Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.460
Filter
1.
Cell ; 154(5): 1010-1022, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-23993094

ABSTRACT

Most eukaryotic cells express small regulatory RNAs. The purpose of one class, the somatic endogenous siRNAs (endo-siRNAs), remains unclear. Here, we show that the endo-siRNA pathway promotes odor adaptation in C. elegans AWC olfactory neurons. In adaptation, the nuclear Argonaute NRDE-3, which acts in AWC, is loaded with siRNAs targeting odr-1, a gene whose downregulation is required for adaptation. Concomitant with increased odr-1 siRNA in AWC, we observe increased binding of the HP1 homolog HPL-2 at the odr-1 locus in AWC and reduced odr-1 mRNA in adapted animals. Phosphorylation of HPL-2, an in vitro substrate of the EGL-4 kinase that promotes adaption, is necessary and sufficient for behavioral adaptation. Thus, environmental stimulation amplifies an endo-siRNA negative feedback loop to dynamically repress cognate gene expression and shape behavior. This class of siRNA may act broadly as a rheostat allowing prolonged stimulation to dampen gene expression and promote cellular memory formation. PAPERFLICK:


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/physiology , Down-Regulation , Guanylate Cyclase/genetics , RNA Interference , Sensory Receptor Cells/metabolism , Adaptation, Physiological , Animals , Butanones/chemistry , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Odorants , Phosphorylation , RNA, Helminth/metabolism , RNA, Small Interfering/metabolism , RNA-Binding Proteins/metabolism
2.
Annu Rev Genet ; 53: 373-392, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31487469

ABSTRACT

The Drosophila melanogaster foraging (for) gene is a well-established example of a gene with major effects on behavior and natural variation. This gene is best known for underlying the behavioral strategies of rover and sitter foraging larvae, having been mapped and named for this phenotype. Nevertheless, in the last three decades an extensive array of studies describing for's role as a modifier of behavior in a wide range of phenotypes, in both Drosophila and other organisms, has emerged. Furthermore, recent work reveals new insights into the genetic and molecular underpinnings of how for affects these phenotypes. In this article, we discuss the history of the for gene and its role in natural variation in behavior, plasticity, and behavioral pleiotropy, with special attention to recent findings on the molecular structure and transcriptional regulation of this gene.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Feeding Behavior/physiology , Gene-Environment Interaction , Genetic Pleiotropy , Animals , Ants/physiology , Drosophila melanogaster/genetics , Larva/physiology , Memory/physiology , Sleep/genetics , Sleep/physiology , Social Behavior , Thermotolerance/physiology
3.
PLoS Pathog ; 20(6): e1012360, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38935780

ABSTRACT

The cGMP-dependent protein kinase (PKG) is the sole cGMP sensor in malaria parasites, acting as an essential signalling hub to govern key developmental processes throughout the parasite life cycle. Despite the importance of PKG in the clinically relevant asexual blood stages, many aspects of malarial PKG regulation, including the importance of phosphorylation, remain poorly understood. Here we use genetic and biochemical approaches to show that reduced cGMP binding to cyclic nucleotide binding domain B does not affect in vitro kinase activity but prevents parasite egress. Similarly, we show that phosphorylation of a key threonine residue (T695) in the activation loop is dispensable for kinase activity in vitro but is essential for in vivo PKG function, with loss of T695 phosphorylation leading to aberrant phosphorylation events across the parasite proteome and changes to the substrate specificity of PKG. Our findings indicate that Plasmodium PKG is uniquely regulated to transduce signals crucial for malaria parasite development.


Subject(s)
Cyclic GMP-Dependent Protein Kinases , Cyclic GMP , Cyclic GMP-Dependent Protein Kinases/metabolism , Cyclic GMP-Dependent Protein Kinases/genetics , Phosphorylation , Cyclic GMP/metabolism , Malaria/parasitology , Malaria/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Animals , Plasmodium falciparum/metabolism , Plasmodium falciparum/genetics , Humans , Signal Transduction , Erythrocytes/parasitology , Erythrocytes/metabolism
4.
PLoS Genet ; 19(1): e1010613, 2023 01.
Article in English | MEDLINE | ID: mdl-36652499

ABSTRACT

Animals alter their behavior in manners that depend on environmental conditions as well as their developmental and metabolic states. For example, C. elegans is quiescent during larval molts or during conditions of satiety. By contrast, worms enter an exploration state when removed from food. Sensory perception influences movement quiescence (defined as a lack of body movement), as well as the expression of additional locomotor states in C. elegans that are associated with increased or reduced locomotion activity, such as roaming (exploration behavior) and dwelling (local search). Here we find that movement quiescence is enhanced, and exploration behavior is reduced in G protein-coupled receptor kinase grk-2 mutant animals. grk-2 was previously shown to act in chemosensation, locomotion, and egg-laying behaviors. Using neuron-specific rescuing experiments, we show that GRK-2 acts in multiple ciliated chemosensory neurons to control exploration behavior. grk-2 acts in opposite ways from the cGMP-dependent protein kinase gene egl-4 to control movement quiescence and exploration behavior. Analysis of mutants with defects in ciliated sensory neurons indicates that grk-2 and the cilium-structure mutants act in the same pathway to control exploration behavior. We find that GRK-2 controls exploration behavior in an opposite manner from the neuropeptide receptor NPR-1 and the neuropeptides FLP-1 and FLP-18. Finally, we show that secretion of the FLP-1 neuropeptide is negatively regulated by GRK-2 and that overexpression of FLP-1 reduces exploration behavior. These results define neurons and molecular pathways that modulate movement quiescence and exploration behavior.


Subject(s)
Caenorhabditis elegans Proteins , Neuropeptides , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Sensory Receptor Cells/metabolism , Locomotion/genetics , Receptors, G-Protein-Coupled/genetics , Cyclic GMP-Dependent Protein Kinases/genetics , Cyclic GMP-Dependent Protein Kinases/metabolism
5.
PLoS Biol ; 20(6): e3001684, 2022 06.
Article in English | MEDLINE | ID: mdl-35727855

ABSTRACT

The ability to detect and respond to acute oxygen (O2) shortages is indispensable to aerobic life. The molecular mechanisms and circuits underlying this capacity are poorly understood. Here, we characterize the behavioral responses of feeding Caenorhabditis elegans to approximately 1% O2. Acute hypoxia triggers a bout of turning maneuvers followed by a persistent switch to rapid forward movement as animals seek to avoid and escape hypoxia. While the behavioral responses to 1% O2 closely resemble those evoked by 21% O2, they have distinct molecular and circuit underpinnings. Disrupting phosphodiesterases (PDEs), specific G proteins, or BBSome function inhibits escape from 1% O2 due to increased cGMP signaling. A primary source of cGMP is GCY-28, the ortholog of the atrial natriuretic peptide (ANP) receptor. cGMP activates the protein kinase G EGL-4 and enhances neuroendocrine secretion to inhibit acute responses to 1% O2. Triggering a rise in cGMP optogenetically in multiple neurons, including AIA interneurons, rapidly and reversibly inhibits escape from 1% O2. Ca2+ imaging reveals that a 7% to 1% O2 stimulus evokes a Ca2+ decrease in several neurons. Defects in mitochondrial complex I (MCI) and mitochondrial complex I (MCIII), which lead to persistently high reactive oxygen species (ROS), abrogate acute hypoxia responses. In particular, repressing the expression of isp-1, which encodes the iron sulfur protein of MCIII, inhibits escape from 1% O2 without affecting responses to 21% O2. Both genetic and pharmacological up-regulation of mitochondrial ROS increase cGMP levels, which contribute to the reduced hypoxia responses. Our results implicate ROS and precise regulation of intracellular cGMP in the modulation of acute responses to hypoxia by C. elegans.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Calcium/metabolism , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinases/genetics , Cyclic GMP-Dependent Protein Kinases/metabolism , Hypoxia , Oxygen/metabolism , Reactive Oxygen Species/metabolism
6.
Nature ; 566(7743): 264-269, 2019 02.
Article in English | MEDLINE | ID: mdl-30700906

ABSTRACT

The mechanistic target of rapamycin complex-1 (mTORC1) coordinates regulation of growth, metabolism, protein synthesis and autophagy1. Its hyperactivation contributes to disease in numerous organs, including the heart1,2, although broad inhibition of mTORC1 risks interference with its homeostatic roles. Tuberin (TSC2) is a GTPase-activating protein and prominent intrinsic regulator of mTORC1 that acts through modulation of RHEB (Ras homologue enriched in brain). TSC2 constitutively inhibits mTORC1; however, this activity is modified by phosphorylation from multiple signalling kinases that in turn inhibits (AMPK and GSK-3ß) or stimulates (AKT, ERK and RSK-1) mTORC1 activity3-9. Each kinase requires engagement of multiple serines, impeding analysis of their role in vivo. Here we show that phosphorylation or gain- or loss-of-function mutations at either of two adjacent serine residues in TSC2 (S1365 and S1366 in mice; S1364 and S1365 in humans) can bidirectionally control mTORC1 activity stimulated by growth factors or haemodynamic stress, and consequently modulate cell growth and autophagy. However, basal mTORC1 activity remains unchanged. In the heart, or in isolated cardiomyocytes or fibroblasts, protein kinase G1 (PKG1) phosphorylates these TSC2 sites. PKG1 is a primary effector of nitric oxide and natriuretic peptide signalling, and protects against heart disease10-13. Suppression of hypertrophy and stimulation of autophagy in cardiomyocytes by PKG1 requires TSC2 phosphorylation. Homozygous knock-in mice that express a phosphorylation-silencing mutation in TSC2 (TSC2(S1365A)) develop worse heart disease and have higher mortality after sustained pressure overload of the heart, owing to mTORC1 hyperactivity that cannot be rescued by PKG1 stimulation. However, cardiac disease is reduced and survival of heterozygote Tsc2S1365A knock-in mice subjected to the same stress is improved by PKG1 activation or expression of a phosphorylation-mimicking mutation (TSC2(S1365E)). Resting mTORC1 activity is not altered in either knock-in model. Therefore, TSC2 phosphorylation is both required and sufficient for PKG1-mediated cardiac protection against pressure overload. The serine residues identified here provide a genetic tool for bidirectional regulation of the amplitude of stress-stimulated mTORC1 activity.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/metabolism , Heart Diseases/prevention & control , Heart Diseases/physiopathology , Mechanistic Target of Rapamycin Complex 1/metabolism , Tuberous Sclerosis Complex 2 Protein/chemistry , Tuberous Sclerosis Complex 2 Protein/metabolism , Animals , Autophagy , Cells, Cultured , Disease Progression , Enzyme Activation , Everolimus/pharmacology , Female , Gene Knock-In Techniques , HEK293 Cells , Heart Diseases/genetics , Heart Diseases/pathology , Humans , Hypertrophy/drug therapy , Hypertrophy/pathology , Male , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mice , Mutation , Myocytes, Cardiac/pathology , Phosphorylation , Phosphoserine/metabolism , Pressure , Rats , Rats, Wistar , Serine/genetics , Serine/metabolism , Tuberous Sclerosis Complex 2 Protein/genetics
7.
Am J Physiol Cell Physiol ; 327(3): C557-C570, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38985989

ABSTRACT

The exchange protein directly activated by cAMP (EPAC) has been implicated in cardiac proarrhythmic signaling pathways including spontaneous diastolic Ca2+ leak from sarcoplasmic reticulum and increased action potential duration (APD) in isolated ventricular cardiomyocytes. The action potential (AP) lengthening following acute EPAC activation is mainly due to a decrease of repolarizing steady-state K+ current (IKSS) but the mechanisms involved remain unknown. This study aimed to assess the role of EPAC1 and EPAC2 in the decrease of IKSS and to investigate the underlying signaling pathways. AP and K+ currents were recorded with the whole cell configuration of the patch-clamp technique in freshly isolated rat ventricular myocytes. EPAC1 and EPAC2 were pharmacologically activated with 8-(4-chlorophenylthio)-2'-O-methyl-cAMP acetoxymethyl ester (8-CPTAM, 10 µmol/L) and inhibited with R-Ce3F4 and ESI-05, respectively. Inhibition of EPAC1 and EPAC2 significantly decreased the effect of 8-CPTAM on APD and IKSS showing that both EPAC isoforms are involved in these effects. Unexpectedly, calmodulin-dependent protein kinase II (CaMKII) inhibition by AIP or KN-93, and Ca2+ chelation by intracellular BAPTA, did not impact the response to 8-CPTAM. However, inhibition of PLC/PKC and nitric oxide synthase (NOS)/PKG pathways partially prevents the 8-CPTAM-dependent decrease of IKSS. Finally, the cumulative inhibition of PKC and PKG blocked the 8-CPTAM effect, suggesting that these two actors work along parallel pathways to regulate IKSS upon EPAC activation. On the basis of such findings, we propose that EPAC1 and EPAC2 are involved in APD lengthening by inhibiting a K+ current via both PLC/PKC and NOS/PKG pathways. This may have pathological implications since EPAC is upregulated in diseases such as cardiac hypertrophy.NEW & NOTEWORHTY Exchange protein directly activated by cAMP (EPAC) proteins modulate ventricular electrophysiology at the cellular level. Both EPAC1 and EPAC2 isoforms participate in this effect. Mechanistically, PLC/PKC and nitric oxide synthase (NO)/PKG pathways are involved in regulating K+ repolarizing current whereas the well-known downstream effector of EPAC, calmodulin-dependent protein kinase II (CaMKII), does not participate. This may have pathological implications since EPAC is upregulated in diseases such as cardiac hypertrophy. Thus, EPAC inhibition may be a new approach to prevent arrhythmias under pathological conditions.


Subject(s)
Action Potentials , Guanine Nucleotide Exchange Factors , Heart Ventricles , Myocytes, Cardiac , Protein Kinase C , Signal Transduction , Animals , Guanine Nucleotide Exchange Factors/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/enzymology , Protein Kinase C/metabolism , Rats , Action Potentials/drug effects , Heart Ventricles/metabolism , Heart Ventricles/cytology , Cyclic GMP-Dependent Protein Kinases/metabolism , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Type C Phospholipases/metabolism , Type C Phospholipases/antagonists & inhibitors , Male , Rats, Wistar , Potassium/metabolism , Cyclic AMP/metabolism
8.
Plant Physiol ; 193(1): 721-735, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37103588

ABSTRACT

Root-knot nematodes (Meloidogyne spp., RKN) are responsible for extensive crop losses worldwide. During infection, they penetrate plant roots, migrate between plant cells, and establish feeding sites, known as giant cells, near the root vasculature. Previously, we found that nematode perception and early responses in plants were similar to those of microbial pathogens and required the BRI1-ASSOCIATED KINASE1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE3 (BAK1/SERK3) coreceptor in Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum). Here, we implemented a reverse genetic screen for resistance or sensitivity to RKN using Arabidopsis T-DNA alleles of genes encoding transmembrane receptor-like kinases to identify additional receptors involved in this process. This screen identified a pair of allelic mutations with enhanced resistance to RKN in a gene we named ENHANCED RESISTANCE TO NEMATODES1 (ERN1). ERN1 encodes a G-type lectin receptor kinase (G-LecRK) with a single-pass transmembrane domain. Further characterization showed that ern1 mutants displayed stronger activation of MAP kinases, elevated levels of the defense marker MYB51, and enhanced H2O2 accumulation in roots upon RKN elicitor treatments. Elevated MYB51 expression and ROS bursts were also observed in leaves of ern1 mutants upon flg22 treatment. Complementation of ern1.1 with 35S- or native promoter-driven ERN1 rescued the RKN infection and enhanced defense phenotypes. Our results indicate that ERN1 is an important negative regulator of immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Solanum lycopersicum , Tylenchoidea , Animals , Arabidopsis/physiology , Cyclic GMP-Dependent Protein Kinases/metabolism , Lectins/metabolism , Hydrogen Peroxide/metabolism , Tylenchoidea/physiology , Solanum lycopersicum/genetics , Receptors, Mitogen/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Diseases/genetics , Transcription Factors/metabolism , Arabidopsis Proteins/metabolism
9.
J Cardiovasc Pharmacol ; 83(5): 433-445, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38422186

ABSTRACT

ABSTRACT: We previously reported a novel compound called S-nitroso- N -pivaloyl- d -penicillamine (SNPiP), which was screened from a group of nitric oxide donor compounds with a basic chemical structure of S-nitroso- N -acetylpenicillamine, to activate the nonneuronal acetylcholine system. SNPiP-treated mice exhibited improved cardiac output and enhanced diastolic function, without an increase in heart rate. The nonneuronal acetylcholine-activating effects included increased resilience to ischemia, modulation of energy metabolism preference, and activation of angiogenesis. Here, we performed transcriptome analysis of SNPiP-treated mice ventricles to elucidate how SNPiP exerts beneficial effects on cardiac function. A time-course study (24 and 48 hours after SNPiP administration) revealed that SNPiP initially induced Wnt and cyclic guanosine monophosphate-protein kinase G signaling pathways, along with upregulation of genes involved in cardiac muscle tissue development and oxytocin signaling pathway. We also observed enrichment of glycolysis-related genes in response to SNPiP treatment, resulting in a metabolic shift from oxidative phosphorylation to glycolysis, which was suggested by reduced cardiac glucose contents while maintaining adenosine tri-phosphate levels. In addition, SNPiP significantly upregulated atrial natriuretic peptide and sarcolipin, which play crucial roles in calcium handling and cardiac performance. These findings suggest that SNPiP may have therapeutic potential based on the pleiotropic mechanisms elucidated in this study.


Subject(s)
Diastole , Gene Expression Profiling , Mice, Inbred C57BL , Nitric Oxide Donors , Signal Transduction , Ventricular Function, Left , Animals , Signal Transduction/drug effects , Male , Nitric Oxide Donors/pharmacology , Ventricular Function, Left/drug effects , Diastole/drug effects , Transcriptome/drug effects , Glycolysis/drug effects , Cyclic GMP-Dependent Protein Kinases/metabolism , Cyclic GMP-Dependent Protein Kinases/genetics , Wnt Signaling Pathway/drug effects , Time Factors , Penicillamine/pharmacology , Penicillamine/analogs & derivatives , Mice , Oxidative Phosphorylation/drug effects , Gene Expression Regulation/drug effects
10.
Drug Dev Res ; 85(3): e22192, 2024 May.
Article in English | MEDLINE | ID: mdl-38678552

ABSTRACT

Non-small cell lung cancer (NSCLC) is a malignant tumor with low overall cure and survival rates. Uncovering abnormally expressed genes is significantly important for developing novel targeted therapies in NSCLC. This study aimed to discover new differentially expressed genes (DEGs) of NSCLC. The DEGs of NSCLC were identified in eight data sets from Gene Expression Omnibus (GEO) database. The expression profiles and the prognostic significance of SCN4B in LUAD and LUSC were analyzed using GEPIA database. LinkedOmics was used to identify co-expressed genes with SCN4B, which were further subjected to KEGG pathway enrichment analysis. SCN4B-overexpressing plasmid (pcDNA/SCN4B) was transfected into A549 and NCI-H2170 cells to elevate the expression of SCN4B. MTT and TUNEL assays were performed to evaluate cell viability and apoptosis. Relying on the screened DEGs from GEO database, we identified that SCN4B was significantly downregulated in LUAD and LUSC. We confirmed the downregulation of SCN4B in NSCLC tissues using GEPIA database. SCN4B has a prognostic value in LUAD, but not LUSC. KEGG pathway enrichment analysis of SCN4B-related genes showed that cGMP-PKG signaling pathway might be involved in the role of SCN4B in NSCLC. Overexpression of SCN4B in A549 and NCI-H2170 cells inhibited the cell viability. Besides, SCN4B overexpression induced apoptosis of A549 and NCI-H2170 cells. SCN4B inhibited the expression of PKG1 and p-CREB in NSCLC cells. Moreover, the inhibitory effects of SCN4B on tumor malignancy were attenuated by the activator of PKG. In conclusion, integrated bioinformatical analysis proved that SCN4B was downregulated and had a prognostic significance in NSCLC. In vitro experimental studies demonstrated that SCN4B regulated NSCLC cells viability and apoptosis via inhibiting cGMP-PKG signaling pathway.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Computational Biology , Cyclic GMP , Lung Neoplasms , Humans , A549 Cells , Apoptosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Survival , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Cyclic GMP-Dependent Protein Kinases/genetics , Down-Regulation , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Signal Transduction
11.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542418

ABSTRACT

Inherited retinal degenerative diseases (IRDs) are a group of rare diseases that lead to a progressive loss of photoreceptor cells and, ultimately, blindness. The overactivation of cGMP-dependent protein kinase G (PKG), one of the key effectors of cGMP-signaling, was previously found to be involved in photoreceptor cell death and was studied in murine IRD models to elucidate the pathophysiology of retinal degeneration. However, PKG is a serine/threonine kinase (STK) with several hundred potential phosphorylation targets and, so far, little is known about the specificity of the target interaction and downstream effects of PKG activation. Here, we carried out both the kinome activity and phosphoproteomic profiling of organotypic retinal explant cultures derived from the rd10 mouse model for IRD. After treating the explants with the PKG inhibitor CN03, an overall decrease in peptide phosphorylation was observed, with the most significant decrease occurring in seven peptides, including those from the known PKG substrate cyclic-AMP-response-element-binding CREB, but also Ca2+/calmodulin-dependent kinase (CaMK) peptides and TOP2A. The phosphoproteomic data, in turn, revealed proteins with decreased phosphorylation, as well as proteins with increased phosphorylation. The integration of both datasets identified common biological networks altered by PKG inhibition, which included kinases predominantly from the so-called AGC and CaMK families of kinases (e.g., PKG1, PKG2, PKA, CaMKs, RSKs, and AKTs). A pathway analysis confirmed the role of CREB, Calmodulin, mitogen-activated protein kinase (MAPK) and CREB modulation. Among the peptides and pathways that showed reduced phosphorylation activity, the substrates CREB, CaMK2, and CaMK4 were validated for their retinal localization and activity, using immunostaining and immunoblotting in the rd10 retina. In summary, the integrative analysis of the kinome activity and phosphoproteomic data revealed both known and novel PKG substrates in a murine IRD model. This data establishes a basis for an improved understanding of the biological pathways involved in cGMP-mediated photoreceptor degeneration. Moreover, validated PKG targets like CREB and CaMKs merit exploration as novel (surrogate) biomarkers to determine the effects of a clinical PKG-targeted treatment for IRDs.


Subject(s)
Retinal Degeneration , Animals , Mice , Phosphorylation , Retinal Degeneration/metabolism , Calmodulin/metabolism , Protein Serine-Threonine Kinases/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Retina/metabolism , Cyclic GMP/metabolism
12.
J Biol Chem ; 298(3): 101691, 2022 03.
Article in English | MEDLINE | ID: mdl-35143840

ABSTRACT

Malaria is a life-threatening infectious disease primarily caused by the Plasmodium falciparum parasite. The increasing resistance to current antimalarial drugs and their side effects has led to an urgent need for novel malaria drug targets, such as the P. falciparum cGMP-dependent protein kinase (pfPKG). However, PKG plays an essential regulatory role also in the human host. Human cGMP-dependent protein kinase (hPKG) and pfPKG are controlled by structurally homologous cGMP-binding domains (CBDs). Here, we show that despite the structural similarities between the essential CBDs in pfPKG and hPKG, their respective allosteric networks differ significantly. Through comparative analyses of chemical shift covariance analyses, molecular dynamics simulations, and backbone internal dynamics measurements, we found that conserved allosteric elements within the essential CBDs are wired differently in pfPKG and hPKG to implement cGMP-dependent kinase activation. Such pfPKG versus hPKG rewiring of allosteric networks was unexpected because of the structural similarity between the two essential CBDs. Yet, such finding provides crucial information on which elements to target for selective inhibition of pfPKG versus hPKG, which may potentially reduce undesired side effects in malaria treatments.


Subject(s)
Cyclic GMP-Dependent Protein Kinases , Malaria, Falciparum , Plasmodium falciparum , Allosteric Regulation , Cyclic GMP-Dependent Protein Kinases/chemistry , Cyclic GMP-Dependent Protein Kinases/metabolism , Humans , Malaria, Falciparum/enzymology , Malaria, Falciparum/parasitology , Molecular Dynamics Simulation , Plasmodium falciparum/enzymology , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism
13.
Biochem Biophys Res Commun ; 647: 1-8, 2023 03 05.
Article in English | MEDLINE | ID: mdl-36706596

ABSTRACT

Apoptosis is a major pathophysiological change following myocardial ischemia/reperfusion (I/R) injury. Glucagon-like peptide 1 (GLP-1) and its receptor GLP-1R are widely expressed in the cardiovascular system and GLP-1/GLP-1R activates the protein kinase G (PKG)-related signaling pathway. Therefore, this study tested whether semaglutide, a new GLP-1 analog, inhibits I/R injury-induced cardiomyocyte apoptosis by activating the PKG/PKCε/ERK1/2 pathway. We induced myocardial I/R injury in rats and hypoxia/reoxygenation (H/R) injury in H9C2 cells and detected the effects of semaglutide, a PKG analog (8-Br-cGMP), and a PKG inhibitor (KT-5823) on the PKG/PKCε/ERK1/2 pathway and cardiomyocyte apoptosis. We found that semaglutide upregulated GLP-1R levels, and both semaglutide and 8-Br-cGMP activated the PKG/PKCε/ERK1/2 pathway, inhibited myocardial infarction (MI), decreased hs-cTNT levels, increased NT-proBNP levels, and suppressed cardiomyocyte apoptosis in I/R rats and H/R H9C2 cells. However, KT-5823 exerted contrasting effects with semaglutide and 8-Br-cGMP, and KT-5823 weakened the cardioprotective effects of semaglutide. In conclusion, semaglutide inhibits I/R injury-induced cardiomyocyte apoptosis by activating the PKG/PKCε/ERK1/2 pathway. The beneficial effect of GLP-1/GLP-1R, involved in the activation of the PKG/PKCε/ERK1/2 pathway, may provide a novel treatment method for myocardial I/R injury.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Rats , Animals , MAP Kinase Signaling System , Myocytes, Cardiac/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Protein Kinase C-epsilon/metabolism , Apoptosis , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Glucagon-Like Peptide 1/metabolism , Reperfusion
14.
J Exp Bot ; 74(1): 178-193, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36260406

ABSTRACT

Pollen development is a crucial biological process indispensable for seed set in flowering plants and for successful crop breeding. However, little is known about the molecular mechanisms regulating pollen development in crop species. This study reports a novel male-sterile tomato mutant, pollen deficient 2 (pod2), characterized by the production of non-viable pollen grains and resulting in the development of small parthenocarpic fruits. A combined strategy of mapping-by-sequencing and RNA interference-mediated gene silencing was used to prove that the pod2 phenotype is caused by the loss of Solanum lycopersicum G-type lectin receptor kinase II.9 (SlG-LecRK-II.9) activity. In situ hybridization of floral buds showed that POD2/SlG-LecRK-II.9 is specifically expressed in tapetal cells and microspores at the late tetrad stage. Accordingly, abnormalities in meiosis and tapetum programmed cell death in pod2 occurred during microsporogenesis, resulting in the formation of four dysfunctional microspores leading to an aberrant microgametogenesis process. RNA-seq analyses supported the existence of alterations at the final stage of microsporogenesis, since we found tomato deregulated genes whose counterparts in Arabidopsis are essential for the normal progression of male meiosis and cytokinesis. Collectively, our results revealed the essential role of POD2/SlG-LecRK-II.9 in regulating tomato pollen development.


Subject(s)
Arabidopsis , Biological Phenomena , Solanum lycopersicum , Solanum lycopersicum/genetics , Lectins/genetics , Lectins/metabolism , Cyclic GMP-Dependent Protein Kinases/genetics , Cyclic GMP-Dependent Protein Kinases/metabolism , Plant Breeding , Pollen/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant
15.
PLoS Biol ; 18(11): e3000872, 2020 11.
Article in English | MEDLINE | ID: mdl-33186350

ABSTRACT

Metabolic reprogramming to fulfill the biosynthetic and bioenergetic demands of cancer cells has aroused great interest in recent years. However, metabolic reprogramming for cancer metastasis has not been well elucidated. Here, we screened a subpopulation of breast cancer cells with highly metastatic capacity to the lung in mice and investigated the metabolic alternations by analyzing the metabolome and the transcriptome, which were confirmed in breast cancer cells, mouse models, and patients' tissues. The effects and the mechanisms of nucleotide de novo synthesis in cancer metastasis were further evaluated in vitro and in vivo. In our study, we report an increased nucleotide de novo synthesis as a key metabolic hallmark in metastatic breast cancer cells and revealed that enforced nucleotide de novo synthesis was enough to drive the metastasis of breast cancer cells. An increased key metabolite of de novo synthesis, guanosine-5'-triphosphate (GTP), is able to generate more cyclic guanosine monophosphate (cGMP) to activate cGMP-dependent protein kinases PKG and downstream MAPK pathway, resulting in the increased tumor cell stemness and metastasis. Blocking de novo synthesis by silencing phosphoribosylpyrophosphate synthetase 2 (PRPS2) can effectively decrease the stemness of breast cancer cells and reduce the lung metastasis. More interestingly, in breast cancer patients, the level of plasma uric acid (UA), a downstream metabolite of purine, is tightly correlated with patient's survival. Our study uncovered that increased de novo synthesis is a metabolic hallmark of metastatic breast cancer cells and its metabolites can regulate the signaling pathway to promote the stemness and metastasis of breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Nucleotides/metabolism , Adult , Animals , Breast Neoplasms/genetics , Cell Line, Tumor , China , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Female , Gene Expression Profiling/methods , Humans , MAP Kinase Signaling System/physiology , Metabolomics/methods , Mice , Mice, Inbred BALB C , Nucleotides/biosynthesis , Purines , Ribose-Phosphate Pyrophosphokinase/metabolism , Signal Transduction
16.
EMBO Rep ; 22(6): e53006, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33998133

ABSTRACT

Mycobacterium tuberculosis (Mtb) has evolved various strategies to co-opt the host ubiquitin network to facilitate its proliferation. In the current issue of EMBO Reports, Liu and colleagues (Wang et al, 2021) demonstrate that the Mtb kinase PknG catalyzes ubiquitination by an unprecedented mechanism wherein the reaction starts by ATP hydrolysis occurring at the α-phosphate position, leading to covalent attachment of the modifier to Lys82 of the E2 conjugation enzyme UbcH7. Ubiquitin is then delivered to host proteins important for immunity by a putative peptidase activity also embedded in PknG. This novel activity of PknG expands our understanding of protein ubiquitination mechanisms, which may be harnessed to identify potential therapeutics for fighting Mtb infection.


Subject(s)
Mycobacterium tuberculosis , Cyclic GMP-Dependent Protein Kinases , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination
17.
EMBO Rep ; 22(6): e52175, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33938130

ABSTRACT

Upon Mycobacterium tuberculosis (Mtb) infection, protein kinase G (PknG), a eukaryotic-type serine-threonine protein kinase (STPK), is secreted into host macrophages to promote intracellular survival of the pathogen. However, the mechanisms underlying this PknG-host interaction remain unclear. Here, we demonstrate that PknG serves both as a ubiquitin-activating enzyme (E1) and a ubiquitin ligase (E3) to trigger the ubiquitination and degradation of tumor necrosis factor receptor-associated factor 2 (TRAF2) and TGF-ß-activated kinase 1 (TAK1), thereby inhibiting the activation of NF-κB signaling and host innate responses. PknG promotes the attachment of ubiquitin (Ub) to the ubiquitin-conjugating enzyme (E2) UbcH7 via an isopeptide bond (UbcH7 K82-Ub), rather than the usual C86-Ub thiol-ester bond. PknG induces the discharge of Ub from UbcH7 by acting as an isopeptidase, before attaching Ub to its substrates. These results demonstrate that PknG acts as an unusual ubiquitinating enzyme to remove key components of the innate immunity system, thus providing a potential target for tuberculosis treatment.


Subject(s)
Mycobacterium tuberculosis , Cyclic GMP-Dependent Protein Kinases , Mycobacterium tuberculosis/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
18.
Proc Natl Acad Sci U S A ; 117(38): 23286-23291, 2020 09 22.
Article in English | MEDLINE | ID: mdl-31213548

ABSTRACT

Painful or threatening experiences trigger escape responses that are guided by nociceptive neuronal circuitry. Although some components of this circuitry are known and conserved across animals, how this circuitry is regulated at the genetic and developmental levels is mostly unknown. To escape noxious stimuli, such as parasitoid wasp attacks, Drosophila melanogaster larvae generate a curling and rolling response. Rover and sitter allelic variants of the Drosophila foraging (for) gene differ in parasitoid wasp susceptibility, suggesting a link between for and nociception. By optogenetically activating cells associated with each of for's promoters (pr1-pr4), we show that pr1 cells regulate larval escape behavior. In accordance with rover and sitter differences in parasitoid wasp susceptibility, we found that rovers have higher pr1 expression and increased sensitivity to nociception relative to sitters. The for null mutants display impaired responses to thermal nociception, which are rescued by restoring for expression in pr1 cells. Conversely, knockdown of for in pr1 cells phenocopies the for null mutant. To gain insight into the circuitry underlying this response, we used an intersectional approach and activity-dependent GFP reconstitution across synaptic partners (GRASP) to show that pr1 cells in the ventral nerve cord (VNC) are required for the nociceptive response, and that multidendritic sensory nociceptive neurons synapse onto pr1 neurons in the VNC. Finally, we show that activation of the pr1 circuit during development suppresses the escape response. Our data demonstrate a role of for in larval nociceptive behavior. This function is specific to for pr1 neurons in the VNC, guiding a developmentally plastic escape response circuit.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Escape Reaction , Larva/growth & development , Nociceptors/metabolism , Animals , Cyclic GMP-Dependent Protein Kinases/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Hot Temperature , Larva/genetics , Larva/physiology , Neuronal Plasticity , Nociception , Promoter Regions, Genetic , Wasps/physiology
19.
PLoS Genet ; 16(8): e1008505, 2020 08.
Article in English | MEDLINE | ID: mdl-32776934

ABSTRACT

Dynamic gene expression in neurons shapes fundamental processes in the nervous systems of animals. However, how neuronal activation by different stimuli can lead to distinct transcriptional responses is not well understood. We have been studying how microbial metabolites modulate gene expression in chemosensory neurons of Caenorhabditis elegans. Considering the diverse environmental stimuli that can activate chemosensory neurons of C. elegans, we sought to understand how specific transcriptional responses can be generated in these neurons in response to distinct cues. We have focused on the mechanism of rapid (<6 min) and selective transcriptional induction of daf-7, a gene encoding a TGF-ß ligand, in the ASJ chemosensory neurons in response to the pathogenic bacterium Pseudomonas aeruginosa. DAF-7 is required for the protective behavioral avoidance of P. aeruginosa by C. elegans. Here, we define the involvement of two distinct cyclic GMP (cGMP)-dependent pathways that are required for daf-7 expression in the ASJ neuron pair in response to P. aeruginosa. We show that a calcium-independent pathway dependent on the cGMP-dependent protein kinase G (PKG) EGL-4, and a canonical calcium-dependent signaling pathway dependent on the activity of a cyclic nucleotide-gated channel subunit CNG-2, function in parallel to activate rapid, selective transcription of daf-7 in response to P. aeruginosa metabolites. Our data suggest that fast, selective early transcription of neuronal genes require PKG in shaping responses to distinct microbial stimuli in a pair of C. elegans chemosensory neurons.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Chemoreceptor Cells/metabolism , Cyclic GMP/metabolism , Pseudomonas aeruginosa/metabolism , Transforming Growth Factor beta/genetics , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/metabolism , Calcium Signaling , Cyclic GMP-Dependent Protein Kinases/metabolism , Cyclic Nucleotide-Gated Cation Channels/metabolism , Transcriptional Activation , Transforming Growth Factor beta/metabolism
20.
Proc Natl Acad Sci U S A ; 117(25): 14220-14230, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32513741

ABSTRACT

Because raising cAMP enhances 26S proteasome activity and the degradation of cell proteins, including the selective breakdown of misfolded proteins, we investigated whether agents that raise cGMP may also regulate protein degradation. Treating various cell lines with inhibitors of phosphodiesterase 5 or stimulators of soluble guanylyl cyclase rapidly enhanced multiple proteasome activities and cellular levels of ubiquitinated proteins by activating protein kinase G (PKG). PKG stimulated purified 26S proteasomes by phosphorylating a different 26S component than is modified by protein kinase A. In cells and cell extracts, raising cGMP also enhanced within minutes ubiquitin conjugation to cell proteins. Raising cGMP, like raising cAMP, stimulated the degradation of short-lived cell proteins, but unlike cAMP, also markedly increased proteasomal degradation of long-lived proteins (the bulk of cell proteins) without affecting lysosomal proteolysis. We also tested if raising cGMP, like cAMP, can promote the degradation of mutant proteins that cause neurodegenerative diseases. Treating zebrafish models of tauopathies or Huntington's disease with a PDE5 inhibitor reduced the levels of the mutant huntingtin and tau proteins, cell death, and the resulting morphological abnormalities. Thus, PKG rapidly activates cytosolic proteasomes, protein ubiquitination, and overall protein degradation, and agents that raise cGMP may help combat the progression of neurodegenerative diseases.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/metabolism , Cyclic GMP/metabolism , Neurodegenerative Diseases/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Animals , Animals, Genetically Modified , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Disease Models, Animal , Humans , Phosphorylation , Tauopathies , Ubiquitin/metabolism , Ubiquitinated Proteins/metabolism , Ubiquitination , Zebrafish , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL