Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Arch Anim Nutr ; 74(4): 257-270, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31718315

ABSTRACT

The study evaluated the effects of soybean oil (SO) and dietary copper levels on nutrient digestion, ruminal fermentation, enzyme activity, microflora and microbial protein synthesis in dairy bulls. Eight Holstein rumen-cannulated bulls (14 ± 0.2 months of age and 326 ± 8.9 kg of body weight) were allocated into a replicated 4 × 4 Latin square design in a 2 × 2 factorial arrangement with factors being 0 or 40 g/kg dietary dry matter (DM) of SO and 0 or 7.68 mg/kg DM of Cu from copper sulphate (CS). The basal diet contained per kg DM 500 g of corn silage, 500 g of concentrate, 28 g of ether extract (EE) and 7.5 mg of Cu. The SO × CS interaction was significant (p < 0.05) for ruminal propionate proportion and acetate to propionate ratio. Dietary SO addition increased (p < 0.05) intake and total tract digestibility of EE but did not affect average daily gain (ADG) of bulls. Dietary CS addition did not affect nutrient intake but increased (p < 0.05) ADG and total tract digestibility of DM, organic matter, crude protein and neutral detergent fibre. Ruminal pH was not affected by treatments. Dietary SO addition did not affect ruminal total volatile fatty acids (VFA) concentration, decreased (p < 0.05) acetate proportion and ammonia N and increased (p < 0.05) propionate proportion. Dietary CS addition did not affect ammonia N, increased (p < 0.05) total VFA concentration and acetate proportion and decreased (p < 0.05) propionate proportion. Acetate to propionate ratio decreased (p < 0.05) with SO addition and increased (p < 0.05) with CS addition. Dietary SO addition decreased (p < 0.05) activity of carboxymethyl cellulase, cellobiase and xylanase as well as population of fungi, protozoa, methanogens, Ruminococcus albus and R. flavefaciens but increased (p < 0.05) α-amylase activity and population of Prevotella ruminicola and Ruminobacter amylophilus. Dietary CS addition increased (p < 0.05) activity of cellulolytic enzyme and protease as well as population of total bacteria, fungi, protozoa, methanogens, primary cellulolytic and proteolytic bacteria. Microbial protein synthesis was unchanged with SO addition but increased (p < 0.05) with CS addition. The results indicated that the addition of CS promoted nutrient digestion and ruminal fermentation by stimulating microbial growth and enzyme activity but did not relieve the negative effects of SO addition on ruminal fermentation in dairy bulls.


Subject(s)
Bacteria/metabolism , Cattle/physiology , Copper Sulfate/metabolism , Digestion , Rumen/enzymology , Rumen/microbiology , Soybean Oil/metabolism , Animal Feed/analysis , Animals , Bacterial Proteins/biosynthesis , Copper/administration & dosage , Copper/metabolism , Copper Sulfate/administration & dosage , Dairying , Diet/veterinary , Dietary Supplements/analysis , Fermentation , Gastrointestinal Microbiome/physiology , Male , Nutrients/physiology , Soybean Oil/administration & dosage
2.
J Basic Microbiol ; 59(8): 784-791, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31259434

ABSTRACT

Laccases are multicopper oxidases with high potential for industrial applications. Several basidiomycete fungi are natural producers of this enzyme; however, the optimization of production and selection of inducers for increased productivity coupled with low costs is necessary. Lignocellulosic residues are important lignin sources and potential inducers for laccase production. Pinus taeda, a dominant source of wood-based products, has not been investigated for this purpose yet. The aim of this study was to evaluate the production of laccase by the basidiomycete fungus Ganoderma lucidum in the presence of different inducers in submerged and solid-state fermentation. The results of submerged fermentation in presence of 5 µM CuSO 4 , 2 mM ferulic acid, 0.1 g/L P. taeda sawdust, or 0.05 g/L Kraft lignin indicated that although all the tested inducers promoted increase in laccase activity in specific periods of time, the presence of 2 mM ferulic acid resulted in the highest value of laccase activity (49 U/L). Considering the submerged fermentation, experimental design following the Plackett-Burman method showed that the concentrations of ferulic acid and P. taeda sawdust had a significant influence on the laccase activity. The highest value of 785 U/L of laccase activity on submerged fermentation was obtained on the seventh day of cultivation. Finally, solid-state fermentation cultures in P. taeda using ferulic acid or CuSO 4 as inducers resulted in enzymatic activities of 144.62 and 149.89 U/g, respectively, confirming the potential of this approach for laccase production by G. lucidum.


Subject(s)
Fermentation , Laccase/biosynthesis , Reishi/metabolism , Copper Sulfate/metabolism , Coumaric Acids/metabolism , Culture Media/metabolism , Laccase/metabolism , Lignin/metabolism , Pinus/metabolism , Reishi/enzymology , Time Factors
3.
FEMS Yeast Res ; 18(4)2018 06 01.
Article in English | MEDLINE | ID: mdl-29684123

ABSTRACT

Bimodality in gene expression is thought to provide a high phenotypic heterogeneity that can be favourable for adaptation or unfavourable notably in industrial processes that require stable and homogeneous properties. Whether this property is produced or suppressed in different conditions has been understudied. Here we identified tens of Saccharomyces cerevisiae genomic fragments conferring bimodal yEGFP expression on centromeric plasmid and studied some of these promoters in different DNA contexts, inducing conditions or strain backgrounds. First, we observed that the bimodal behaviour identified on plasmid is generally suppressed at the genomic level. Second, an inducible promoter such as the copper-regulated CUP1 promoter can produce bimodal expression in a time- and dose-dependent fashion. For a given copper sulphate concentration, a constant proportion of the subpopulation is induced and only the induction level of this subpopulation changed with induction duration, while for a same induction time, higher copper sulphate concentrations induced more cells at higher levels. Third, we showed that bimodality conferred by the CUP1 promoter in expression profile is strain background dependent, revealing epistasis in the generation of bimodality. The influence of these parameters on bimodality has to be taken into account when considering transgene expression for industrial microbial productions.


Subject(s)
DNA, Fungal/genetics , Gene Expression Regulation, Fungal , Promoter Regions, Genetic , Saccharomyces cerevisiae/genetics , Artificial Gene Fusion , Copper Sulfate/metabolism , Gene Expression Profiling , Genes, Reporter , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Plasmids , Recombinant Proteins/analysis , Recombinant Proteins/genetics , Transcriptional Activation/drug effects
4.
Part Fibre Toxicol ; 14(1): 31, 2017 08 23.
Article in English | MEDLINE | ID: mdl-28835236

ABSTRACT

BACKGROUND: Copper oxide nanomaterials (CuO NMs) are exploited in a diverse array of products including antimicrobials, inks, cosmetics, textiles and food contact materials. There is therefore a need to assess the toxicity of CuO NMs to the gastrointestinal (GI) tract since exposure could occur via direct oral ingestion, mucocillary clearance (following inhalation) or hand to mouth contact. METHODS: Undifferentiated Caco-2 intestinal cells were exposed to CuO NMs (10 nm) at concentrations ranging from 0.37 to 78.13 µg/cm2 Cu (equivalent to 1.95 to 250 µg/ml) and cell viability assessed 24 h post exposure using the alamar blue assay. The benchmark dose (BMD 20), determined using PROAST software, was identified as 4.44 µg/cm2 for CuO NMs, and 4.25 µg/cm2 for copper sulphate (CuSO4), which informed the selection of concentrations for further studies. The differentiation status of cells and the impact of CuO NMs and CuSO4 on the integrity of the differentiated Caco-2 cell monolayer were assessed by measurement of trans-epithelial electrical resistance (TEER), staining for Zonula occludens-1 (ZO-1) and imaging of cell morphology using scanning electron microscopy (SEM). The impact of CuO NMs and CuSO4 on the viability of differentiated cells was performed via assessment of cell number (DAPI staining), and visualisation of cell morphology (light microscopy). Interleukin-8 (IL-8) production by undifferentiated and differentiated Caco-2 cells following exposure to CuO NMs and CuSO4 was determined using an ELISA. The copper concentration in the cell lysate, apical and basolateral compartments were measured with Inductive Coupled Plasma Optical Emission Spectrometry (ICP-OES) and used to calculate the apparent permeability coefficient (Papp); a measure of barrier permeability to CuO NMs. For all experiments, CuSO4 was used as an ionic control. RESULTS: CuO NMs and CuSO4 caused a concentration dependent decrease in cell viability in undifferentiated cells. CuO NMs and CuSO4 translocated across the differentiated Caco-2 cell monolayer. CuO NM mediated IL-8 production was over 2-fold higher in undifferentiated cells. A reduction in cell viability in differentiated cells was not responsible for the lower level of cytokine production observed. Both CuO NMs and CuSO4 decreased TEER values to a similar extent, and caused tight junction dysfunction (ZO-1 staining), suggesting that barrier integrity was disrupted. CONCLUSIONS: CuO NMs and CuSO4 stimulated IL-8 production by Caco-2 cells, decreased barrier integrity and thereby increased the Papp and translocation of Cu. There was no significant enhancement in potency of the CuO NMs compared to CuSO4. Differentiated Caco-2 cells were identified as a powerful model to assess the impacts of ingested NMs on the GI tract.


Subject(s)
Cell Differentiation/drug effects , Cell Membrane Permeability/drug effects , Copper Sulfate/toxicity , Copper/toxicity , Interleukin-8/biosynthesis , Nanoparticles/toxicity , Caco-2 Cells , Cell Culture Techniques , Cell Survival/drug effects , Copper/chemistry , Copper/metabolism , Copper Sulfate/chemistry , Copper Sulfate/metabolism , Humans , Microscopy, Electron, Scanning , Nanoparticles/chemistry , Nanoparticles/metabolism , Particle Size , Surface Properties
5.
Biometals ; 29(3): 495-513, 2016 06.
Article in English | MEDLINE | ID: mdl-27067443

ABSTRACT

Copper (Cu) is an essential micronutrient required for normal growth and development of plants; however, at elevated concentrations in soil, copper is also generally considered to be one of the most toxic metals to plant cells due to its inhibitory effects against many physiological and biochemical processes. In spite of its potential physiological and economical significance, molecular mechanisms under Cu stress has so far been grossly overlooked in sorghum. To explore the molecular alterations that occur in response to copper stress, the present study was performed in ten-day-old Cu-exposed leaves of sorghum seedlings. The growth characteristics were markedly inhibited, and ionic alterations were prominently observed in the leaves when the seedlings were exposed to different concentrations (0, 100, and 150 µM) of CuSO4. Using two-dimensional gels with silver staining, 643 differentially expressed protein spots (≥1.5-fold) were identified as either significantly increased or reduced in abundance. Of these spots, a total of 24 protein spots (≥1.5-fold) from Cu-exposed sorghum leaves were successfully analyzed by MALDI-TOF-TOF mass spectrometry. Of the 24 differentially expressed proteins from Cu-exposed sorghum leaves, 13 proteins were up-regulated, and 11 proteins were down-regulated. The abundance of most identified protein species, which function in carbohydrate metabolism, stress defense and protein translation, was significantly enhanced, while that of another protein species involved in energy metabolism, photosynthesis and growth and development were severely reduced. The resulting differences in protein expression patterns together with related morpho-physiological processes suggested that these results could help to elucidate plant adaptation to Cu stress and provide insights into the molecular mechanisms of Cu responses in C4 plants.


Subject(s)
Copper Sulfate/pharmacology , Plant Leaves/drug effects , Proteome/drug effects , Sorghum/drug effects , Sorghum/metabolism , Copper Sulfate/chemistry , Copper Sulfate/metabolism , Dose-Response Relationship, Drug , Electrophoresis, Gel, Two-Dimensional , Plant Leaves/chemistry , Plant Leaves/metabolism , Proteome/chemistry , Proteome/metabolism , Sorghum/growth & development , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Stress, Physiological/drug effects
6.
J Sci Food Agric ; 96(9): 3058-62, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26417698

ABSTRACT

BACKGROUND: Copper (Cu) is a key trace mineral involved in a variety of physiological processes, and is commonly used in poultry production. However, regardless of the inclusion level the majority of Cu is excreted with poultry faeces. We hypothesise that in ovo administration will allow for better utilisation of Cu during embryo development than when supplied post-natally with feed to growing chickens. Thus, the objective of this study was to evaluate effects of in ovo administration of NanoCu and copper sulfate (CuSO4 ) on broiler chicken performance. RESULTS: The study showed the positive influences of Cu nanoparticles and CuSO4 on broiler chickens performance. Body weight, at the end of the rearing period (day 42) was significantly higher in NanoCu (2206 g) and CuSO4 (2402 g) groups compared to the control group (2000 g). Both treatment groups had significantly lower feed conversion rate and mortality, and higher percentage of breast and leg muscles in the carcass versus control. CONCLUSION: The in ovo application of Cu colloids may ensure an efficient penetration of Cu into the embryonic tissue with long lasting effects on postnatal growth. The method may provide a successful alternative to using Cu as a feed additive. © 2015 Society of Chemical Industry.


Subject(s)
Copper/administration & dosage , Embryonic Development , Food Quality , Meat/analysis , Metal Nanoparticles/administration & dosage , Muscle Development , Trace Elements/administration & dosage , Absorption, Physiological , Animals , Animals, Inbred Strains , Chick Embryo , Colloids , Cooking , Copper/chemistry , Copper/metabolism , Copper/toxicity , Copper Sulfate/administration & dosage , Copper Sulfate/chemistry , Copper Sulfate/metabolism , Copper Sulfate/toxicity , Denmark , Energy Intake , Environmental Pollution/prevention & control , Injections , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Solubility , Trace Elements/chemistry , Trace Elements/metabolism , Trace Elements/toxicity , Water/analysis , Weight Gain
7.
Rev Argent Microbiol ; 48(2): 166-70, 2016.
Article in Spanish | MEDLINE | ID: mdl-27237424

ABSTRACT

Candida fukuyamaensis RCL-3 yeast has the ability to decrease copper concentration in a culture medium. High copper concentrations change the cell color from white/cream to brown. The effect of color change ceases with the addition of KCN or when cells are grown in a culture medium without sulfate ions. These results could be associated with CuS bioaccumulation in the cell surface. This report revealed that mineralization would be a mechanism used by this yeast for copper bioremediation.


Subject(s)
Candida/metabolism , Copper/metabolism , Biodegradation, Environmental , Biotransformation , Candida/drug effects , Color , Copper Sulfate/metabolism , Crystallization , Culture Media/metabolism , Potassium Cyanide/pharmacology , Sulfates/pharmacology
8.
J Environ Manage ; 164: 10-8, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26342262

ABSTRACT

The hazardous effects of the PAHs should be managed by removal using white rot fungal ligninolytic enzymes. The white rot fungus Peniophora incarnataKUC8836 was stimulated to produce ligninolytic enzymes in a liquid medium by the addition of four substances: 0.5 g L(-1) Tween 80, 70 mg L(-1) CuSO4·5H2O, 10 mg L(-1) MnSO4·H2O, and 0.3 g L(-1) veratryl alcohol. The experiments were carried out in two different media: basal salt and 2% malt extract (ME) liquid medium. Under the experimental conditions, both laccase and manganese-dependent peroxidase (MnP) demonstrated with the highest activities in 2% ME liquid medium following the addition of Tween 80. The biodegradation of anthracene and pyrene was significantly enhanced by the induced ligninolytic enzymes when Tween 80 was added. Tween 80 is a viable co-substrate for P. incarnata, as it enhances the ability of P. incarnata to manage effective biodegradation of PAHs. Most of all, the novel laccase and MnP genes ascertained in this study, showed that the genes were involved in the production of ligninolytic enzymes from P. incarnataKUC8836.


Subject(s)
Basidiomycota/genetics , Basidiomycota/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Anthracenes/metabolism , Benzyl Alcohols/chemistry , Benzyl Alcohols/metabolism , Biodegradation, Environmental , Copper Sulfate/metabolism , Culture Media/chemistry , Culture Media/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Laccase/chemistry , Laccase/metabolism , Lignin/metabolism , Peroxidases/chemistry , Peroxidases/metabolism , Polysorbates , Pyrenes/metabolism
9.
Mol Biol Rep ; 41(1): 113-24, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24190491

ABSTRACT

In the present study, we have cloned a gene encoding JcMT2a protein from Jatropha curcas L., a promising biofuel tree species. Full length sequence of JcMT2a gene was isolated using RACE PCR. Heterologous expression of JcMT2a in Escherichia coli and its purification has shown distinct bands corresponding to the GST and GST-fused JcMT2a protein. Significant tolerance was observed in E. coli cells expressing recombinant GST-JcMT2a for zinc, copper and cadmium metals compared to cells expressing GST alone. JcMT2a also restored Cu and Cd tolerance in the metal sensitive yeast mutants. Quantitative real time PCR showed a significant increase in JcMT2a transcripts with Cu and Cd in the leaf compared to root tissue. Our Scanning electron microscopy and energy dispersive X-ray spectroscopy analysis clearly demonstrates that J. curcas L. could be a potential candidate for phytoremediation to clean heavy metals from the environment, in addition to its non-edible oil seed yields for biodiesel production.


Subject(s)
Jatropha/genetics , Metallothionein/genetics , Plant Proteins/genetics , Amino Acid Sequence , Biodegradation, Environmental , Biofuels , Cadmium Chloride/metabolism , Cadmium Chloride/pharmacology , Cloning, Molecular , Copper Sulfate/metabolism , Copper Sulfate/pharmacology , Environmental Pollutants/metabolism , Environmental Pollutants/pharmacology , Escherichia coli/drug effects , Escherichia coli/physiology , Gene Expression Regulation, Plant , Genetic Complementation Test , Jatropha/metabolism , Metallothionein/biosynthesis , Microbial Viability , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/biosynthesis , Plant Roots/genetics , Plant Roots/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/physiology , Stress, Physiological
10.
Proc Natl Acad Sci U S A ; 108(4): 1621-6, 2011 Jan 25.
Article in English | MEDLINE | ID: mdl-21205886

ABSTRACT

Copper (Cu) is essential for many biological processes, but is toxic when present in excessive amounts. In this study, we provide evidence that Cu plays a crucial role in controlling tuberculosis. A Mycobacterium tuberculosis (Mtb) mutant lacking the outer membrane channel protein Rv1698 accumulated 100-fold more Cu and was more susceptible to Cu toxicity than WT Mtb. Similar phenotypes were observed for a M. smegmatis mutant lacking the homolog Ms3747, demonstrating that these mycobacterial copper transport proteins B (MctB) are essential for Cu resistance and maintenance of low intracellular Cu levels. Guinea pigs responded to infection with Mtb by increasing the Cu concentration in lung lesions. Loss of MctB resulted in a 1,000- and 100-fold reduced bacterial burden in lungs and lymph nodes, respectively, in guinea pigs infected with Mtb. In mice, the persistence defect of the Mtb mctB mutant was exacerbated by the addition of Cu to the diet. These experiments provide evidence that Cu is used by the mammalian host to control Mtb infection and that Cu resistance mechanisms are crucial for Mtb virulence. Importantly, Mtb is much more susceptible to Cu than other bacteria and is killed in vitro by Cu concentrations lower than those found in phagosomes of macrophages. Hence, this study reveals an Achilles heel of Mtb that might be a promising target for tuberculosis chemotherapy.


Subject(s)
Copper/pharmacology , Drug Resistance, Bacterial , Mycobacterium tuberculosis/drug effects , Tuberculosis/microbiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Copper/metabolism , Copper Sulfate/metabolism , Copper Sulfate/pharmacology , Guinea Pigs , Lung/microbiology , Lung/pathology , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Mutation , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/pathogenicity , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/pathogenicity , Spleen/microbiology , Spleen/pathology , Virulence/genetics
11.
Arch Anim Nutr ; 68(5): 370-84, 2014.
Article in English | MEDLINE | ID: mdl-25179553

ABSTRACT

This study aimed to compare the effects of organic (proteinate) and inorganic (sulphate) copper (Cu) and zinc (Zn) supplements, in presence or absence of a mannan oligosaccharide (MOS) supplement, on mineral solubility and digestibility in pigs. Twenty-eight barrows (25 ± 4 kg) assigned randomly to four treatment groups were fed a corn-wheat-soya bean meal diet with 10 mg/kg of Cu and 100 mg/kg of Zn supplied as organic or inorganic supplement, and supplemented or not with 0.1% MOS. After an adaptation period, total faeces and urine were collected for a period of 6-7 days. Pigs were then euthanatised and digesta from ileum and caecum were collected. Apparent digestibility was calculated in ileum and caecum using titanium dioxide. The organic mineral supplement improved total (faecal) digestibility and retained/ingested ratio of Cu (p < 0.05) while reducing apparent digestibility of Zn in the ileum (p < 0.05) without effect on total digestibility of Zn. Solubilities of Cu and Zn in liquid fraction of ileum and caecum were not affected by mineral sources. Although MOS supplement increased Cu solubility in the ileum (p < 0.05), it had no effect on digestibility of Zn and Cu in ileum, caecum and faeces, retained/ingested ratio of Zn and Cu, or pH and volatile fatty acid concentration in ileal and caecal digesta. In conclusion, organic mineral supplement improved total digestibility and retained/ingested ratio of Cu in pigs but this cannot be attributed to its solubility in ileal and caecal digesta. The MOS supplement did not interfere with digestibility or dietary utilisation of Zn and Cu in pigs fed above the Zn and Cu requirements.


Subject(s)
Copper Sulfate/metabolism , Dietary Supplements , Mannans/administration & dosage , Oligosaccharides/administration & dosage , Swine/physiology , Zinc Compounds/metabolism , Animal Nutritional Physiological Phenomena , Animals , Animals, Newborn , Copper Sulfate/administration & dosage , Copper Sulfate/chemistry , Digestion , Feces/chemistry , Male , Swine/growth & development , Weight Gain , Zinc Compounds/administration & dosage , Zinc Compounds/chemistry
12.
Article in English | MEDLINE | ID: mdl-24171418

ABSTRACT

Aquaculture of Pangasius hypophthalmus (striped catfish) in Vietnam reached 1.1 million tonnes in 2011 and catfish fillets are exported worldwide. The intensive cultures of catfish mainly in earth ponds have made it necessary to apply CuSO4 and other chemicals to control external parasites and other pathogens. However, accumulation of Cu in aquaculture ponds may pose a hazard to growth of fish or to the aquatic environment. The aim of this study was to determine accumulation of Cu in sediment, water and fish in a catfish pond with a history of repeated treatment with CuSO4 in the Mekong Delta, Vietnam. Copper concentrations in pond sediment were in the interval 21.3-45.7 mg kg(-1) dw and did not exceed the Vietnamese values for soil to be used for agricultural production (70 mg kg(-1) dw.). During three samplings the total mean concentration of Cu in pond water (4 µg L(-1)) did not exceed the LC50-value (70 µg L(-1)) for catfish and the mean dissolved concentration of Cu (0.986 µg L(-1)) did not seem to constitute a risk for the stability of the aquatic ecosystem. No significant variation in Cu concentrations between sampling sites in the pond and depth of sediment profile were determined. The accumulation of Cu in catfish was highest in the liver compared to the skin, gills and muscle tissue. With the current practice of removing pond sludge three to four times during a production cycle little if any Cu seems to accumulate in catfish ponds despite repeated anti-parasite treatments with CuSO4. Further studies are needed to assess the eco-toxicity and impact on agricultural production when pond sediment is discharged into aquatic recipients and used as soil fertilizer.


Subject(s)
Aquaculture , Catfishes , Copper/analysis , Copper/metabolism , Water Pollutants, Chemical/metabolism , Animals , Copper Sulfate/metabolism , Geologic Sediments/analysis , Vietnam , Water Pollutants, Chemical/analysis
13.
Waste Manag Res ; 32(8): 726-32, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25092381

ABSTRACT

This study discussed the effects of different concentrations (0.625, 1.875 and 3.125 mM) of copper (Cu) in the form of CuSO4 on biomethane production and on the dynamics of microbial communities during the mesophilic anaerobic digestion (AD) of cow manure. The effects on biomethane production were found to depend on CuSO4 concentrations. After 50 days of AD, treatment A3 (3.125 mM) had lower cumulative biomethane production than the no-Cu control. The maximum value of cumulative biomethane production was detected under treatment A2 (1.875 mM). These results suggested that the stimulation or inhibition to biomethane production might be related to the concentration and chemical forms of Cu. Moreover, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to discuss the dynamics of microbial communities. Results revealed that different concentrations of CuSO4 had effects on the richness and diversity of bacterial and archaeal communities. The predominance of Bacteroidetes bacterium (GU339485.1) was verified through the sequencing of the dominant DGGE bands. Furthermore, Bacteroidetes bacterium could be detected during the whole AD process and is adaptable to a certain concentration range of CuSO4.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Biofuels/analysis , Copper Sulfate/metabolism , Methane/biosynthesis , Anaerobiosis/drug effects , Animals , Archaea/drug effects , Archaea/genetics , Bacteria/drug effects , Bacteria/genetics , Bioreactors/microbiology , Cattle , Denaturing Gradient Gel Electrophoresis , Dose-Response Relationship, Drug , Fermentation , Manure/microbiology , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , RNA, Archaeal/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
14.
Poult Sci ; 103(11): 104206, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39214055

ABSTRACT

In poultry diets, copper is an essential nutrient that is critical for various physiological functions. Although copper sulfate is commonly used due to its cost-effectiveness, organic copper sources are gaining popularity because of their superior production outcomes and environmental benefits. Nevertheless, understanding the distinct bioaccessibility of inorganic and organic copper in diverse dietary setting remains limited. This study investigated the bioaccessibility of copper sulfate, copper amino acid chelate, and copper proteinate in the intestine via in vitro digestion and in situ dialysis. The results showed significant differences in the molecular size distribution of compounds formed by different copper salts within the intestinal environment, thereby leading to varying bioaccessibility. Copper sulfate has a bioaccessibility of 47 % ± 4%, which is significantly lower than copper amino acid chelate and copper proteinate (63% ± 5%, and 60% ± 4%, respectively) in purified diet systems. Similarly, in whey protein systems, sulfate records 54% ± 10% bioaccessibility compared to 78% ± 9% and 76% ± 5% for copper amino acid chelate and copper proteinate. Coexisting feed ingredients have a significant impact on copper bioaccessibility. Copper sulfate forms precipitates, reducing its bioaccessibility to 34% ± 1% in sodium nitrate solution. The addition of digestive enzyme increases the bioaccessibility of copper sulfate to 81% ± 2% by providing organic ligands. Digestive enzyme also enhanced the bioaccessibility of copper proteinate from 36% ± 4% to 81% ± 4% by degrading its ligands. However, feed ingredients may decrease copper bioaccessibility by forming macromolecular complexes with copper, as all the organic ligands can competitively bind with copper in the intestine. These findings emphasize the importance of considering copper salt types and diet composition in animal nutrition practices.


Subject(s)
Animal Feed , Biological Availability , Copper , Diet , Digestion , Animals , Animal Feed/analysis , Copper/metabolism , Diet/veterinary , Copper Sulfate/metabolism , Copper Sulfate/chemistry , Chickens , Animal Nutritional Physiological Phenomena
15.
Biol Trace Elem Res ; 202(4): 1603-1611, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37436649

ABSTRACT

Copper (Cu) is an essential metal required for many physiological processes and biological reactions. Liver is the main organ of metabolism of Cu and is also the site where synthesis of some metalloproteins. The purpose of this study is to explore the effects of Cu deficiency on the liver and to evaluate the changes in liver oxidative stress levels to reveal its possible impact mechanisms. Mice were feed to a nutritional Cu-deficiency diet from weaning and injected with copper sulfate (CuSO4) intraperitoneally to correct Cu deficiency. Cu deficiency resulted in reduced liver index, liver histological alteration, and oxidative stress; decreased the contents of Cu and ALB; elevated ALT and AST concentrations in serum together with decreased mRNA and protein expressions of Nrf2 pathway related molecules (Nrf2, HO-1, NQO1); and increased mRNA and protein expressions of Keap1. However, the supplement of copper sulfate (CuSO4) significantly ameliorated the changes mentioned above. Our results indicate that Cu deficiency can cause hepatic damage in mice is associated with the activation of oxidative stress and inhibition of Nrf2 pathway.


Subject(s)
Copper Sulfate , Copper , Animals , Mice , Copper/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , Copper Sulfate/pharmacology , Copper Sulfate/metabolism , Signal Transduction , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Liver/metabolism , RNA, Messenger/metabolism
16.
Mikrobiol Z ; 75(5): 18-26, 2013.
Article in Russian | MEDLINE | ID: mdl-24479309

ABSTRACT

The effect of yeast autolysate and microelements on synthesis of surface-active substances (SAS, biosurfactants) was investigated under cultivation of Acinetobacter calcoaceticus IMV B-7241 on various carbon substrates (n-hexadecane, ethanol, glycerol). The authors have shown a possibility to substitute the yeast autolysate and microelement mixture in the composition of ethanol- and n-hexadecane-containing media by copper sulfate (0.16 micromol/l) and iron sulfate (3.6 micromol/l), and in the medium with glycerol by 0.21 mmol/l of KCl, 38 micromol/l of zinc sulfate and 0.16 micromol/l of copper sulfate. Under such conditions of cultivation of the strain IMV B-7241 the SAS concentration exceeded that on the initial media, which contained the yeast autolysate and microelements, 1.2-1.6 times. The authors have also established the activating effect of low (0.01 mM) concentrations of Fe2+ on activity of the enzymes of biosynthesis of surface-active amino- (NADP-dependent glutamate dehydrogenase) and glycolipids (phosphoenolpyruvate(PhEP)-synthetase, PhEP-carboxykinase), as well as of anaplerotic reaction(PhEP-carboxylase). A necessity to introduce zinc cations into glycerol-containing medium is determined by their stimulating effect on activity of 4-dinitroso-N,N-dimethylaniline-dependent alcohol dehydrogenase--one of the enzymes of this substrate catabolism in A. calcoaceticus IMV B-7241.


Subject(s)
Acinetobacter calcoaceticus/metabolism , Alkanes/metabolism , Bacterial Proteins/metabolism , Complex Mixtures/pharmacology , Ethanol/metabolism , Glycerol/metabolism , Surface-Active Agents/metabolism , Alcohol Dehydrogenase/metabolism , Complex Mixtures/chemistry , Complex Mixtures/metabolism , Copper Sulfate/metabolism , Copper Sulfate/pharmacology , Ferrous Compounds/metabolism , Ferrous Compounds/pharmacology , Glutamate Dehydrogenase (NADP+)/metabolism , Glycolipids/biosynthesis , Phosphoenolpyruvate Carboxylase/metabolism , Phosphotransferases (Paired Acceptors)/metabolism , Yeasts/chemistry , Zinc Sulfate/metabolism , Zinc Sulfate/pharmacology
17.
Biol Trace Elem Res ; 201(12): 5786-5793, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36892690

ABSTRACT

The experiment was designed to study the effect of supplemental sources and concentrations of copper on the performance and development and mineralization of tibia bones in broiler chickens. A 42-day feeding experiment was conducted utilising three copper sources, including copper sulphate (CuS), copper chloride (CuCl), and copper propionate (CuP), each with four different concentrations, i.e. 8, 100, 150, and 200 mg/kg. The body weight gain with 200 mg Cu/kg food was noticeably higher during the first 4-6 weeks of age. Due to the interaction between Cu sources and levels, there was no significant change in the body weight gained. The feed intake during various growing phases did differ significantly neither the main effect nor the interaction between different copper sources and levels. A CuP-supplemented diet (200 mg/kg food) considerably (P ≤ 0.05) improved the feed conversion ratio between 4-6 and 0-6 weeks. At the end of the experiment, a total of 72 tibia bones, i.e. six for each treatment were collected. A metabolic trial was conducted to look into mineral retention in broiler chickens on the final 3 days of the trial (40-42 days). Increased tibia bone zinc (Zn) levels were seen with the addition of 8 mg Cu/kg of Cu chloride, 100 mg Cu/kg of Cu propionate, 8 mg Cu/kg of Cu sulphate, and 8 mg/kg of Cu propionate to the diet. At higher levels of Cu (150 and 200 mg/kg diet), there was a significantly (P ≤ 0.01) reduced tibia Zn content. Cu sulphate treatment group had higher (P ≤ 0.01) tibia Cu content (8 mg Cu/kg diet). Cu sulphate supplemented diet had a greater excreta Zn content (P ≤ 0.01) than Cu chloride supplemented diet, and Cu propionate supplemented diet had the lowest excreta Zn content. Excreta with a higher Fe concentration were found in diets supplemented with copper sulphate and copper chloride (P ≤ 0.05) than in diets supplied with copper propionate. Thus, it may be concluded that feeding dietary Cu concentrations up to 200 mg Cu/kg diet, regardless of the different sources, had no negative effects on bone morphometry and mineralization parameters with the exception of a decrease in the tibia's zinc content.


Subject(s)
Chickens , Copper , Animals , Copper/pharmacology , Chickens/metabolism , Copper Sulfate/pharmacology , Copper Sulfate/metabolism , Chlorides/metabolism , Propionates , Minerals/metabolism , Zinc/pharmacology , Dietary Supplements , Diet/veterinary , Body Weight , Sulfates/metabolism , Animal Feed/analysis
18.
Naunyn Schmiedebergs Arch Pharmacol ; 396(9): 1931-1942, 2023 09.
Article in English | MEDLINE | ID: mdl-36864348

ABSTRACT

This study aimed to demonstrate the potential benefits of donepezil (DPZ) and vitamin D (Vit D) in combination to counteract the neurodegenerative disorders induced by CuSO4 intake in experimental rats. Neurodegeneration (Alzheimer-like) was induced in twenty-four male Wistar albino rats by CuSO4 supplement to drinking water (10 mg/L) for 14 weeks. AD rats were divided into four groups: untreated AD group (Cu-AD) and three treated AD groups; orally treated for 4 weeks with either DPZ (10 mg/kg/day), Vit D (500 IU/kg/day), or DPZ + Vit D starting from the 10th week of CuSO4 intake. Another six rats were used as normal control (NC) group. The hippocampal tissue content of ß-amyloid precursor protein cleaving enzyme 1 (BACE1), phosphorylated Tau (p-tau), clusterin (CLU), tumor necrosis factor-α (TNF-α), caspase-9 (CAS-9), Bax, and Bcl-2 and the cortical content of acetylcholine (Ach), acetylcholinesterase (AChE), total antioxidant capacity (TAC), and malondialdehyde (MDA) were measured. Cognitive function tests (Y-maze) and histopathology studies (hematoxylin and eosin and Congo red stains) and immunohistochemistry for neurofilament. Vit D supplementation alleviated CuSO4-induced memory deficits including significant reduction hippocampal BACE1, p-tau, CLU, CAS-9, Bax, and TNF-α and cortical AChE and MDA. Vit D remarkably increased cortical Ach, TAC, and hippocampal Bcl-2. It also improved neurobehavioral and histological abnormalities. The effects attained by Vit D treatment were better than those attained by DPZ. Furthermore, Vit D boosted the therapeutic potential of DPZ in almost all AD associated behavioral and pathological changes. Vit D is suggested as a potential therapy to retard neurodegeneration.


Subject(s)
Alzheimer Disease , Brain Injuries , Cognitive Dysfunction , Rats , Male , Animals , Donepezil/adverse effects , Copper , Copper Sulfate/adverse effects , Copper Sulfate/metabolism , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/pharmacology , Amyloid Precursor Protein Secretases/therapeutic use , Vitamin D/pharmacology , Vitamin D/therapeutic use , Acetylcholinesterase/metabolism , Sulfates/metabolism , Sulfates/pharmacology , Sulfates/therapeutic use , bcl-2-Associated X Protein/metabolism , Tumor Necrosis Factor-alpha/metabolism , Rats, Wistar , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/pharmacology , Aspartic Acid Endopeptidases/therapeutic use , Brain Injuries/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Vitamins/pharmacology , Brain , Cognitive Dysfunction/chemically induced
19.
Arch Environ Contam Toxicol ; 62(3): 403-10, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21968539

ABSTRACT

The formulation of a specific algaecide can greatly influence the bioavailability, uptake, and consequent control of the targeted alga. In this research, three copper-based algaecide formulations were evaluated in terms of copper sorption to a specific problematic alga and amount of copper required to achieve control. The objectives of this study were (1) to compare the masses of copper required to achieve control of Lyngbya wollei using the algaecide formulations Algimycin-PWF, Clearigate, and copper sulfate pentahydrate in laboratory toxicity experiments; (2) to relate the responses of L. wollei to the masses of copper adsorbed and absorbed (i.e., dose) as well as the concentrations of copper in the exposure water; and (3) to discern the relation between the mass of copper required to achieve control of a certain mass of L. wollei among different algaecide formulations. The critical burden of copper (i.e., threshold algaecide concentration that must be absorbed or adsorbed to achieve control) for L. wollei averaged 3.3 and 1.9 mg Cu/g algae for Algimycin-PWF and Clearigate, respectively, in experiments with a series of aqueous copper concentrations, water volumes, and masses of algae. With reasonable exposures in these experiments, control was not achieved with single applications of copper sulfate despite copper sorption >13 mg Cu/g algae in one experiment. Factors governing the critical burden of copper required for control of problematic cyanobacteria include algaecide formulation and concentration, volume of water, and mass of algae. By measuring the critical burden of copper from an algaecide formulation necessary to achieve control of the targeted algae, selection of an effective product and treatment rate can be calculated at a given field site.


Subject(s)
Copper Sulfate/toxicity , Copper/toxicity , Cyanobacteria/drug effects , Disinfectants/toxicity , Ethanolamines/toxicity , Organometallic Compounds/toxicity , Copper/metabolism , Copper Sulfate/metabolism , Cyanobacteria/metabolism , Disinfectants/metabolism , Ethanolamines/metabolism , Eutrophication/drug effects , Harmful Algal Bloom , Organometallic Compounds/metabolism
20.
Article in English | MEDLINE | ID: mdl-35533964

ABSTRACT

ß-Carotene, as a kind of potent antioxidant compounds, has gained extensive attention. Blakeslea trispora, a filiform aerobic fungus, has been proposed as a natural source of ß-carotene for commercial exploitation. However, it has not yet been investigated whether ß-carotene extracted from Blakeslea trispora can attenuate oxidative stress, inflammatory, liver injury and immune damage of zebrafish (Danio rerio) exposed to copper sulfate (CuSO4). In this study, we evaluated the effects of ß-carotene on migration of GFP-labeled neutrophils, histological changes of liver, markers of oxidative, inflammatory cytokines and transaminase analysis, as well as the expression and activities of apoptosis, immune-related certain genes in zebrafish treated with different concentrations of ß-carotene (0, 10, 20, 40 µg/mL) after exposure to CuSO4. The results indicated that ß-carotene reduced migration of neutrophils and released liver damage. What's more, ß-carotene was found to reduce the index levels of oxidative stress response (HMOX-1, reactive oxygen species (ROS), NADPH, MDA), inflammatory factors (interleukine-1ß (IL-1ß), interleukine-6 (IL-6), interleukine-8 (IL-8), tumor necrosis factor-α (TNF-α)), liver function protein (AST, ALT) which increased by CuSO4. ß-Carotene also promoted the activities of SOD, GSH-Px, ACP, AKP and LZM and increased the protein of immune-related factors, IgM and IFN-γ after exposure to CuSO4. Thus, our results demonstrate that ß-carotene has an antioxidant, anti-inflammatory and hepatoprotective activity and participation in immunoregulation.


Subject(s)
Zebrafish , beta Carotene , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Copper Sulfate/metabolism , Liver/metabolism , Mucorales , Oxidative Stress , Zebrafish/metabolism , beta Carotene/metabolism , beta Carotene/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL