas testosteroni , Dioxygenases , Environmental Pollutants , Biodegradation, Environmental , Comamonas testosteroni/enzymology , Comamonas testosteroni/genetics , Dioxygenases/genetics , Environmental Pollutants/metabolism , Phthalic Acids/metabolism
4.
Appl Environ Microbiol ; 85(20)2019 10 15.
Article in English | MEDLINE | ID: mdl-31375491

ABSTRACT

Comamonas testosteroni TA441 degrades steroids via aromatization of the A ring, followed by degradation of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid, mainly by ß-oxidation. In this study, we revealed that 7ß,9α-dihydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostanoic acid-coenzyme A (CoA) ester is dehydrogenated by (3S)-3-hydroxylacyl CoA-dehydrogenase, encoded by scdE (ORF27), and then the resultant 9α-hydroxy-7,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid-CoA ester is converted by 3-ketoacyl-CoA transferase, encoded by scdF (ORF23). With these results, the whole cycle of ß-oxidation on the side chain at C-8 of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid is clarified; 9-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid-CoA ester is dehydrogenated at C-6 by ScdC1C2, followed by hydration by ScdD. 7ß,9α-Dihydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostanoic acid-CoA ester then is dehydrogenated by ScdE to be converted to 9α-hydroxy-17-oxo-1,2,3,4,5,6,10,19-octanorandrostan-7-oic acid-CoA ester and acetyl-CoA by ScdF. ScdF is an ortholog of FadA6 in Mycobacterium tuberculosis H37Rv, which was reported as a 3-ketoacyl-CoA transferase involved in C ring cleavage. We also obtained results suggesting that ScdF is also involved in C ring cleavage, but further investigation is required for confirmation. ORF25 and ORF26, located between scdF and scdE, encode enzymes belonging to the amidase superfamily. Disrupting either ORF25 or ORF26 did not affect steroid degradation. Among the bacteria having gene clusters similar to those of tesB to tesR, some have both ORF25- and ORF26-like proteins or only an ORF26-like protein, but others do not have either ORF25- or ORF26-like proteins. ORF25 and ORF26 are not crucial for steroid degradation, yet they might provide clues to elucidate the evolution of bacterial steroid degradation clusters.IMPORTANCE Studies on bacterial steroid degradation were initiated more than 50 years ago primarily to obtain materials for steroid drugs. Steroid-degrading bacteria are globally distributed, and the role of bacterial steroid degradation in the environment as well as in relation to human health is attracting attention. The overall aerobic degradation of the four basic steroidal rings has been proposed; however, there is still much to be revealed to understand the complete degradation pathway. This study aims to uncover the whole steroid degradation process in Comamonas testosteroni TA441 as a model of steroid-degrading bacteria. C. testosteroni is one of the most studied representative steroid-degrading bacteria and is suitable for exploring the degradation pathway, because the involvement of degradation-related genes can be determined by gene disruption. Here, we elucidated the entire ß-oxidation cycle of the cleaved B ring. This cycle is essential for the following C and D ring cleavage.


Subject(s)
Comamonas testosteroni/metabolism , Steroids/chemistry , Steroids/metabolism , Bacterial Proteins/genetics , Cholic Acid/metabolism , Comamonas testosteroni/enzymology , Comamonas testosteroni/genetics , Multigene Family , Oxidation-Reduction , Oxidoreductases , Testosterone/metabolism
5.
Appl Environ Microbiol ; 84(22)2018 11 15.
Article in English | MEDLINE | ID: mdl-30194104

ABSTRACT

Bacterial steroid degradation has been studied mainly with Rhodococcus equi (Nocardia restrictus) and Comamonas testosteroni as representative steroid degradation bacteria for more than 50 years. The primary purpose was to obtain materials for steroid drugs, but recent studies showed that many genera of bacteria (Mycobacterium, Rhodococcus, Pseudomonas, etc.) degrade steroids and that steroid-degrading bacteria are globally distributed and found particularly in wastewater treatment plants, the soil, plant rhizospheres, and the marine environment. The role of bacterial steroid degradation in the environment is, however, yet to be revealed. To uncover the whole steroid degradation process in a representative steroid-degrading bacterium, C. testosteroni, to provide basic information for further studies on the role of bacterial steroid degradation, we elucidated the two indispensable oxidative reactions and hydration before D-ring cleavage in C. testosteroni TA441. In bacterial oxidative steroid degradation, A- and B-rings of steroids are cleaved to produce 2-hydroxyhexa-2,4-dienoic acid and 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid. The latter compound was revealed to be degraded to the coenzyme A (CoA) ester of 9α-hydroxy-17-oxo-1,2,3,4,5,6,10,19-octanorandrostan-7-oic acid, which is converted to the CoA ester of 9,17-dioxo-1,2,3,4,5,6,10,19-octanorandrostan-7-oic acid by ORF31-encoded hydroxylacyl dehydrogenase (ScdG), followed by conversion to the CoA ester of 9,17-dioxo-1,2,3,4,5,6,10,19-octanorandrost-8(14)-en-7-oic acid by ORF4-encoded acyl-CoA dehydrogenase (ScdK). Then, a water molecule is added by the ORF5-encoded enoyl-CoA hydratase (ScdY), which leads to the cleavage of the D-ring. The conversion by ScdG is presumed to be a reversible reaction. The elucidated pathway in C. testosteroni TA441 is different from the corresponding pathways in Mycobacterium tuberculosis H37Rv.IMPORTANCE Studies on representative steroid degradation bacteria Rhodococcus equi (Nocardia restrictus) and Comamonas testosteroni were initiated more than 50 years ago primarily to obtain materials for steroid drugs. A recent study showed that steroid-degrading bacteria are globally distributed and found particularly in wastewater treatment plants, the soil, plant rhizospheres, and the marine environment, but the role of bacterial steroid degradation in the environment is yet to be revealed. This study aimed to uncover the whole steroid degradation process in C. testosteroni TA441, in which major enzymes for steroidal A- and B-ring cleavage were elucidated, to provide basic information for further studies on bacterial steroid degradation. C. testosteroni is suitable for exploring the degradation pathway because the involvement of degradation-related genes can be determined by gene disruption. We elucidated the two indispensable oxidative reactions and hydration before D-ring cleavage, which appeared to differ from those present in Mycobacterium tuberculosis H37Rv.


Subject(s)
Bacterial Proteins/genetics , Comamonas testosteroni/metabolism , Steroids/chemistry , Steroids/metabolism , Bacterial Proteins/metabolism , Biodegradation, Environmental , Comamonas testosteroni/enzymology , Comamonas testosteroni/genetics , Molecular Structure , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism
6.
Biochemistry ; 56(4): 582-591, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28045505

ABSTRACT

Kemp eliminases represent the most successful class of computationally designed enzymes, with rate accelerations of up to 109-fold relative to the rate of the same reaction in aqueous solution. Nevertheless, several other systems such as micelles, catalytic antibodies, and cavitands are known to accelerate the Kemp elimination by several orders of magnitude. We found that the naturally occurring enzyme ketosteroid isomerase (KSI) also catalyzes the Kemp elimination. Surprisingly, mutations of D38, the residue that acts as a general base for its natural substrate, produced variants that catalyze the Kemp elimination up to 7000-fold better than wild-type KSI does, and some of these variants accelerate the Kemp elimination more than the computationally designed Kemp eliminases. Analysis of the D38N general base KSI variant suggests that a different active site carboxylate residue, D99, performs the proton abstraction. Docking simulations and analysis of inhibition by active site binders suggest that the Kemp elimination takes place in the active site of KSI and that KSI uses the same catalytic strategies of the computationally designed enzymes. In agreement with prior observations, our results strengthen the conclusion that significant rate accelerations of the Kemp elimination can be achieved with very few, nonspecific interactions with the substrate if a suitable catalytic base is present in a hydrophobic environment. Computational design can fulfill these requirements, and the design of more complex and precise environments represents the next level of challenges for protein design.


Subject(s)
Bacterial Proteins/chemistry , Comamonas testosteroni/chemistry , Intramolecular Lyases/chemistry , Ketosteroids/chemistry , Oxazoles/chemistry , Protons , Steroid Isomerases/chemistry , Arginine/chemistry , Arginine/metabolism , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Cloning, Molecular , Comamonas testosteroni/enzymology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hydrophobic and Hydrophilic Interactions , Intramolecular Lyases/antagonists & inhibitors , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Ketosteroids/metabolism , Kinetics , Molecular Docking Simulation , Mutation , Oxazoles/metabolism , Protein Engineering , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Steroid Isomerases/antagonists & inhibitors , Steroid Isomerases/genetics , Steroid Isomerases/metabolism , Structure-Activity Relationship
7.
J Am Chem Soc ; 139(32): 11089-11095, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28719738

ABSTRACT

Control of enzyme activity is fundamental to biology and represents a long-term goal in bioengineering and precision therapeutics. While several powerful molecular strategies have been developed, limitations remain in their generalizability and dynamic range. We demonstrate a control mechanism via separate small molecules that turn on the enzyme (activator) and turn off the activation (blocker). We show that a pocket created near the active site base of the enzyme ketosteriod isomerase (KSI) allows efficient and saturable base rescue when the enzyme's natural general base is removed. Binding a small molecule with similar properties but lacking general-base capability in this pocket shuts off rescue. The ability of small molecules to directly participate in and directly block catalysis may afford a broad controllable dynamic range. This approach may be amenable to numerous enzymes and to engineering and screening approaches to identify activators and blockers with strong, specific binding for engineering and therapeutic applications.


Subject(s)
Catalytic Domain/drug effects , Comamonas testosteroni/enzymology , Pseudomonas putida/enzymology , Small Molecule Libraries/pharmacology , Steroid Isomerases/metabolism , Binding Sites/drug effects , Comamonas testosteroni/chemistry , Comamonas testosteroni/drug effects , Comamonas testosteroni/genetics , Enzyme Activation/drug effects , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Pseudomonas putida/chemistry , Pseudomonas putida/drug effects , Pseudomonas putida/genetics , Small Molecule Libraries/chemistry , Steroid Isomerases/chemistry , Steroid Isomerases/genetics
8.
J Am Chem Soc ; 138(31): 9902-9, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27410422

ABSTRACT

Proton transfer reactions are ubiquitous in enzymes and utilize active site residues as general acids and bases. Crystal structures and site-directed mutagenesis are routinely used to identify these residues, but assessment of their catalytic contribution remains a major challenge. In principle, effective molarity measurements, in which exogenous acids/bases rescue the reaction in mutants lacking these residues, can estimate these catalytic contributions. However, these exogenous moieties can be restricted in reactivity by steric hindrance or enhanced by binding interactions with nearby residues, thereby resulting in over- or underestimation of the catalytic contribution, respectively. With these challenges in mind, we investigated the catalytic contribution of an aspartate general base in ketosteroid isomerase (KSI) by exogenous rescue. In addition to removing the general base, we systematically mutated nearby residues and probed each mutant with a series of carboxylate bases of similar pKa but varying size. Our results underscore the need for extensive and multifaceted variation to assess and minimize steric and positioning effects and determine effective molarities that estimate catalytic contributions. We obtained consensus effective molarities of ∼5 × 10(4) M for KSI from Comamonas testosteroni (tKSI) and ∼10(3) M for KSI from Pseudomonas putida (pKSI). An X-ray crystal structure of a tKSI general base mutant showed no additional structural rearrangements, and double mutant cycles revealed similar contributions from an oxyanion hole mutation in the wild-type and base-rescued reactions, providing no indication of mutational effects extending beyond the general base site. Thus, the high effective molarities suggest a large catalytic contribution associated with the general base. A significant portion of this effect presumably arises from positioning of the base, but its large magnitude suggests the involvement of additional catalytic mechanisms as well.


Subject(s)
Ketosteroids/chemistry , Steroid Isomerases/chemistry , Aspartic Acid/chemistry , Binding Sites , Carbon/chemistry , Catalysis , Catalytic Domain , Comamonas testosteroni/enzymology , Crystallography, X-Ray , Hydrogen Bonding , Hydrogen-Ion Concentration , Isomerases/metabolism , Kinetics , Mutagenesis, Site-Directed , Mutation , Pseudomonas putida/enzymology
9.
BMC Biotechnol ; 16(1): 80, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27855668

ABSTRACT

BACKGROUND: Hexuronic acids such as D-galacturonic acid and D-glucuronic acid can be utilized via different pathways within the metabolism of microorganisms. One representative, the oxidative pathway, generates α-keto-glutarate as the direct link entering towards the citric acid cycle. The penultimate enzyme, keto-deoxy glucarate dehydratase/decarboxylase, catalyses the dehydration and decarboxylation of keto-deoxy glucarate to α-keto-glutarate semialdehyde. This enzymatic reaction can be tracked continuously by applying a pH-shift assay. RESULTS: Two new keto-deoxy glucarate dehydratases/decarboxylases (EC 4.2.1.41) from Comamonas testosteroni KF-1 and Polaromonas naphthalenivorans CJ2 were identified and expressed in an active form using Escherichia coli ArcticExpress(DE3). Subsequent characterization concerning K m, k cat and thermal stability was conducted in comparison with the known keto-deoxy glucarate dehydratase/decarboxylase from Acinetobacter baylyi ADP1. The kinetic constants determined for A. baylyi were K m 1.0 mM, k cat 4.5 s-1, for C. testosteroni K m 1.1 mM, k cat 3.1 s-1, and for P. naphthalenivorans K m 1.1 mM, k cat 1.7 s-1. The two new enzymes had a slightly lower catalytic activity (increased K m and a decreased k cat) but showed a higher thermal stability than that of A. baylyi. The developed pH-shift assay, using potassium phosphate and bromothymol blue as the pH indicator, enables a direct measurement. The use of crude extracts did not interfere with the assay and was tested for wild-type landscapes for all three enzymes. CONCLUSIONS: By establishing a pH-shift assay, an easy measurement method for keto-deoxy glucarate dehydratase/decarboxylase could be developed. It can be used for measurements of the purified enzymes or using crude extracts. Therefore, it is especially suitable as the method of choice within an engineering approach for further optimization of these enzymes.


Subject(s)
Betaproteobacteria/enzymology , Comamonas testosteroni/enzymology , Glutarates/chemistry , Hydro-Lyases/chemistry , Binding Sites , Enzyme Activation , Enzyme Stability , Hydro-Lyases/metabolism , Protein Binding , Substrate Specificity
10.
J Biol Inorg Chem ; 20(5): 885-94, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26077812

ABSTRACT

A strictly conserved active site arginine residue (αR157) and two histidine residues (αH80 and αH81) located near the active site of the Fe-type nitrile hydratase from Comamonas testosteroni Ni1 (CtNHase), were mutated. These mutant enzymes were examined for their ability to bind iron and hydrate acrylonitrile. For the αR157A mutant, the residual activity (k cat = 10 ± 2 s(-1)) accounts for less than 1% of the wild-type activity (k cat = 1100 ± 30 s(-1)) while the K m value is nearly unchanged at 205 ± 10 mM. On the other hand, mutation of the active site pocket αH80 and αH81 residues to alanine resulted in enzymes with k cat values of 220 ± 40 and 77 ± 13 s(-1), respectively, and K m values of 187 ± 11 and 179 ± 18 mM. The double mutant (αH80A/αH81A) was also prepared and provided an enzyme with a k cat value of 132 ± 3 s(-1) and a K m value of 213 ± 61 mM. These data indicate that all three residues are catalytically important, but not essential. X-ray crystal structures of the αH80A/αH81A, αH80W/αH81W, and αR157A mutant CtNHase enzymes were solved to 2.0, 2.8, and 2.5 Å resolutions, respectively. In each mutant enzyme, hydrogen-bonding interactions crucial for the catalytic function of the αCys(104)-SOH ligand are disrupted. Disruption of these hydrogen bonding interactions likely alters the nucleophilicity of the sulfenic acid oxygen and the Lewis acidity of the active site Fe(III) ion.


Subject(s)
Biocatalysis , Comamonas testosteroni/enzymology , Hydro-Lyases/chemistry , Hydro-Lyases/metabolism , Iron/metabolism , Amino Acid Sequence , Catalytic Domain , Hydro-Lyases/genetics , Hydrogen Bonding , Iron/chemistry , Molecular Sequence Data , Mutation , Sequence Alignment
11.
Proteins ; 82(9): 1756-64, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24493659

ABSTRACT

We isolated a putative citrate transporter of the tripartite tricarboxylate transporter (TTT) class from a metagenomic library of activated sludge from a sewage treatment plant. The transporter, dubbed TctA_ar, shares ∼50% sequence identity with TctA of Comamonas testosteroni (TctA_ct) and other ß-Proteobacteria, and contains two 20-amino acid repeat signature sequences, considered a hallmark of this particular transporter class. The structures for both TctA_ar and TctA_ct were modeled with I-TASSER and two possible structures for this transporter family were proposed. Docking assays with citrate resulted in the corresponding sets of proposed critical residues for function. These models suggest functions for the 20-amino acid repeats in the context of the two different architectures. This constitutes the first attempt at structure modeling of the TTT family, to the best of our knowledge, and could aid functional understanding of this little-studied family.


Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/ultrastructure , Comamonas testosteroni/enzymology , Repetitive Sequences, Amino Acid/genetics , Amino Acid Sequence , Binding Sites , Carrier Proteins/isolation & purification , Citric Acid/chemistry , Comamonas testosteroni/genetics , Gene Library , Metagenome/genetics , Molecular Docking Simulation , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Sequence Alignment , Sewage/microbiology
12.
Biochemistry ; 52(6): 1074-81, 2013 Feb 12.
Article in English | MEDLINE | ID: mdl-23311398

ABSTRACT

We compared the binding affinities of ground state analogues for bacterial ketosteroid isomerase (KSI) with a wild-type anionic Asp general base and with uncharged Asn and Ala in the general base position to provide a measure of potential ground state destabilization that could arise from the close juxtaposition of the anionic Asp and hydrophobic steroid in the reaction's Michaelis complex. The analogue binding affinity increased ~1 order of magnitude for the Asp38Asn mutation and ~2 orders of magnitude for the Asp38Ala mutation, relative to the affinity with Asp38, for KSI from two sources. The increased level of binding suggests that the abutment of a charged general base and a hydrophobic steroid is modestly destabilizing, relative to a standard state in water, and that this destabilization is relieved in the transition state and intermediate in which the charge on the general base has been neutralized because of proton abstraction. Stronger binding also arose from mutation of Pro39, the residue adjacent to the Asp general base, consistent with an ability of the Asp general base to now reorient to avoid the destabilizing interaction. Consistent with this model, the Pro mutants reduced or eliminated the increased level of binding upon replacement of Asp38 with Asn or Ala. These results, supported by additional structural observations, suggest that ground state destabilization from the negatively charged Asp38 general base provides a modest contribution to KSI catalysis. They also provide a clear illustration of the well-recognized concept that enzymes evolve for catalytic function and not, in general, to maximize ground state binding. This ground state destabilization mechanism may be common to the many enzymes with anionic side chains that deprotonate carbon acids.


Subject(s)
Alanine/metabolism , Asparagine/metabolism , Aspartic Acid/metabolism , Comamonas testosteroni/enzymology , Pseudomonas putida/enzymology , Steroid Isomerases/chemistry , Alanine/chemistry , Alanine/genetics , Asparagine/chemistry , Asparagine/genetics , Aspartic Acid/chemistry , Aspartic Acid/genetics , Binding Sites , Catalysis , Catalytic Domain , Comamonas testosteroni/genetics , Crystallography, X-Ray , Hydrogen Bonding , Ketosteroids/metabolism , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Mutation/genetics , Pseudomonas putida/genetics , Steroid Isomerases/genetics , Steroid Isomerases/metabolism
13.
Proc Natl Acad Sci U S A ; 107(5): 1960-5, 2010 Feb 02.
Article in English | MEDLINE | ID: mdl-20080683

ABSTRACT

The catalytic importance of enzyme active-site interactions is frequently assessed by mutating specific residues and measuring the resulting rate reductions. This approach has been used in bacterial ketosteroid isomerase to probe the energetic importance of active-site hydrogen bonds donated to the dienolate reaction intermediate. The conservative Tyr16Phe mutation impairs catalysis by 10(5)-fold, far larger than the effects of hydrogen bond mutations in other enzymes. However, the less-conservative Tyr16Ser mutation, which also perturbs the Tyr16 hydrogen bond, results in a less-severe 10(2)-fold rate reduction. To understand the paradoxical effects of these mutations and clarify the energetic importance of the Tyr16 hydrogen bond, we have determined the 1.6-A resolution x-ray structure of the intermediate analogue, equilenin, bound to the Tyr16Ser mutant and measured the rate effects of mutating Tyr16 to Ser, Thr, Ala, and Gly. The nearly identical 200-fold rate reductions of these mutations, together with the 6.4-A distance observed between the Ser16 hydroxyl and equilenin oxygens in the x-ray structure, strongly suggest that the more moderate rate effect of this mutant is not due to maintenance of a hydrogen bond from Ser at position 16. These results, additional spectroscopic observations, and prior structural studies suggest that the Tyr16Phe mutation results in unfavorable interactions with the dienolate intermediate beyond loss of a hydrogen bond, thereby exaggerating the apparent energetic benefit of the Tyr16 hydrogen bond relative to the solution reaction. These results underscore the complex energetics of hydrogen bonding interactions and site-directed mutagenesis experiments.


Subject(s)
Steroid Isomerases/chemistry , Steroid Isomerases/genetics , Amino Acid Substitution , Catalytic Domain/genetics , Comamonas testosteroni/enzymology , Comamonas testosteroni/genetics , Crystallography, X-Ray , Equilenin/chemistry , Equilenin/metabolism , Hydrogen Bonding , Ketosteroids/chemistry , Ketosteroids/metabolism , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Pseudomonas putida/enzymology , Pseudomonas putida/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Static Electricity , Steroid Isomerases/metabolism
14.
Biochem Biophys Res Commun ; 424(3): 365-70, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22713452

ABSTRACT

We report herein the functional expression of an Fe-type nitrile hydratase (NHase) without the co-expression of an activator protein or the Escherichia coli chaperone proteins GroES/EL. Soluble protein was obtained when the α- and ß-subunit genes of the Fe-type NHase Comamonas testosteroni Ni1 (CtNHase) were synthesized with optimized E. coli codon usage and co-expressed. As a control, the Fe-type NHase from Rhodococcus equi TG328-2 (ReNHase) was expressed with (ReNHase(+Act)) and without (ReNHase(-Act)) its activator protein, establishing that expression of a fully functional, metallated ReNHase enzyme requires the co-expression of its activator protein, similar to all other Fe-type NHase enzymes reported to date, whereas the CtNHase does not. The X-ray crystal structure of CtNHase was determined to 2.4Å resolution revealing an αß heterodimer, similar to other Fe-type NHase enzymes, except for two important differences. First, two His residues reside in the CtNHase active site that are not observed in other Fe-type NHase enzymes and second, the active site Fe(III) ion resides at the bottom of a wide solvent exposed channel. The solvent exposed active site, along with the two active site histidine residues, are hypothesized to play a role in iron incorporation in the absence of an activator protein.


Subject(s)
Comamonas testosteroni/enzymology , Hydro-Lyases/biosynthesis , Recombinant Proteins/biosynthesis , Catalytic Domain , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/biosynthesis , Heat-Shock Proteins/biosynthesis , Histidine/chemistry , Hydro-Lyases/chemistry , Hydro-Lyases/genetics , Iron/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Rhodococcus equi/enzymology
15.
Appl Environ Microbiol ; 78(23): 8254-63, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23001656

ABSTRACT

Complete biodegradation of the surfactant linear alkylbenzenesulfonate (LAS) is accomplished by complex bacterial communities in two steps. First, all LAS congeners are degraded into about 50 sulfophenylcarboxylates (SPC), one of which is 3-(4-sulfophenyl)butyrate (3-C(4)-SPC). Second, these SPCs are mineralized. 3-C(4)-SPC is mineralized by Comamonas testosteroni KF-1 in a process involving 4-sulfoacetophenone (SAP) as a metabolite and an unknown inducible Baeyer-Villiger monooxygenase (BVMO) to yield 4-sulfophenyl acetate (SPAc) from SAP (SAPMO enzyme); hydrolysis of SPAc to 4-sulfophenol and acetate is catalyzed by an unknown inducible esterase (SPAc esterase). Transcriptional analysis showed that one of four candidate genes for BVMOs in the genome of strain KF-1, as well as an SPAc esterase candidate gene directly upstream, was inducibly transcribed during growth with 3-C(4)-SPC. The same genes were identified by enzyme purification and peptide fingerprinting-mass spectrometry when SAPMO was enriched and SPAc esterase purified to homogeneity by protein chromatography. Heterologously overproduced pure SAPMO converted SAP to SPAc and was active with phenylacetone and 4-hydroxyacetophenone but not with cyclohexanone and progesterone. SAPMO showed the highest sequence homology to the archetypal phenylacetone BVMO (57%), followed by steroid BVMO (55%) and 4-hydroxyacetophenone BVMO (30%). Finally, the two pure enzymes added sequentially, SAPMO with NADPH and SAP, and then SPAc esterase, catalyzed the conversion of SAP via SPAc to 4-sulfophenol and acetate in a 1:1:1:1 molar ratio. Hence, the first two enzymes of a complete LAS degradation pathway were identified, giving evidence for the recruitment of members of the very versatile type I BVMO and carboxylester hydrolase enzyme families for the utilization of a xenobiotic compound by bacteria.


Subject(s)
Alkanesulfonic Acids/metabolism , Comamonas testosteroni/enzymology , Esterases/metabolism , Metabolic Networks and Pathways/genetics , Mixed Function Oxygenases/metabolism , Surface-Active Agents/metabolism , Biotransformation , Comamonas testosteroni/genetics , Esterases/genetics , Esterases/isolation & purification , Mass Spectrometry , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/isolation & purification , Peptides/analysis , Sequence Homology, Amino Acid
16.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 11): 1337-40, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23143244

ABSTRACT

Dioxygen activation implemented by nonhaem Fe(II) enzymes containing the 2-His-1-carboxylate facial triad has been extensively studied in recent years. Extradiol dioxygenase is the archetypal member of this superfamily and catalyzes the oxygenolytic ring opening of catechol analogues. Here, the crystallization and preliminary X-ray analysis of 2-aminophenol 1,6-dioxygenase, an enzyme representing a minor subset of extradiol dioxygenases that catalyze the fission of 2-aminophenol rather than catecholic compounds, is reported. Crystals of the holoenzyme with FeII and of complexes with the substrate 2-aminophenol and the suicide inhibitor 4-nitrocatechol were grown using the cocrystallization method under the same conditions as used for the crystallization of the apoenzyme. The crystals belonged to space group C2 and diffracted to 2.3-2.7 Šresolution; the crystal that diffracted to the highest resolution had unit-cell parameters a=270.24, b=48.39, c=108.55 Å, ß=109.57°. All X-ray data sets collected from diffraction-quality crystals were suitable for structure determination.


Subject(s)
Aminophenols/chemistry , Bacterial Proteins/chemistry , Catechols/chemistry , Comamonas testosteroni/enzymology , Dioxygenases/chemistry , Apoenzymes/chemistry , Apoenzymes/isolation & purification , Bacterial Proteins/isolation & purification , Chromatography, Gel , Chromatography, Ion Exchange , Crystallization , Crystallography, X-Ray , Dioxygenases/isolation & purification , Enzyme Inhibitors/chemistry
17.
J Bacteriol ; 193(17): 4447-55, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21725000

ABSTRACT

Forty years ago, Coulter and Talalay (A. W. Coulter and P. Talalay, J. Biol. Chem. 243:3238-3247, 1968) established the oxygenase-dependent pathway for the degradation of testosterone by aerobes. The oxic testosterone catabolic pathway involves several oxygen-dependent reactions and is not available for anaerobes. Since then, a variety of anaerobic bacteria have been described for the ability to degrade testosterone in the absence of oxygen. Here, a novel, oxygenase-independent testosterone catabolic pathway in such organisms is described. Steroidobacter denitrificans DSMZ18526 was shown to be capable of degrading testosterone in the absence of oxygen and was selected as the model organism in this study. In a previous investigation, we identified the initial intermediates involved in an anoxic testosterone catabolic pathway, most of which are identical to those of the oxic pathway demonstrated in Comamonas testosteroni. In this study, five additional intermediates of the anoxic pathway were identified. We demonstrated that subsequent steps of the anoxic pathway greatly differ from those of the established oxic pathway, which suggests that a novel pathway for testosterone catabolism is present. In the proposed anoxic pathway, a reduction reaction occurs at C-4 and C-5 of androsta-1,4-diene-3,17-dione, the last common intermediate of both the oxic and anoxic pathways. After that, a novel hydration reaction occurs and a hydroxyl group is thus introduced to the C-1α position of C(19)steroid substrates. To our knowledge, an enzymatic hydration reaction occurring at the A ring of steroid compounds has not been reported before.


Subject(s)
Comamonas testosteroni/metabolism , Gammaproteobacteria/metabolism , Metabolic Networks and Pathways , Testosterone/metabolism , Bacteria, Anaerobic/metabolism , Bacterial Proteins/metabolism , Chromatography, High Pressure Liquid , Chromatography, Thin Layer , Comamonas testosteroni/enzymology , Gammaproteobacteria/enzymology , Magnetic Resonance Spectroscopy , Nitrates/analysis , Nitrates/metabolism , Oxygenases/metabolism , Steroids/metabolism , Testosterone/analysis
18.
Mol Microbiol ; 75(5): 1199-214, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20059681

ABSTRACT

LysR-type transcriptional regulators (LTTRs) constitute the largest family of regulators in prokaryotes. The full-length structures of the LTTR TsaR from Comamonas testosteroni T-2 and its complex with the natural inducer para-toluensulfonate have been characterized by X-ray diffraction. Both ligand-free and complexed forms reveal a dramatically different quaternary structure from that of CbnR from Ralstonia eutropha, or a putative LysR-type regulator from Pseudomonas aeruginosa, the only other determined full-length structures of tetrameric LTTRs. Although all three show a head-to-head tetrameric ring, TsaR displays an open conformation, whereas CbnR and PA01-PR present additional contacts in opposing C-terminal domains that close the ring. Such large differences may be due to a broader structural versatility than previously assumed or either, reflect the intrinsic flexibility of tetrameric LTTRs. On the grounds of the sliding dimer hypothesis of LTTR activation, we propose a structural model in which the closed structures could reflect the conformation of a ligand-free LTTR, whereas inducer binding would bring about local changes to disrupt the interface linking the two compact C-terminal domains. This could lead to a TsaR-like, open structure, where the pairs of recognition helices are closer to each other by more than 10 A.


Subject(s)
Bacterial Proteins/chemistry , Comamonas testosteroni/enzymology , Transcription Factors/chemistry , Amino Acid Sequence , Bacterial Proteins/metabolism , Benzenesulfonates/chemistry , Benzenesulfonates/metabolism , Crystallography, X-Ray , Models, Biological , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Structure, Quaternary , Sequence Alignment , Transcription Factors/metabolism
19.
Neuro Endocrinol Lett ; 32 Suppl 1: 137-45, 2011.
Article in English | MEDLINE | ID: mdl-22167219

ABSTRACT

OBJECTIVE: Comamonas testosteroni Pb50 is a microorganism that possesses high tolerance for phenol and shows strong phenol degrading activity. This bacterial strain is capable of utilizing phenol as the sole carbon and energy source. Although examples are known in which the C. testosteroni utilizes phenol for growth or metabolism, much less information are known on the nature of the phenol-oxidizing enzymes in this microorganism. Therefore, the occurrence and cellular location of phenol hydroxylase (EC 1.14.13.7), the enzyme participating in the first step of phenol degradation, catalyzing its hydroxylation to catechol in a bacterial Comamonas testosteroni Pb50 strain grown in the presence of phenol as a sole carbon and energy source are the aims of this study. METHODS: Combination of fractionation with polyethylene glycol 6000 and gel permeation chromatography on columns of Sepharose 4B and Sephacryl S-300 was used for isolation of phenol hydroxylase detectable in the medium in which C. testosteroni was cultivated. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and gel chromatography on Sephacryl S-300 were used to evaluate the molecular mass of the enzyme. The enzyme activity was followed by HPLC (phenol consumption and/or catechol formation). RESULTS: Whereas low activity of phenol hydroxylase was detected in cytosol isolated from C. testosteroni, more than 16-fold higher activity of this enzyme was found in the medium in which C. testosteroni was cultivated. The presence of phenol hydroxylase extracellular activity suggests that this microorganism may secrete the enzyme into the extracellular medium. Using the procedure consisting of fractionation with polyethylene glycol 6000 and gel permeation chromatography on columns of Sepharose 4B and Sephacryl S-300, the enzyme was isolated from the medium to homogeneity. The formation of catechol mediated by purified phenol hydroxylase is strictly dependent on the presence of NADPH, which indicates that this enzyme is the NADPH-dependent phenol hydroxylase. The enzyme is a homotetramer having a molecular mass of 240 000, consisting of four subunits having a molecular mass of 60 000. The optimum pH of the enzyme for the phenol oxidation is pH 7.6. CONCLUSION: The results are the first report showing isolation and partial characterization of extracellular NADPH-dependent phenol hydroxylase of a bacterial C. testosteroni Pb50 strain capable of oxidizing phenol to catechol. The data demonstrate the progress in resolving the enzymes responsible for the first step of phenol degradation by bacteria.


Subject(s)
Catechols/metabolism , Comamonas testosteroni/enzymology , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/isolation & purification , NADP/metabolism , Phenol/metabolism , Catalysis , Chromatography, High Pressure Liquid , Cloning, Molecular , Comamonas testosteroni/genetics , Electrophoresis, Polyacrylamide Gel , Extracellular Space/enzymology , Extracellular Space/genetics , Hydrogen-Ion Concentration , Mixed Function Oxygenases/metabolism , Oxidation-Reduction , Time Factors
20.
Chem Biol Interact ; 336: 109271, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33002461

ABSTRACT

3,17ß-Hydroxysteroid dehydrogenase in Comamonas testosteroni (C. testosteroni) is a key enzyme involved in the degradation of steroid compounds. Recently, we found that LuxR is a negative regulator in the expression of the 3,17ß-HSD gene. In the present work, we cultured wild-type and LuxR knock-out mutants of C. testosteroni with inducers such as testosterone, estradiol, progesterone or estrone. HPLC analysis showed that the degradation activities towards testosterone, estradiol, progesterone, and estrone by C.T.-LuxR-KO1 were increased by 7.1%, 9.7%, 11.9% and 3.1%, respectively compared to the wild-type strain. Protein conformation of LuxR was predicted by Phyre 2 Server software, where the N-terminal 86(Ile), 116(Ile), 118(Met) and 149(Phe) residues form a testosterone binding hydrophobic pore, while the C-terminus forms the DNA binding site (HTH). Further, luxr point mutant plasmids were prepared by PCR and co-transformed with pUC3.2-4 into E. coli HB101. ELISA was used to determine 3,17ß-HSD expression after testosterone induction. Compared to wild-type luxr, 3,17ß-HSD expression in mutants of I86T, I116T, M118T and F149S were decreased. The result indicates that testosterone lost its capability to bind to LuxR after the four amino acid residues had been exchanged. No significant changes of 3,17ß-HSD expression were found in K354I and Y356 N mutants compared to wild-type luxr, which indicates that these two amino acid residues in LuxR might relate to DNA binding. Native LuxR protein was prepared from inclusion bodies using sodium lauroylsarcosinate. Molecular interaction experiments showed that LuxR protein binds to a nucleotide sequence which locates 87 bp upstream of the ßhsd promoter. Our results revealed that steroid induction of 3,17ß-HSD in C. testosteroni in fact appears to be a de-repression, where testosterone prevents the LuxR regulator protein binding to the 3,17ß-HSD promoter domain.


Subject(s)
17-Hydroxysteroid Dehydrogenases/metabolism , Comamonas testosteroni/enzymology , Repressor Proteins/metabolism , Trans-Activators/metabolism , Comamonas testosteroni/cytology , Comamonas testosteroni/growth & development , Models, Molecular , Point Mutation , Protein Conformation , Repressor Proteins/chemistry , Repressor Proteins/deficiency , Trans-Activators/chemistry , Trans-Activators/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL