Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biotechnol Bioeng ; 117(9): 2897-2910, 2020 09.
Article in English | MEDLINE | ID: mdl-32510167

ABSTRACT

Core binding factor ß (Cbfß) is a non-DNA binding cofactor of Runx2 that potentiates DNA binding. Previously, it has been reported that Cbfß plays an essential role in osteogenic differentiation and skeletal development by inhibition adipogenesis. Here, we delivered the recombinant Cbfß protein into human mesenchymal stem cells (MSCs) and triggered osteogenic lineage commitment. The efficient delivery of Cbfß was achieved by fusing 30Kc19 protein, which is a cell-penetrating protein derived from the silkworm. After the production of the recombinant Cbfß-30Kc19 protein in the Escherichia coli expression system, and confirmation of its intracellular delivery, MSCs were treated with the Cbfß-30Kc19 once or twice up to 300 µg/ml. By investigating the upregulation of osteoblast-specific genes and phenotypical changes, such as calcium mineralization, we demonstrated that Cbfß-30Kc19 efficiently induced osteogenic differentiation in MSCs. At the same time, Cbfß-30Kc19 suppressed adipocyte formation and downregulated the expression of adipocyte-specific genes. Our results demonstrate that the intracellularly delivered Cbfß-30Kc19 enhances osteogenesis in MSCs, whereas it suppresses adipogenesis by altering the transcriptional regulatory network involved in osteoblast-adipocyte lineage commitment. Cbfß-30Kc19 holds great potential for the treatment of bone-related diseases, such as osteoporosis, by allowing transcriptional regulation in MSCs, and overcoming the limitations of current therapies.


Subject(s)
Cell Differentiation/drug effects , Core Binding Factor beta Subunit , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Recombinant Fusion Proteins , Adipocytes/drug effects , Cell-Penetrating Peptides/genetics , Cells, Cultured , Core Binding Factor beta Subunit/genetics , Core Binding Factor beta Subunit/pharmacokinetics , Core Binding Factor beta Subunit/pharmacology , Gene Expression Regulation/drug effects , Humans , Intracellular Space/metabolism , Osteoblasts/drug effects , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacokinetics , Recombinant Fusion Proteins/pharmacology
2.
Cancer Res ; 83(8): 1280-1298, 2023 04 14.
Article in English | MEDLINE | ID: mdl-36799863

ABSTRACT

Understanding functional interactions between cancer mutations is an attractive strategy for discovering unappreciated cancer pathways and developing new combination therapies to improve personalized treatment. However, distinguishing driver gene pairs from passenger pairs remains challenging. Here, we designed an integrated omics approach to identify driver gene pairs by leveraging genetic interaction analyses of top mutated breast cancer genes and the proteomics interactome data of their encoded proteins. This approach identified that PIK3CA oncogenic gain-of-function (GOF) and CBFB loss-of-function (LOF) mutations cooperate to promote breast tumor progression in both mice and humans. The transcription factor CBFB localized to mitochondria and moonlighted in translating the mitochondrial genome. Mechanistically, CBFB enhanced the binding of mitochondrial mRNAs to TUFM, a mitochondrial translation elongation factor. Independent of mutant PI3K, mitochondrial translation defects caused by CBFB LOF led to multiple metabolic reprogramming events, including defective oxidative phosphorylation, the Warburg effect, and autophagy/mitophagy addiction. Furthermore, autophagy and PI3K inhibitors synergistically killed breast cancer cells and impaired the growth of breast tumors, including patient-derived xenografts carrying CBFB LOF and PIK3CA GOF mutations. Thus, our study offers mechanistic insights into the functional interaction between mutant PI3K and mitochondrial translation dysregulation in breast cancer progression and provides a strong preclinical rationale for combining autophagy and PI3K inhibitors in precision medicine for breast cancer. SIGNIFICANCE: CBFB-regulated mitochondrial translation is a regulatory step in breast cancer metabolism and synergizes with mutant PI3K in breast cancer progression.


Subject(s)
Breast Neoplasms , Class I Phosphatidylinositol 3-Kinases , Core Binding Factor beta Subunit , Animals , Female , Humans , Mice , Breast Neoplasms/pathology , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Core Binding Factor beta Subunit/genetics , Core Binding Factor beta Subunit/pharmacology , Mutation , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Signal Transduction/genetics
3.
Vet Comp Oncol ; 18(1): 52-63, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31381810

ABSTRACT

Osteosarcoma remains the most common primary bone tumour in dogs with half of affected dogs unable to survive 1 year beyond diagnosis. New therapeutic options are needed to improve outcomes for this disease. Recent investigations into potential therapeutic targets have focused on cell surface molecules with little clear therapeutic benefit. Transcription factors and protein interactions represent underdeveloped areas of therapeutic drug development. We have utilized allosteric inhibitors of the core binding factor transcriptional complex, comprised of core binding factor beta (CBFß) and RUNX2, in four canine osteosarcoma cell lines Active inhibitor compounds demonstrate anti-tumour activities with concentrations demonstrated to be achievable in vivo while an inactive, structural analogue has no activity. We show that CBFß inhibitors are capable of inducing apoptosis, inhibiting clonogenic cell growth, altering cell cycle progression and impeding migration and invasion in a cell line-dependent manner. These effects coincide with a reduced interaction between RUNX2 and CBFß and alterations in expression of RUNX2 target genes. We also show that addition of CBFß inhibitors to the commonly used cytotoxic chemotherapeutic drugs doxorubicin and carboplatin leads to additive and/or synergistic anti-proliferative effects in canine osteosarcoma cell lines. Taken together, we have identified the interaction between components of the core binding factor transcriptional complex, RUNX2 and CBFß, as a potential novel therapeutic target in canine osteosarcoma and provide justification for further investigations into the anti-tumour activities we describe here.


Subject(s)
Bone Neoplasms/veterinary , Core Binding Factor Alpha 1 Subunit/pharmacology , Core Binding Factor beta Subunit/pharmacology , Dog Diseases/drug therapy , Osteosarcoma/drug therapy , Osteosarcoma/veterinary , Animals , Antineoplastic Agents/pharmacology , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Dog Diseases/pathology , Dogs , Drug Therapy, Combination/veterinary , Gene Expression/drug effects , Osteosarcoma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL