Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 666
Filter
1.
Annu Rev Immunol ; 36: 717-753, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29490164

ABSTRACT

Antigen cross-presentation is an adaptation of the cellular process of loading MHC-I molecules with endogenous peptides during their biosynthesis within the endoplasmic reticulum. Cross-presented peptides derive from internalized proteins, microbial pathogens, and transformed or dying cells. The physical separation of internalized cargo from the endoplasmic reticulum, where the machinery for assembling peptide-MHC-I complexes resides, poses a challenge. To solve this problem, deliberate rewiring of organelle communication within cells is necessary to prepare for cross-presentation, and different endocytic receptors and vesicular traffic patterns customize the emergent cross-presentation compartment to the nature of the peptide source. Three distinct pathways of vesicular traffic converge to form the ideal cross-presentation compartment, each regulated differently to supply a unique component that enables cross-presentation of a diverse repertoire of peptides. Delivery of centerpiece MHC-I molecules is the critical step regulated by microbe-sensitive Toll-like receptors. Defining the subcellular sources of MHC-I and identifying sites of peptide loading during cross-presentation remain key challenges.


Subject(s)
Antigen Presentation/immunology , Antigens/immunology , Cross-Priming/immunology , Immunomodulation , Animals , Biological Transport , Dendritic Cells/immunology , Dendritic Cells/metabolism , Endocytosis/immunology , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Epitopes/immunology , Epitopes/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Intracellular Space/metabolism , Phagocytosis/immunology , Proteolysis , Receptors, Cell Surface/metabolism
2.
Cell ; 184(23): 5699-5714.e11, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34735795

ABSTRACT

Extension of the interval between vaccine doses for the BNT162b2 mRNA vaccine was introduced in the United Kingdom to accelerate population coverage with a single dose. At this time, trial data were lacking, and we addressed this in a study of United Kingdom healthcare workers. The first vaccine dose induced protection from infection from the circulating alpha (B.1.1.7) variant over several weeks. In a substudy of 589 individuals, we show that this single dose induces severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody (NAb) responses and a sustained B and T cell response to the spike protein. NAb levels were higher after the extended dosing interval (6-14 weeks) compared with the conventional 3- to 4-week regimen, accompanied by enrichment of CD4+ T cells expressing interleukin-2 (IL-2). Prior SARS-CoV-2 infection amplified and accelerated the response. These data on dynamic cellular and humoral responses indicate that extension of the dosing interval is an effective immunogenic protocol.


Subject(s)
COVID-19 Vaccines/immunology , Vaccines, Synthetic/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Cross-Priming/immunology , Dose-Response Relationship, Immunologic , Ethnicity , Female , Humans , Immunity , Immunoglobulin G/immunology , Linear Models , Male , Middle Aged , Reference Standards , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Treatment Outcome , Young Adult , mRNA Vaccines
3.
Cell ; 184(15): 4016-4031.e22, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34081922

ABSTRACT

Cross-presentation of antigens from dead tumor cells by type 1 conventional dendritic cells (cDC1s) is thought to underlie priming of anti-cancer CD8+ T cells. cDC1 express high levels of DNGR-1 (a.k.a. CLEC9A), a receptor that binds to F-actin exposed by dead cell debris and promotes cross-presentation of associated antigens. Here, we show that secreted gelsolin (sGSN), an extracellular protein, decreases DNGR-1 binding to F-actin and cross-presentation of dead cell-associated antigens by cDC1s. Mice deficient in sGsn display increased DNGR-1-dependent resistance to transplantable tumors, especially ones expressing neoantigens associated with the actin cytoskeleton, and exhibit greater responsiveness to cancer immunotherapy. In human cancers, lower levels of intratumoral sGSN transcripts, as well as presence of mutations in proteins associated with the actin cytoskeleton, are associated with signatures of anti-cancer immunity and increased patient survival. Our results reveal a natural barrier to cross-presentation of cancer antigens that dampens anti-tumor CD8+ T cell responses.


Subject(s)
Cross-Priming/immunology , Gelsolin/metabolism , Immunity , Lectins, C-Type/metabolism , Neoplasms/immunology , Receptors, Immunologic/metabolism , Receptors, Mitogen/metabolism , Actins/metabolism , Amino Acid Sequence , Animals , Antigens, Neoplasm/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cross-Priming/drug effects , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Gelsolin/chemistry , Gelsolin/deficiency , Gene Expression Regulation, Neoplastic/drug effects , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunity/drug effects , Mice, Inbred C57BL , Mutation/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Protein Binding/drug effects , Survival Analysis
4.
Immunity ; 54(9): 2089-2100.e8, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34469774

ABSTRACT

Kupffer cells (KCs) are highly abundant, intravascular, liver-resident macrophages known for their scavenger and phagocytic functions. KCs can also present antigens to CD8+ T cells and promote either tolerance or effector differentiation, but the mechanisms underlying these discrepant outcomes are poorly understood. Here, we used a mouse model of hepatitis B virus (HBV) infection, in which HBV-specific naive CD8+ T cells recognizing hepatocellular antigens are driven into a state of immune dysfunction, to identify a subset of KCs (referred to as KC2) that cross-presents hepatocellular antigens upon interleukin-2 (IL-2) administration, thus improving the antiviral function of T cells. Removing MHC-I from all KCs, including KC2, or selectively depleting KC2 impaired the capacity of IL-2 to revert the T cell dysfunction induced by intrahepatic priming. In summary, by sensing IL-2 and cross-presenting hepatocellular antigens, KC2 overcome the tolerogenic potential of the hepatic microenvironment, suggesting new strategies for boosting hepatic T cell immunity.


Subject(s)
Antigen Presentation/immunology , CD8-Positive T-Lymphocytes/immunology , Cross-Priming/immunology , Interleukin-2/immunology , Kupffer Cells/immunology , Animals , Hepatitis B/immunology , Immune Tolerance/immunology , Mice , Mice, Transgenic
5.
Immunity ; 51(5): 915-929.e7, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31732167

ABSTRACT

The elicitation of broadly neutralizing antibodies (bNAbs) against the HIV-1 envelope glycoprotein (Env) trimer remains a major vaccine challenge. Most cross-conserved protein determinants are occluded by self-N-glycan shielding, limiting B cell recognition of the underlying polypeptide surface. The exceptions to the contiguous glycan shield include the conserved receptor CD4 binding site (CD4bs) and glycoprotein (gp)41 elements proximal to the furin cleavage site. Accordingly, we performed heterologous trimer-liposome prime:boosting in rabbits to drive B cells specific for cross-conserved sites. To preferentially expose the CD4bs to B cells, we eliminated proximal N-glycans while maintaining the native-like state of the cleavage-independent NFL trimers, followed by gradual N-glycan restoration coupled with heterologous boosting. This approach successfully elicited CD4bs-directed, cross-neutralizing Abs, including one targeting a unique glycan-protein epitope and a bNAb (87% breadth) directed to the gp120:gp41 interface, both resolved by high-resolution cryoelectron microscopy. This study provides proof-of-principle immunogenicity toward eliciting bNAbs by vaccination.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Liposomes , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD4 Antigens/chemistry , CD4 Antigens/immunology , CD4 Antigens/metabolism , Complement C3/immunology , Complement C3/metabolism , Cross-Priming/immunology , Epitopes/immunology , Glycosylation , HIV Infections/virology , Humans , Immunoglobulin G/immunology , Models, Molecular , Neutralization Tests , Polysaccharides/immunology , Polysaccharides/metabolism , Protein Binding , Protein Conformation , Rabbits , env Gene Products, Human Immunodeficiency Virus/administration & dosage , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/metabolism
6.
Nat Immunol ; 16(7): 729-36, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26030023

ABSTRACT

Dendritic cells (DCs) can initiate immune responses by presenting exogenous antigens to T cells via both major histocompatibility complex (MHC) class I pathways and MHC class II pathways. Lysosomal activity has an important role in modulating the balance between these two pathways. The transcription factor TFEB regulates lysosomal function by inducing lysosomal activation. Here we report that TFEB expression inhibited the presentation of exogenous antigen by MHC class I while enhancing presentation via MHC class II. TFEB promoted phagosomal acidification and protein degradation. Furthermore, we found that the activation of TFEB was regulated during DC maturation and that phagosomal acidification was impaired in DCs in which the gene encoding TFEB was silenced. Our data indicate that TFEB is a key participant in the differential regulation of the presentation of exogenous antigens by DCs.


Subject(s)
Antigen Presentation/immunology , Antigens/immunology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/immunology , Signal Transduction/immunology , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cells, Cultured , Chlorocebus aethiops , Cross-Priming/immunology , Flow Cytometry , HEK293 Cells , Histocompatibility Antigens Class II/immunology , Humans , Hydrogen-Ion Concentration , Mice, Inbred C57BL , Microscopy, Confocal , Phagosomes/immunology , Phagosomes/metabolism , Proteolysis , RNA Interference/immunology , Spleen/cytology , Spleen/immunology , Spleen/metabolism , Vero Cells
7.
PLoS Pathog ; 20(8): e1012173, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39146364

ABSTRACT

CD8 T cells are the predominant effector cells of adaptive immunity in preventing cytomegalovirus (CMV) multiple-organ disease caused by cytopathogenic tissue infection. The mechanism by which CMV-specific, naïve CD8 T cells become primed and clonally expand is of fundamental importance for our understanding of CMV immune control. For CD8 T-cell priming, two pathways have been identified: direct antigen presentation by infected professional antigen-presenting cells (pAPCs) and antigen cross-presentation by uninfected pAPCs that take up antigenic material derived from infected tissue cells. Studies in mouse models using murine CMV (mCMV) and precluding either pathway genetically or experimentally have shown that, in principle, both pathways can congruently generate the mouse MHC/H-2 class-I-determined epitope-specificity repertoire of the CD8 T-cell response. Recent studies, however, have shown that direct antigen presentation is the canonical pathway when both are accessible. This raised the question of why antigen cross-presentation is ineffective even under conditions of high virus replication thought to provide high amounts of antigenic material for feeding cross-presenting pAPCs. As delivery of antigenic material for cross-presentation is associated with programmed cell death, and as CMVs encode inhibitors of different cell death pathways, we pursued the idea that these inhibitors restrict antigen delivery and thus CD8 T-cell priming by cross-presentation. To test this hypothesis, we compared the CD8 T-cell responses to recombinant mCMVs lacking expression of the apoptosis-inhibiting protein M36 or the necroptosis-inhibiting protein M45 with responses to wild-type mCMV and revertant viruses expressing the respective cell death inhibitors. The data reveal that increased programmed cell death improves CD8 T-cell priming in mice capable of antigen cross-presentation but not in a mutant mouse strain unable to cross-present. These findings strongly support the conclusion that CMV cell death inhibitors restrict the priming of CD8 T cells by antigen cross-presentation.


Subject(s)
Antigen Presentation , CD8-Positive T-Lymphocytes , Cross-Priming , Cytomegalovirus Infections , Animals , CD8-Positive T-Lymphocytes/immunology , Mice , Cross-Priming/immunology , Antigen Presentation/immunology , Cytomegalovirus Infections/immunology , Muromegalovirus/immunology , Apoptosis , Cytomegalovirus/immunology , Antigen-Presenting Cells/immunology , Mice, Inbred C57BL , Antigens, Viral/immunology
8.
Nat Immunol ; 15(3): 248-57, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24441789

ABSTRACT

The role of the unfolded protein response (UPR) and endoplasmic reticulum (ER) stress in homeostasis of the immune system is incompletely understood. Here we found that dendritic cells (DCs) constitutively activated the UPR sensor IRE-1α and its target, the transcription factor XBP-1, in the absence of ER stress. Loss of XBP-1 in CD11c+ cells led to defects in phenotype, ER homeostasis and antigen presentation by CD8α+ conventional DCs, yet the closely related CD11b+ DCs were unaffected. Whereas the dysregulated ER in XBP-1-deficient DCs resulted from loss of XBP-1 transcriptional activity, the phenotypic and functional defects resulted from regulated IRE-1α-dependent degradation (RIDD) of mRNAs, including those encoding CD18 integrins and components of the major histocompatibility complex (MHC) class I machinery. Thus, a precisely regulated feedback circuit involving IRE-1α and XBP-1 controls the homeostasis of CD8α+ conventional DCs.


Subject(s)
Cross-Priming/immunology , DNA-Binding Proteins/immunology , Dendritic Cells/immunology , Endoribonucleases/immunology , Protein Serine-Threonine Kinases/immunology , Protein Unfolding , Transcription Factors/immunology , Unfolded Protein Response/immunology , Animals , Antigen Presentation/immunology , CD8 Antigens/immunology , CD8 Antigens/metabolism , DNA-Binding Proteins/metabolism , Dendritic Cells/metabolism , Endoplasmic Reticulum/immunology , Endoribonucleases/metabolism , Feedback, Physiological/physiology , Homeostasis/immunology , Immunoblotting , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron , Oligonucleotide Array Sequence Analysis , Protein Serine-Threonine Kinases/metabolism , Regulatory Factor X Transcription Factors , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/metabolism , X-Box Binding Protein 1
9.
Nat Immunol ; 15(1): 98-108, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24292363

ABSTRACT

Dendritic cells (DCs) that orchestrate mucosal immunity have been studied in mice. Here we characterized human gut DC populations and defined their relationship to previously studied human and mouse DCs. CD103(+)Sirpα(-) DCs were related to human blood CD141(+) DCs and to mouse intestinal CD103(+)CD11b(-) DCs and expressed markers of cross-presenting DCs. CD103(+)Sirpα(+) DCs aligned with human blood CD1c(+) DCs and mouse intestinal CD103(+)CD11b(+) DCs and supported the induction of regulatory T cells. Both CD103(+) DC subsets induced the TH17 subset of helper T cells, while CD103(-)Sirpα(+) DCs induced the TH1 subset of helper T cells. Comparative analysis of transcriptomes revealed conserved transcriptional programs among CD103(+) DC subsets and identified a selective role for the transcriptional repressors Bcl-6 and Blimp-1 in the specification of CD103(+)CD11b(-) DCs and intestinal CD103(+)CD11b(+) DCs, respectively. Our results highlight evolutionarily conserved and divergent programming of intestinal DCs.


Subject(s)
Cell Differentiation/immunology , Dendritic Cells/immunology , Intestinal Mucosa/immunology , Transcriptome/immunology , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, CD1/immunology , Antigens, CD1/metabolism , CD11b Antigen/immunology , CD11b Antigen/metabolism , Cell Differentiation/genetics , Cells, Cultured , Cluster Analysis , Cross-Priming/genetics , Cross-Priming/immunology , Dendritic Cells/metabolism , Flow Cytometry , Glycoproteins/immunology , Glycoproteins/metabolism , Humans , Integrin alpha Chains/immunology , Integrin alpha Chains/metabolism , Integrins/genetics , Integrins/immunology , Mice , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Oligonucleotide Array Sequence Analysis , Receptors, Chemokine/genetics , Receptors, Chemokine/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Transcriptome/genetics
10.
Immunity ; 46(2): 205-219, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28190711

ABSTRACT

Adaptive cellular immunity is initiated by antigen-specific interactions between T lymphocytes and dendritic cells (DCs). Plasmacytoid DCs (pDCs) support antiviral immunity by linking innate and adaptive immune responses. Here we examined pDC spatiotemporal dynamics during viral infection to uncover when, where, and how they exert their functions. We found that pDCs accumulated at sites of CD8+ T cell antigen-driven activation in a CCR5-dependent fashion. Furthermore, activated CD8+ T cells orchestrated the local recruitment of lymph node-resident XCR1 chemokine receptor-expressing DCs via secretion of the XCL1 chemokine. Functionally, this CD8+ T cell-mediated reorganization of the local DC network allowed for the interaction and cooperation of pDCs and XCR1+ DCs, thereby optimizing XCR1+ DC maturation and cross-presentation. These data support a model in which CD8+ T cells upon activation create their own optimal priming microenvironment by recruiting additional DC subsets to the site of initial antigen recognition.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Chemotaxis, Leukocyte/immunology , Cross-Priming/immunology , Dendritic Cells/immunology , Animals , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Fluorescent Antibody Technique , Mice , Mice, Transgenic
11.
Immunity ; 45(4): 847-860, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27692611

ABSTRACT

Despite the crucial role of tissue-resident memory T (Trm) cells in protective immunity, their priming remains poorly understood. Here, we have shown differential priming requirements for Trm versus circulating memory CD8+ T cells. In vaccinia cutaneous-infected mice, DNGR-1-mediated crosspresentation was required for optimal Trm cell priming but not for their skin differentiation or for circulating memory T cell generation. DNGR-1+ dendritic cells (DCs) promoted T-bet transcription-factor induction and retention of CD8+ T cells in the lymph nodes (LNs). Inhibition of LN egress enhanced Trm cell generation, whereas genetic or antibody blockade of DNGR-1 or specific signals provided during priming by DNGR-1+ DCs, such as interleukin-12 (IL-12), IL-15, or CD24, impaired Trm cell priming. DNGR-1 also regulated Trm cell generation during influenza infection. Moreover, protective immunity depended on optimal Trm cell induction by DNGR-1+ DCs. Our results reveal specific priming requirements for CD8+ Trm cells during viral infection and vaccination.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Immunologic Memory/immunology , Lectins, C-Type/immunology , Receptors, Immunologic/immunology , Virus Diseases/immunology , Animals , CD24 Antigen/immunology , Cross-Priming/immunology , Interleukin-12/immunology , Interleukin-15/immunology , Lymph Nodes/immunology , Lymph Nodes/virology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Skin/immunology , Skin/virology , Vaccinia/immunology , Vaccinia/virology , Vaccinia virus/immunology , Virus Diseases/virology
12.
Nature ; 574(7777): 200-205, 2019 10.
Article in English | MEDLINE | ID: mdl-31582858

ABSTRACT

The responses of CD8+ T cells to hepatotropic viruses such as hepatitis B range from dysfunction to differentiation into effector cells, but the mechanisms that underlie these distinct outcomes remain poorly understood. Here we show that priming by Kupffer cells, which are not natural targets of hepatitis B, leads to differentiation of CD8+ T cells into effector cells that form dense, extravascular clusters of immotile cells scattered throughout the liver. By contrast, priming by hepatocytes, which are natural targets of hepatitis B, leads to local activation and proliferation of CD8+ T cells but not to differentiation into effector cells; these cells form loose, intravascular clusters of motile cells that coalesce around portal tracts. Transcriptomic and chromatin accessibility analyses reveal unique features of these dysfunctional CD8+ T cells, with limited overlap with those of exhausted or tolerant T cells; accordingly, CD8+ T cells primed by hepatocytes cannot be rescued by treatment with anti-PD-L1, but instead respond to IL-2. These findings suggest immunotherapeutic strategies against chronic hepatitis B infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cross-Priming/immunology , Hepatitis B virus/immunology , Hepatocytes/immunology , Hepatocytes/virology , Animals , B7-H1 Antigen/antagonists & inhibitors , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Chromatin/metabolism , Female , Hepatitis B/drug therapy , Hepatitis B/immunology , Hepatitis B/virology , Humans , Immune Tolerance , Interleukin-2/immunology , Interleukin-2/therapeutic use , Kupffer Cells/immunology , Lymphocyte Activation , Male , Mice , Transcriptome/genetics
13.
Nature ; 570(7762): 468-473, 2019 06.
Article in English | MEDLINE | ID: mdl-31142836

ABSTRACT

Broadly neutralizing monoclonal antibodies protect against infection with HIV-1 in animal models, suggesting that a vaccine that elicits these antibodies would be protective in humans. However, it has not yet been possible to induce adequate serological responses by vaccination. Here, to activate B cells that express precursors of broadly neutralizing antibodies within polyclonal repertoires, we developed an immunogen, RC1, that facilitates the recognition of the variable loop 3 (V3)-glycan patch on the envelope protein of HIV-1. RC1 conceals non-conserved immunodominant regions by the addition of glycans and/or multimerization on virus-like particles. Immunization of mice, rabbits and rhesus macaques with RC1 elicited serological responses that targeted the V3-glycan patch. Antibody cloning and cryo-electron microscopy structures of antibody-envelope complexes confirmed that immunization with RC1 expands clones of B cells that carry the anti-V3-glycan patch antibodies, which resemble precursors of human broadly neutralizing antibodies. Thus, RC1 may be a suitable priming immunogen for sequential vaccination strategies in the context of polyclonal repertoires.


Subject(s)
AIDS Vaccines/immunology , B-Lymphocytes/immunology , Clone Cells/immunology , HIV-1/chemistry , HIV-1/immunology , Macaca mulatta/immunology , Vaccination , Amino Acid Sequence , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/ultrastructure , Antibody Affinity , Antibody Specificity/immunology , Antigen-Antibody Complex/immunology , B-Lymphocytes/cytology , Cell Proliferation , Clone Cells/cytology , Cloning, Molecular , Cross-Priming/immunology , Cryoelectron Microscopy , Female , HIV Antibodies/chemistry , HIV Antibodies/genetics , HIV Antibodies/immunology , HIV Antibodies/ultrastructure , Immunodominant Epitopes/chemistry , Immunodominant Epitopes/immunology , Immunodominant Epitopes/ultrastructure , Lymphocyte Activation , Male , Mice , Models, Molecular , Polysaccharides/immunology , Rabbits , Somatic Hypermutation, Immunoglobulin
14.
Nature ; 566(7743): 270-274, 2019 02.
Article in English | MEDLINE | ID: mdl-30728504

ABSTRACT

There is growing evidence that tumour neoantigens have important roles in generating spontaneous antitumour immune responses and predicting clinical responses to immunotherapies1,2. Despite the presence of numerous neoantigens in patients, complete tumour elimination is rare, owing to failures in mounting a sufficient and lasting antitumour immune response3,4. Here we show that durable neoantigen-specific immunity is regulated by mRNA N6-methyadenosine (m6A) methylation through the m6A-binding protein YTHDF15. In contrast to wild-type mice, Ythdf1-deficient mice show an elevated antigen-specific CD8+ T cell antitumour response. Loss of YTHDF1 in classical dendritic cells enhanced the cross-presentation of tumour antigens and the cross-priming of CD8+ T cells in vivo. Mechanistically, transcripts encoding lysosomal proteases are marked by m6A and recognized by YTHDF1. Binding of YTHDF1 to these transcripts increases the translation of lysosomal cathepsins in dendritic cells, and inhibition of cathepsins markedly enhances cross-presentation of wild-type dendritic cells. Furthermore, the therapeutic efficacy of PD-L1 checkpoint blockade is enhanced in Ythdf1-/- mice, implicating YTHDF1 as a potential therapeutic target in anticancer immunotherapy.


Subject(s)
Adenosine/analogs & derivatives , Adenosine/metabolism , Dendritic Cells/immunology , Neoplasms/immunology , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Animals , Antigen Presentation/immunology , Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism , B7-H1 Antigen/metabolism , Binding Sites , CD8-Positive T-Lymphocytes/immunology , Cathepsins/antagonists & inhibitors , Cathepsins/biosynthesis , Cathepsins/genetics , Cross-Priming/immunology , Dendritic Cells/enzymology , Female , Humans , Methylation , Mice , Mice, Inbred C57BL , Neoplasms/therapy , Protein Biosynthesis , Proteins/genetics , RNA, Messenger/chemistry , RNA-Binding Proteins/genetics , Transcriptome/genetics
15.
Immunity ; 43(6): 1028-30, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26682976

ABSTRACT

Even though proteolytic antigen fragments are displayed for cross-presentation, rapid proteolysis of endocytosed antigens inhibits this process. In this issue of Immunity, Alloatti et al. (2015) describe how maturing dendritic cells keep phagosomes and lysosomes apart to ensure extended antigen life that leads to prosperous cross-presentation.


Subject(s)
Antigen Presentation/immunology , Cross-Priming/immunology , Dendritic Cells/immunology , Toll-Like Receptor 4/immunology , Animals , Female
16.
Immunity ; 43(6): 1087-100, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26682983

ABSTRACT

The initiation of cytotoxic immune responses by dendritic cells (DCs) requires the presentation of antigenic peptides derived from phagocytosed microbes and infected or dead cells to CD8(+) T cells, a process called cross-presentation. Antigen cross-presentation by non-activated DCs, however, is not sufficient for the effective induction of immune responses. Additionally, DCs need to be activated through innate receptors, like Toll-like receptors (TLRs). During DC maturation, cross-presentation efficiency is first upregulated and then turned off. Here we show that during this transient phase of enhanced cross-presentation, phago-lysosome fusion was blocked by the topological re-organization of lysosomes into perinuclear clusters. LPS-induced lysosomal clustering, inhibition of phago-lysosome fusion and enhanced cross-presentation, all required expression of the GTPase Rab34. We conclude that TLR4 engagement induces a Rab34-dependent re-organization of lysosomal distribution that delays antigen degradation to transiently enhance cross-presentation, thereby optimizing the priming of CD8(+) T cell responses against pathogens.


Subject(s)
Antigen Presentation/immunology , Cross-Priming/immunology , Dendritic Cells/immunology , Toll-Like Receptor 4/immunology , Animals , Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Cytotoxicity, Immunologic/immunology , Female , Flow Cytometry , Lysosomes/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phagosomes/immunology , RNA, Small Interfering , Transfection , rab GTP-Binding Proteins/immunology
17.
Immunity ; 42(5): 850-63, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25979419

ABSTRACT

The molecular mechanisms regulating antigen translocation into the cytosol for cross-presentation are under controversial debate, mainly because direct data is lacking. Here, we have provided direct evidence that the activity of the endoplasmic reticulum (ER) translocon protein Sec61 is essential for endosome-to-cytosol translocation. We generated a Sec61-specific intrabody, a crucial tool that trapped Sec61 in the ER and prevented its recruitment into endosomes without influencing Sec61 activity and antigen presentation in the ER. Expression of this ER intrabody inhibited antigen translocation and cross-presentation, demonstrating that endosomal Sec61 indeed mediates antigen transport across endosomal membranes. Moreover, we showed that the recruitment of Sec61 toward endosomes, and hence antigen translocation and cross-presentation, is dependent on dendritic cell activation by Toll-like receptor (TLR) ligands. These data shed light on a long-lasting question regarding antigen cross-presentation and point out a role of the ER-associated degradation machinery in compartments distinct from the ER.


Subject(s)
Antigens/metabolism , CD8-Positive T-Lymphocytes , Cross-Priming/immunology , Cytosol/metabolism , Endosomes/metabolism , Membrane Proteins/metabolism , Models, Biological , Animals , Antigens/immunology , Cell Line , Cytosol/immunology , Membrane Proteins/chemistry , Mice , Protein Transport , SEC Translocation Channels
18.
Immunity ; 42(2): 379-390, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25680277

ABSTRACT

Understanding how viruses subvert host immunity and persist is essential for developing strategies to eliminate infection. T cell exhaustion during chronic viral infection is well described, but effects on antibody-mediated effector activity are unclear. Herein, we show that increased amounts of immune complexes generated in mice persistently infected with lymphocytic choriomeningitis virus (LCMV) suppressed multiple Fcγ-receptor (FcγR) functions. The high amounts of immune complexes suppressed antibody-mediated cell depletion, therapeutic antibody-killing of LCMV infected cells and human CD20-expressing tumors, as well as reduced immune complex-mediated cross-presentation to T cells. Suppression of FcγR activity was not due to inhibitory FcγRs or high concentrations of free antibody, and proper FcγR functions were restored when persistently infected mice specifically lacked immune complexes. Thus, we identify a mechanism of immunosuppression during viral persistence with implications for understanding effective antibody activity aimed at pathogen control.


Subject(s)
Antibodies, Viral/immunology , Antigen-Antibody Complex/immunology , Immune Evasion/immunology , Lymphocytic Choriomeningitis/immunology , Receptors, IgG/antagonists & inhibitors , Animals , Antibodies, Monoclonal, Murine-Derived/pharmacology , Antigens, CD20/biosynthesis , Antigens, CD20/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Cross-Priming/immunology , Dendritic Cells/immunology , Immune Tolerance/immunology , Immunologic Factors/pharmacology , Lymphocyte Activation/immunology , Lymphocyte Depletion , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Phagocytosis/immunology , Receptors, IgG/immunology , Rituximab
19.
Nature ; 558(7708): 141-145, 2018 06.
Article in English | MEDLINE | ID: mdl-29849151

ABSTRACT

Dendritic cells orchestrate the crosstalk between innate and adaptive immunity. CD8α+ dendritic cells present antigens to CD8+ T cells and elicit cytotoxic T cell responses to viruses, bacteria and tumours 1 . Although lineage-specific transcriptional regulators of CD8α+ dendritic cell development have been identified 2 , the molecular pathways that selectively orchestrate CD8α+ dendritic cell function remain elusive. Moreover, metabolic reprogramming is important for dendritic cell development and activation3,4, but metabolic dependence and regulation of dendritic cell subsets are largely uncharacterized. Here we use a data-driven systems biology algorithm (NetBID) to identify a role of the Hippo pathway kinases Mst1 and Mst2 (Mst1/2) in selectively programming CD8α+ dendritic cell function and metabolism. Our NetBID analysis reveals a marked enrichment of the activities of Hippo pathway kinases in CD8α+ dendritic cells relative to CD8α- dendritic cells. Dendritic cell-specific deletion of Mst1/2-but not Lats1 and Lats2 (Lats1/2) or Yap and Taz (Yap/Taz), which mediate canonical Hippo signalling-disrupts homeostasis and function of CD8+ T cells and anti-tumour immunity. Mst1/2-deficient CD8α+ dendritic cells are impaired in presentation of extracellular proteins and cognate peptides to prime CD8+ T cells, while CD8α- dendritic cells that lack Mst1/2 have largely normal function. Mechanistically, compared to CD8α- dendritic cells, CD8α+ dendritic cells exhibit much stronger oxidative metabolism and critically depend on Mst1/2 signalling to maintain bioenergetic activities and mitochondrial dynamics for their functional capacities. Further, selective expression of IL-12 by CD8α+ dendritic cells depends on Mst1/2 and the crosstalk with non-canonical NF-κB signalling. Our findings identify Mst1/2 as selective drivers of CD8α+ dendritic cell function by integrating metabolic activity and cytokine signalling, and highlight that the interplay between immune signalling and metabolic reprogramming underlies the unique functions of dendritic cell subsets.


Subject(s)
CD8 Antigens/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Algorithms , Animals , CD8 Antigens/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cross-Priming/immunology , Dendritic Cells/cytology , Hippo Signaling Pathway , Homeostasis , Interleukin-12/immunology , Interleukin-12/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Serine-Threonine Kinase 3 , Tumor Suppressor Proteins
20.
J Virol ; 96(15): e0076522, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35862681

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) represent two highly transmissible airborne pathogens with pandemic capabilities. Although these viruses belong to separate virus families-SARS-CoV-2 is a member of the family Coronaviridae, while IAV is a member of the family Orthomyxoviridae-both have shown zoonotic potential, with significant animal reservoirs in species in close contact with humans. The two viruses are similar in their capacity to infect human airways, and coinfections resulting in significant morbidity and mortality have been documented. Here, we investigate the interaction between SARS-CoV-2 USA-WA1/2020 and influenza H1N1 A/California/04/2009 virus during coinfection. Competition assays in vitro were performed in susceptible cells that were either interferon type I/III (IFN-I/-III) nonresponsive or IFN-I/-III responsive, in addition to an in vivo golden hamster model. We find that SARS-CoV-2 infection does not interfere with IAV biology in vivo, regardless of timing between the infections. In contrast, we observe a significant loss of SARS-CoV-2 replication following IAV infection. The latter phenotype correlates with increased levels of IFN-I/-III and immune priming that interferes with the kinetics of SARS-CoV-2 replication. Together, these data suggest that cocirculation of SARS-CoV-2 and IAV is unlikely to result in increased severity of disease. IMPORTANCE The human population now has two circulating respiratory RNA viruses with high pandemic potential, namely, SARS-CoV-2 and influenza A virus. As both viruses infect the airways and can result in significant morbidity and mortality, it is imperative that we also understand the consequences of getting coinfected. Here, we demonstrate that the host response to influenza A virus uniquely interferes with SARS-CoV-2 biology although the inverse relationship is not evident. Overall, we find that the host response to both viruses is comparable to that to SARS-CoV-2 infection alone.


Subject(s)
COVID-19 , Coinfection , Cross-Priming , Influenza A Virus, H1N1 Subtype , Influenza, Human , SARS-CoV-2 , Virus Replication , Animals , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Coinfection/immunology , Coinfection/virology , Cross-Priming/immunology , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/virology , Interferons/immunology , Mesocricetus/immunology , Mesocricetus/virology , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , Virus Replication/immunology
SELECTION OF CITATIONS
SEARCH DETAIL