Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Acta Oncol ; 57(9): 1240-1249, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29698060

ABSTRACT

PURPOSE: Conventional techniques (3D-CRT) for craniospinal irradiation (CSI) are still widely used. Modern techniques (IMRT, VMAT, TomoTherapy®, proton pencil beam scanning [PBS]) are applied in a limited number of centers. For a 14-year-old patient, we aimed to compare dose distributions of five CSI techniques applied across Europe and generated according to the participating institute protocols, therefore representing daily practice. MATERIAL AND METHODS: A multicenter (n = 15) dosimetric analysis of five different techniques for CSI (3D-CRT, IMRT, VMAT, TomoTherapy®, PBS; 3 centers per technique) was performed using the same patient data, set of delineations and dose prescription (36.0/1.8 Gy). Different treatment plans were optimized based on the same planning target volume margin. All participating institutes returned their best treatment plan applicable in clinic. RESULTS: The modern radiotherapy techniques investigated resulted in superior conformity/homogeneity-indices (CI/HI), particularly in the spinal part of the target (CI: 3D-CRT:0.3 vs. modern:0.6; HI: 3D-CRT:0.2 vs. modern:0.1), and demonstrated a decreased dose to the thyroid, heart, esophagus and pancreas. Dose reductions of >10.0 Gy were observed with PBS compared to modern photon techniques for parotid glands, thyroid and pancreas. Following this technique, a wide range in dosimetry among centers using the same technique was observed (e.g., thyroid mean dose: VMAT: 5.6-24.6 Gy; PBS: 0.3-10.1 Gy). CONCLUSIONS: The investigated modern radiotherapy techniques demonstrate superior dosimetric results compared to 3D-CRT. The lowest mean dose for organs at risk is obtained with proton therapy. However, for a large number of organs ranges in mean doses were wide and overlapping between techniques making it difficult to recommend one radiotherapy technique over another.


Subject(s)
Craniospinal Irradiation/methods , Practice Patterns, Physicians'/statistics & numerical data , Radiation Oncology , Adolescent , Advisory Committees/organization & administration , Craniospinal Irradiation/statistics & numerical data , Europe/epidemiology , Humans , Male , Organs at Risk/radiation effects , Radiation Oncology/methods , Radiation Oncology/organization & administration , Radiometry/methods , Radiometry/standards , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/standards
2.
Int J Radiat Oncol Biol Phys ; 110(5): 1496-1504, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33677051

ABSTRACT

PURPOSE: Young patients, including pediatric, adolescent, and young adult (YA) patients, are most likely to benefit from the reduced integral dose of proton beam radiation therapy (PBT) resulting in fewer late toxicities and secondary malignancies. This study sought to examine insurance approval and appeal outcomes for PBT among YA patients compared with pediatric patients at a large-volume proton therapy center. METHODS AND MATERIALS: We performed a cross-sectional cohort study of 284 consecutive patients aged 0 to 39 years for whom PBT was recommended in 2018 through 2019. Pediatric patients were defined as aged 0 to 18 years and YA patients 19 to 39 years. Rates of approval, denials, and decision timelines were calculated. Tumor type and location were also evaluated as factors that may influence insurance decisions. RESULTS: A total of 207 patients (73%) were approved for PBT at initial request. YA patients (n = 68/143, 48%) were significantly less likely to receive initial approval compared with pediatric patients (n = 139/141; 99%) (P < .001). Even after 47% (n = 35 of 75) of the PBT denials for YA patients were overturned, YAs had a significantly lower final PBT approval (72% vs pediatric 99%; P < .001). The median wait time was also significantly longer for YA patients (median, 8 days; interquartile range [IQR] 3-17 vs median, 2 days; IQR, 0-6; P < .001). In those patients requiring an appeal, the median wait time was 16 days (IQR, 9-25). CONCLUSION: Given the decades of survivorship of YA patients, PBT is an important tool to reduce late toxicities and secondary malignancies. Compared with pediatric patients, YA patients are significantly less likely to receive insurance approval for PBT. Insurance denials and subsequent appeal requests result in significant delays for YA patients. Insurers need to re-examine their policies to include expedited decisions and appeals and removal of arbitrary age cutoffs so that YA patients can gain easier access to PBT. Furthermore, consensus guidelines encouraging greater PBT access for YA may be warranted from both medical societies and/or AYA experts.


Subject(s)
Age Factors , Health Services Accessibility/statistics & numerical data , Insurance Coverage/statistics & numerical data , Insurance, Health, Reimbursement , Insurance, Health/statistics & numerical data , Proton Therapy/statistics & numerical data , Adolescent , Adult , Brain Neoplasms/radiotherapy , Child , Child, Preschool , Craniospinal Irradiation/statistics & numerical data , Cross-Sectional Studies , Head and Neck Neoplasms/radiotherapy , Humans , Infant , Infant, Newborn , Insurance Carriers , Insurance, Health, Reimbursement/statistics & numerical data , Neoplasms, Radiation-Induced/prevention & control , Proton Therapy/adverse effects , Spinal Neoplasms/radiotherapy , Time Factors , Young Adult
3.
Lancet Child Adolesc Health ; 4(12): 865-874, 2020 12.
Article in English | MEDLINE | ID: mdl-33222802

ABSTRACT

BACKGROUND: Disease relapse occurs in around 30% of children with medulloblastoma, and is almost universally fatal. We aimed to establish whether the clinical and molecular characteristics of the disease at diagnosis are associated with the nature of relapse and subsequent disease course, and whether these associations could inform clinical management. METHODS: In this multicentre cohort study we comprehensively surveyed the clinical features of medulloblastoma relapse (time to relapse, pattern of relapse, time from relapse to death, and overall outcome) in centrally reviewed patients who relapsed following standard upfront therapies, from 16 UK Children's Cancer and Leukaemia Group institutions and four collaborating centres. We compared these relapse-associated features with clinical and molecular features at diagnosis, including established and recently described molecular features, prognostic factors, and treatment at diagnosis and relapse. FINDINGS: 247 patients (175 [71%] boys and 72 [29%] girls) with medulloblastoma relapse (median year of diagnosis 2000 [IQR 1995-2006]) were included in this study. 17 patients were later excluded from further analyses because they did not meet the age and treatment criteria for inclusion. Patients who received upfront craniospinal irradiation (irradiated group; 178 [72%] patients) had a more prolonged time to relapse compared with patients who did not receive upfront craniospinal irradiation (non-irradiated group; 52 [21%] patients; p<0·0001). In the non-irradiated group, craniospinal irradiation at relapse (hazard ratio [HR] 0·27, 95% CI 0·11-0·68) and desmoplastic/nodular histology (0·23, 0·07-0·77) were associated with prolonged time to death after relapse, MYC amplification was associated with a reduced overall survival (23·52, 4·85-114·05), and re-resection at relapse was associated with longer overall survival (0·17, 0·05-0·57). In the irradiated group, patients with MBGroup3 tumours relapsed significantly more quickly than did patients with MBGroup4 tumours (median 1·34 [0·99-1·89] years vs 2·04 [1·39-3·42 years; p=0·0043). Distant disease was prevalent in patients with MBGroup3 (23 [92%] of 25 patients) and MBGroup4 (56 [90%] of 62 patients) tumour relapses. Patients with distantly-relapsed MBGroup3 and MBGroup4 displayed both nodular and diffuse patterns of disease whereas isolated nodular relapses were rare in distantly-relapsed MBSHH (1 [8%] of 12 distantly-relapsed MBSHH were nodular alone compared with 26 [34%] of 77 distantly-relapsed MBGroup3 and MBGroup4). In MBGroup3 and MBGroup4, nodular disease was associated with a prolonged survival after relapse (HR 0·42, 0·21-0·81). Investigation of second-generation MBGroup3 and MBGroup4 molecular subtypes refined our understanding of heterogeneous relapse characteristics. Subtype VIII had prolonged time to relapse and subtype II had a rapid time from relapse to death. Subtypes II, III, and VIII developed a significantly higher incidence of distant disease at relapse whereas subtypes V and VII did not (equivalent rates to diagnosis). INTERPRETATION: This study suggests that the nature and outcome of medulloblastoma relapse are biology and therapy-dependent, providing translational opportunities for improved disease management through biology-directed disease surveillance, post-relapse prognostication, and risk-stratified selection of second-line treatment strategies. FUNDING: Cancer Research UK, Action Medical Research, The Tom Grahame Trust, The JGW Patterson Foundation, Star for Harris, The Institute of Child Health - Newcastle University - Institute of Child Health High-Risk Childhood Brain Tumour Network (co-funded by The Brain Tumour Charity, Great Ormond Street Children's Charity, and Children with Cancer UK).


Subject(s)
Cerebellar Neoplasms/therapy , Medulloblastoma/therapy , Neoplasm Recurrence, Local/therapy , Adolescent , Case-Control Studies , Cerebellar Neoplasms/classification , Cerebellar Neoplasms/mortality , Cerebellar Neoplasms/pathology , Child , Child, Preschool , Craniospinal Irradiation/statistics & numerical data , Disease-Free Survival , Female , Humans , Infant , Male , Medulloblastoma/classification , Medulloblastoma/mortality , Medulloblastoma/pathology , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/mortality , Neoplasm Recurrence, Local/pathology , Retrospective Studies , Time Factors
4.
Int J Radiat Oncol Biol Phys ; 105(5): 1034-1042, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31472183

ABSTRACT

PURPOSE: Brainstem necrosis is a rare, but dreaded complication of radiation therapy; however, data on the incidence of brainstem injury for tumors involving the posterior fossa in photon-treated patient cohorts are still needed. METHODS AND MATERIALS: Clinical characteristics and dosimetric parameters were recorded for 107 pediatric patients who received photon radiation for posterior fossa tumors without brainstem involvement from 2000 to 2016. Patients were excluded if they received a prescription dose <50.4 Gy, a brainstem maximum dose <50.4 Gy, or had fewer than 2 magnetic resonance imaging scans within 18 months after radiation. Post-radiation therapy magnetic resonance imaging findings were recorded, and brainstem toxicity was graded using National Cancer Institute Common Terminology Criteria for Adverse Events, version 5. RESULTS: The most common histologies were medulloblastoma (61.7%) and ependymoma (15.9%), and median age at diagnosis was 8.3 years (range, 0.8-20.7). Sixty-seven patients (62.6%) received craniospinal irradiation (median, 23.4 Gy; range, 18.0-39.6) as a component of their radiation therapy, and 39.3% and 40.2% of patients received an additional involved field or whole posterior fossa boost, respectively. Median prescribed dose was 55.8 Gy (range, 50.4-60.0). Median clinical and imaging follow-up were 4.7 years (range, 0.1-17.5) and 4.2 years (range, 0.1-17.3), respectively. No grade ≥2 toxicities were observed. The incidence of grade 1 brainstem necrosis was 1.9% (2 of 107). These patients were by definition asymptomatic and experienced resolution of imaging abnormality after 5.3 months and 2.1 years, respectively. CONCLUSIONS: Risk of brainstem necrosis was minimal in this multi-institutional study of pediatric patients treated with photon radiation therapy for tumors involving the posterior fossa with no cases of symptomatic brainstem injury, suggesting that brainstem injury risk is minimal in patients treated with photon therapy.


Subject(s)
Brain Stem/radiation effects , Ependymoma/radiotherapy , Infratentorial Neoplasms/radiotherapy , Medulloblastoma/radiotherapy , Photons/adverse effects , Radiation Injuries/pathology , Adolescent , Brain Stem/diagnostic imaging , Brain Stem/pathology , Child , Child, Preschool , Craniospinal Irradiation/adverse effects , Craniospinal Irradiation/statistics & numerical data , Female , Humans , Incidence , Infant , Infratentorial Neoplasms/diagnostic imaging , Magnetic Resonance Imaging , Male , Necrosis/etiology , Radiation Injuries/diagnostic imaging , Radiation Injuries/epidemiology , Radiotherapy Dosage , Retrospective Studies , Young Adult
5.
Int J Radiat Oncol Biol Phys ; 100(3): 710-718, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29413283

ABSTRACT

PURPOSE: To analyze effects of closure of an academic proton treatment center (PTC) on pediatric case volume, distribution, and resident education. METHODS AND MATERIALS: This was a review of 412 consecutive pediatric (age ≤18 years) cases treated at a single institution from 2012 to 2016. Residents' Accreditation Council for Graduate Medical Education case logs for the same years were also analyzed. Characteristics of the patient population and resident case volumes before and after closure of the PTC are reported. RESULTS: Overall pediatric new starts declined by approximately 50%, from 35 to 70 per 6 months in 2012 to 2014 to 22 to 30 per 6 months in 2015 to 2016. Central nervous system (CNS) case volume declined sharply, from 121 patients treated in 2012 to 2015 to 18 patients in 2015 to 2016. In 2012 to 2014 our institution treated 36, 24, and 17 patients for medulloblastoma/intracranial primitive neuroectodermal tumor, ependymoma, and low-grade glioma, respectively, compared with 0, 1, and 1 patient(s) in 2015 to 2016. Forty-nine patients were treated with craniospinal radiation (CSI) from 2012 to 2014, whereas only 2 patients underwent CSI between 2015 and 2016. Hematologic malignancy patient volume and use of total body irradiation remained relatively stable. Patients treated when the PTC was open were significantly younger (9.1 vs 10.7 years, P=.010) and their radiation courses were longer (35.4 vs 20.9 days, P<.0001) than those treated after its closure. Resident case logs showed only a small decline in total pediatric cases, because the percentage of pediatric cases covered by residents increased after PTC closure; however, residents logged fewer CNS cases after PTC closure versus before. CONCLUSIONS: Overall pediatric case volume decreased after PTC closure, as did the number of patients treated for potentially curable CNS tumors. Our findings raise important questions regarding resident training in pediatric radiation oncology as these cases become increasingly concentrated at specialized centers.


Subject(s)
Cancer Care Facilities/statistics & numerical data , Central Nervous System Neoplasms/radiotherapy , Health Facility Closure/statistics & numerical data , Hematologic Neoplasms/radiotherapy , Internship and Residency/statistics & numerical data , Proton Therapy/statistics & numerical data , Radiation Oncology/statistics & numerical data , Adolescent , Child , Craniopharyngioma/radiotherapy , Craniospinal Irradiation/statistics & numerical data , Ependymoma/radiotherapy , Humans , Internship and Residency/organization & administration , Medulloblastoma/radiotherapy , Neuroectodermal Tumors, Primitive/radiotherapy , Radiosurgery/statistics & numerical data , Whole-Body Irradiation/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL