Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 566
Filter
1.
Nature ; 610(7933): 731-736, 2022 10.
Article in English | MEDLINE | ID: mdl-36261517

ABSTRACT

Anaerobic methane oxidation exerts a key control on greenhouse gas emissions1, yet factors that modulate the activity of microorganisms performing this function remain poorly understood. Here we discovered extraordinarily large, diverse DNA sequences that primarily encode hypothetical proteins through studying groundwater, sediments and wetland soil where methane production and oxidation occur. Four curated, complete genomes are linear, up to approximately 1 Mb in length and share genome organization, including replichore structure, long inverted terminal repeats and genome-wide unique perfect tandem direct repeats that are intergenic or generate amino acid repeats. We infer that these are highly divergent archaeal extrachromosomal elements with a distinct evolutionary origin. Gene sequence similarity, phylogeny and local divergence of sequence composition indicate that many of their genes were assimilated from methane-oxidizing Methanoperedens archaea. We refer to these elements as 'Borgs'. We identified at least 19 different Borg types coexisting with Methanoperedens spp. in four distinct ecosystems. Borgs provide methane-oxidizing Methanoperedens archaea access to genes encoding proteins involved in redox reactions and energy conservation (for example, clusters of multihaem cytochromes and methyl coenzyme M reductase). These data suggest that Borgs might have previously unrecognized roles in the metabolism of this group of archaea, which are known to modulate greenhouse gas emissions, but further studies are now needed to establish their functional relevance.


Subject(s)
Methanosarcinales , Amino Acids/genetics , Anaerobiosis , Cytochromes/genetics , Cytochromes/metabolism , Ecosystem , Geologic Sediments , Greenhouse Gases/metabolism , Methane/metabolism , Methanosarcinales/classification , Methanosarcinales/genetics , Methanosarcinales/metabolism , Oxidation-Reduction , Phylogeny , Soil
2.
Biotechnol Bioeng ; 121(6): 2002-2012, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555482

ABSTRACT

The physiological role of Geobacter sulfurreducens extracellular cytochrome filaments is a matter of debate and the development of proposed electronic device applications of cytochrome filaments awaits methods for large-scale cytochrome nanowire production. Functional studies in G. sulfurreducens are stymied by the broad diversity of redox-active proteins on the outer cell surface and the redundancy and plasticity of extracellular electron transport routes. G. sulfurreducens is a poor chassis for producing cytochrome nanowires for electronics because of its slow, low-yield, anaerobic growth. Here we report that filaments of the G. sulfurreducens cytochrome OmcS can be heterologously expressed in Shewanella oneidensis. Multiple lines of evidence demonstrated that a strain of S. oneidensis, expressing the G. sulfurreducens OmcS gene on a plasmid, localized OmcS on the outer cell surface. Atomic force microscopy revealed filaments with the unique morphology of OmcS filaments emanating from cells. Electron transfer to OmcS appeared to require a functional outer-membrane porin-cytochrome conduit. The results suggest that S. oneidensis, which grows rapidly to high culture densities under aerobic conditions, may be suitable for the development of a chassis for producing cytochrome nanowires for electronics applications and may also be a good model microbe for elucidating cytochrome filament function in anaerobic extracellular electron transfer.


Subject(s)
Cytochromes , Geobacter , Shewanella , Shewanella/genetics , Shewanella/metabolism , Shewanella/enzymology , Geobacter/genetics , Geobacter/metabolism , Cytochromes/metabolism , Cytochromes/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Electron Transport , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
3.
Int J Mol Sci ; 25(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38279276

ABSTRACT

The terminal oxidases of bacterial aerobic respiratory chains are redox-active electrogenic enzymes that catalyze the four-electron reduction of O2 to 2H2O taking out electrons from quinol or cytochrome c. Living bacteria often deal with carbon monoxide (CO) which can act as both a signaling molecule and a poison. Bacterial terminal oxidases contain hemes; therefore, they are potential targets for CO. However, our knowledge of this issue is limited and contradictory. Here, we investigated the effect of CO on the cell growth and aerobic respiration of three different Escherichia coli mutants, each expressing only one terminal quinol oxidase: cytochrome bd-I, cytochrome bd-II, or cytochrome bo3. We found that following the addition of CO to bd-I-only cells, a minimal effect on growth was observed, whereas the growth of both bd-II-only and bo3-only strains was severely impaired. Consistently, the degree of resistance of aerobic respiration of bd-I-only cells to CO is high, as opposed to high CO sensitivity displayed by bd-II-only and bo3-only cells consuming O2. Such a difference between the oxidases in sensitivity to CO was also observed with isolated membranes of the mutants. Accordingly, O2 consumption of wild-type cells showed relatively low CO sensitivity under conditions favoring the expression of a bd-type oxidase.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Carbon Monoxide/pharmacology , Carbon Monoxide/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Cytochrome b Group/genetics , Cytochrome b Group/metabolism , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Cytochromes/genetics , Cytochromes/metabolism , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Respiration
4.
Mol Biol Evol ; 39(7)2022 07 02.
Article in English | MEDLINE | ID: mdl-35714268

ABSTRACT

Multiheme cytochromes play key roles in diverse biogeochemical cycles, but understanding the origin and evolution of these proteins is a challenge due to their ancient origin and complex structure. Up until now, the evolution of multiheme cytochromes composed by multiple redox modules in a single polypeptide chain was proposed to occur by gene fusion events. In this context, the pentaheme nitrite reductase NrfA and the tetraheme cytochrome c554 were previously proposed to be at the origin of the extant octa- and nonaheme cytochrome c involved in metabolic pathways that contribute to the nitrogen, sulfur, and iron biogeochemical cycles by a gene fusion event. Here, we combine structural and character-based phylogenetic analysis with an unbiased root placement method to refine the evolutionary relationships between these multiheme cytochromes. The evidence show that NrfA and cytochrome c554 belong to different clades, which suggests that these two multiheme cytochromes are products of truncation of ancestral octaheme cytochromes related to extant octaheme nitrite reductase and MccA, respectively. From our phylogenetic analysis, the last common ancestor is predicted to be an octaheme cytochrome with nitrite reduction ability. Evolution from this octaheme framework led to the great diversity of extant multiheme cytochromes analyzed here by pruning and grafting of protein modules and hemes. By shedding light into the evolution of multiheme cytochromes that intervene in different biogeochemical cycles, this work contributes to our understanding about the interplay between biology and geochemistry across large time scales in the history of Earth.


Subject(s)
Cytochromes , Heme , Cytochromes/chemistry , Cytochromes/genetics , Cytochromes/metabolism , Nitrite Reductases/genetics , Nitrite Reductases/metabolism , Oxidation-Reduction , Phylogeny
5.
Br J Clin Pharmacol ; 89(3): 1089-1098, 2023 03.
Article in English | MEDLINE | ID: mdl-36178950

ABSTRACT

AIMS: Patients on treatment with oral fixed dose imatinib are frequently under- or overexposed to the drug. We investigated the association between the gene activity score (GAS) of imatinib-metabolizing cytochromes (CYP3A4, CYP3A5, CYP2D6, CYP2C9, CYP2C19, CYP2C8) and imatinib and nor-imatinib exposure. We also investigated the impact of concurrent drug-drug-interactions (DDIs) on the association between GAS and imatinib exposure. METHODS: Serial plasma samples were collected from 33 GIST patients treated with imatinib 400 mg daily within a prospective clinical trial. Imatinib and nor-imatinib Ctrough were quantified by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Genetic polymorphisms with a functional impact on imatinib-metabolizing cytochromes were identified and a GAS was calculated for each gene. A DDI-adjusted GAS was also generated. RESULTS: Imatinib and nor-imatinib Ctrough were measured in 161 plasma samples. CYP2D6 GAS and metabolizer status based on genotype were associated with imatinib and (imatinib + nor-imatinib) Ctrough . CYP2D6 poor and intermediate metabolizers were predicted to have a lower nor-imatinib/imatinib metabolic ratio than normal metabolizers (0.197 and 0.193 vs. 0.247, P = .0205), whereas CYP2C8*3 carriers had a higher ratio than CYP2C8*1/*1 patients (0.263 vs. 0.201, P = .0220). CYP2C9 metabolizer status was inversely related to the metabolic ratio with an effect probably driven by the linkage disequilibrium between CYP2C9*2 and CYP2C8*3. The CYP2D6 DDI-adjusted GAS was still predictive of imatinib exposure. CONCLUSIONS: These findings highlight that CYP2D6 plays a major role in imatinib pharmacokinetics, but other players (i.e., CYP2C8) may influence imatinib exposure. These findings could drive the selection of patients more susceptible to imatinib under- or overexposure who could be candidates for personalized treatment and intensified monitoring strategies.


Subject(s)
Cytochrome P-450 CYP2D6 , Gastrointestinal Stromal Tumors , Humans , Cytochrome P-450 CYP2D6/genetics , Imatinib Mesylate/adverse effects , Imatinib Mesylate/pharmacokinetics , Cytochrome P-450 CYP2C8/genetics , Pharmacogenetics , Cytochrome P-450 CYP2C9/genetics , Prospective Studies , Chromatography, Liquid , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/genetics , Tandem Mass Spectrometry , Cytochromes/genetics , Genotype , Cytochrome P-450 CYP2C19/genetics
6.
Physiol Plant ; 175(6): e14064, 2023.
Article in English | MEDLINE | ID: mdl-38148243

ABSTRACT

Green tea made from albino buds and leaves has a strong umami taste and aroma. The cultivar 'Zhonghuang 2' (ZH2, Camellia sinensis) is a natural mutant with young shoots that are yellow in spring and green or yellow-green in summer. However, the mechanism of leaf color change remains unclear. Here, we found that young shoots of ZH2 were yellow at low temperature (LT) and green at high temperature (HT), indicating that ZH2 is a temperature-sensitive cultivar. Transmission electron microscopy analysis showed that the grana in the chloroplasts of young shoots grown at LT were poorly stacked, which caused a lack of photoreactions and chlorophyll. RNA-seq results showed 1279 genes differentially expressed in the young shoots grown at LT compared with those at HT, including genes related to cytochrome synthesis, chloroplast development, photosynthesis, and DNA methylation. A whole-genome bisulfite sequencing assay revealed that the dynamics of DNA methylation levels in the CG, CHG, and CHH contexts decreased under LT, and the change was most obvious in the CHH context. Furthermore, 72 genes showed significant changes in both expression and DNA methylation levels, and most of them were related to cytochrome synthesis, chloroplast development, photosynthesis, transcription factors, and signaling pathways. These results demonstrate that DNA methylation is involved in the LT-regulated albino processes of ZH2. Changes in DNA methylation levels were associated with changes in gene expression levels, affecting the structure and function of chloroplasts, which may have a phenotypic impact on shoot and leaf color.


Subject(s)
Camellia sinensis , Camellia sinensis/genetics , Camellia sinensis/metabolism , Transcriptome/genetics , Temperature , Chlorophyll/metabolism , Cytochromes/analysis , Cytochromes/genetics , Cytochromes/metabolism , Plant Leaves/metabolism , Gene Expression Regulation, Plant/genetics , Plant Proteins/metabolism
7.
Int J Mol Sci ; 24(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36902126

ABSTRACT

Cytochromes P450 are ancient enzymes diffused in organisms belonging to all kingdoms of life, including viruses, with the largest number of P450 genes found in plants. The functional characterization of cytochromes P450 has been extensively investigated in mammals, where these enzymes are involved in the metabolism of drugs and in the detoxification of pollutants and toxic chemicals. The aim of this work is to present an overview of the often disregarded role of the cytochrome P450 enzymes in mediating the interaction between plants and microorganisms. Quite recently, several research groups have started to investigate the role of P450 enzymes in the interactions between plants and (micro)organisms, focusing on the holobiont Vitis vinifera. Grapevines live in close association with large numbers of microorganisms and interact with each other, regulating several vine physiological functions, from biotic and abiotic stress tolerance to fruit quality at harvest.


Subject(s)
Plant Proteins , Vitis , Plant Proteins/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytochromes/genetics , Vitis/genetics , Gene Expression Regulation, Plant
8.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835430

ABSTRACT

Small regulatory RNAs (sRNAs) are now widely recognized for their role in the post-transcriptional regulation of bacterial virulence and growth. We have previously demonstrated the biogenesis and differential expression of several sRNAs in Rickettsia conorii during interactions with the human host and arthropod vector, as well as the in vitro binding of Rickettsia conorii sRNA Rc_sR42 to bicistronic cytochrome bd ubiquinol oxidase subunits I and II (cydAB) mRNA. However, the mechanism of regulation and the effect of sRNA binding on the stability of the cydAB bicistronic transcript and the expression of the cydA and cydB genes are still unknown. In this study, we determined the expression dynamics of Rc_sR42 and its cognate target genes, cydA and cydB, in mouse lung and brain tissues during R. conorii infection in vivo and employed fluorescent and reporter assays to decode the role of sRNA in regulating cognate gene transcripts. Quantitative RT-PCR revealed significant changes in the expression of sRNA and its cognate target gene transcripts during R. conorii infection in vivo, and a greater abundance of these transcripts was observed in the lungs compared to brain tissue. Interestingly, while Rc_sR42 and cydA exhibited similar patterns of change in their expression, indicating the influence of sRNA on the mRNA target, the expression of cydB was independent of sRNA expression. Further, we constructed reporter plasmids of sRNA and cydAB bicistronic mRNA to decipher the role of sRNA on CydA and CydB expression. We observed increased expression of CydA in the presence of sRNA but detected no change in CydB expression in the presence or absence of sRNA. In sum, our results demonstrate that the binding of Rc_sR42 is required for the regulation of cydA but not cydB. Further studies on understanding the influence of this interaction on the mammalian host and tick vector during R. conorii infection are in progress.


Subject(s)
RNA, Small Untranslated , Rickettsia conorii , Animals , Mice , Humans , Rickettsia conorii/genetics , Rickettsia conorii/metabolism , Gene Expression Regulation, Bacterial , Cytochromes/genetics , RNA, Messenger , RNA, Small Untranslated/genetics , Mammals/metabolism
9.
Mol Biol (Mosk) ; 57(6): 1084, 2023.
Article in Russian | MEDLINE | ID: mdl-38062962

ABSTRACT

One of the main functions of enzyme complexes that constitute electron transport (respiratory) chains of organisms is to maintain cellular redox homeostasis by oxidizing reducing equivalents, NADH and quinol. Cytochrome bd is a unique terminal oxidase of the chains of many bacteria including pathogenic species. This redox enzyme couples the oxidation of ubiquinol or menaquinol by molecular oxygen to the generation of proton motive force, a universal energy currency. The latter is used by the organism to produce ATP, another cellular energy currency, via oxidative phosphorylation. Escherichia coli contains two bd-type oxidases, bd-I and bd-II, encoded by the cydAB and appCB operons, respectively. Surprisingly, both bd enzymes make a further contribution to molecular mechanisms of maintaining the appropriate redox balance in the bacterial cell by means of elimination of reactive oxygen species, such as hydrogen peroxide. This review summarizes recent data on the redox-modulated H2O2-scavenging activities of cytochromes bd-I and bd-II from E. coli. The possibility of such antioxidant properties in cytochromes bd from other bacteria is also discussed.


Subject(s)
Antioxidants , Escherichia coli Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen Peroxide , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Cytochromes/genetics , Cytochromes/metabolism , Oxidation-Reduction , Oxidoreductases/metabolism , Escherichia coli Proteins/genetics
10.
J Bacteriol ; 204(12): e0032222, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36383007

ABSTRACT

Reduction of extracellular acceptors requires electron transfer across the periplasm. In Geobacter sulfurreducens, three separate cytoplasmic membrane cytochromes are utilized depending on redox potential, and at least five cytochrome conduits span the outer membrane. Because G. sulfurreducens produces 5 structurally similar triheme periplasmic cytochromes (PpcABCDE) that differ in expression level, midpoint potential, and heme biochemistry, many hypotheses propose distinct periplasmic carriers could be used for specific redox potentials, terminal acceptors, or growth conditions. Using a panel of marker-free single, quadruple, and quintuple mutants, little support for these models could be found. Three quadruple mutants containing only one paralog (PpcA, PpcB, and PpcD) reduced Fe(III) citrate and Fe(III) oxide at the same rate and extent, even though PpcB and PpcD were at much lower periplasmic levels than PpcA. Mutants containing only PpcC and PpcE showed defects, but these cytochromes were nearly undetectable in the periplasm. When expressed sufficiently, PpcC and PpcE supported wild-type Fe(III) reduction. PpcA and PpcE from G. metallireducens similarly restored metal respiration in G. sulfurreducens. PgcA, an unrelated extracellular triheme c-type cytochrome, also participated in periplasmic electron transfer. While triheme cytochromes were important for metal reduction, sextuple ΔppcABCDE ΔpgcA mutants grew near wild-type rates with normal cyclic voltammetry profiles when using anodes as electron acceptors. These results reveal broad promiscuity in the periplasmic electron transfer network of metal-reducing Geobacter and suggest that an as-yet-undiscovered periplasmic mechanism supports electron transfer to electrodes. IMPORTANCE Many inner and outer membrane cytochromes used by Geobacter for electron transfer to extracellular acceptors have specific functions. How these are connected by periplasmic carriers remains poorly understood. G. sulfurreducens contains multiple triheme periplasmic cytochromes with unique biochemical properties and expression profiles. It is hypothesized that each could be involved in a different respiratory pathway, depending on redox potential or energy needs. Here, we show that Geobacter periplasmic cytochromes instead show evidence of being highly promiscuous. Any of 6 triheme cytochromes supported similar growth with soluble or insoluble metals, but none were required when cells utilized electrodes. These findings fail to support many models of Geobacter electron transfer, and question why these organisms produce such an array of periplasmic cytochromes.


Subject(s)
Geobacter , Geobacter/genetics , Geobacter/metabolism , Periplasm/metabolism , Ferric Compounds/metabolism , Electrons , Electron Transport , Cytochromes/genetics , Cytochromes/chemistry , Cytochromes/metabolism , Oxidation-Reduction
11.
Biochemistry ; 61(13): 1337-1350, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35687533

ABSTRACT

The multiheme cytochrome MtrA enables microbial respiration by transferring electrons across the outer membrane to extracellular electron acceptors. While structural studies have identified residues that mediate the binding of MtrA to hemes and to other cytochromes that facilitate extracellular electron transfer (EET), the relative importance of these interactions for EET is not known. To better understand EET, we evaluated how insertion of an octapeptide across all MtrA backbone locations affects Shewanella oneidensis MR-1 respiration on Fe(III). The EET efficiency was found to be inversely correlated with the proximity of the insertion to the heme prosthetic groups. Mutants with decreased EET efficiencies also arose from insertions in a subset of the regions that make residue-residue contacts with the porin MtrB, while all sites contacting the extracellular cytochrome MtrC presented high peptide insertion tolerance. MtrA variants having peptide insertions within the CXXCH motifs that coordinate heme cofactors retained some ability to support respiration on Fe(III), although these variants presented significantly decreased EET efficiencies. Furthermore, the fitness of cells expressing different MtrA variants under Fe(III) respiration conditions correlated with anode reduction. The peptide insertion profile, which represents the first comprehensive sequence-structure-function map for a multiheme cytochrome, implicates MtrA as a strategic protein engineering target for the regulation of EET.


Subject(s)
Electrons , Shewanella , Cytochromes/genetics , Cytochromes/metabolism , Electron Transport , Ferric Compounds/metabolism , Heme/chemistry , Oxidation-Reduction , Peptides/genetics , Peptides/metabolism , Shewanella/genetics , Shewanella/metabolism
12.
BMC Genomics ; 23(1): 721, 2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36273137

ABSTRACT

BACKGROUND: Homalodisca vitripennis Germar, the glassy-winged sharpshooter, is an invasive insect in California and a critical threat to agriculture through its transmission of the plant pathogen, Xylella fastidiosa. Quarantine, broad-spectrum insecticides, and biological control have been used for population management of H. vitripennis since its invasion and subsequent proliferation throughout California. Recently wide-spread neonicotinoid resistance has been detected in populations of H. vitripennis in the southern portions of California's Central Valley. In order to better understand potential mechanisms of H. vitripennis neonicotinoid resistance, we performed RNA sequencing on wild-caught insecticide-resistant and relatively susceptible sharpshooters to profile their transcriptome and population structure. RESULTS: We identified 81 differentially expressed genes with higher expression in resistant individuals. The significant largest differentially expressed candidate gene linked to resistance status was a cytochrome P450 gene with similarity to CYP6A9. Furthermore, we observed an over-enrichment of GO terms representing functions supportive of roles in resistance mechanisms (cytochrome P450s, M13 peptidases, and cuticle structural proteins). Finally, we saw no evidence of broad-scale population structure, perhaps due to H. vitripennis' relatively recent introduction to California or due to the relatively small geographic scale investigated here. CONCLUSIONS: In this work, we characterized the transcriptome of insecticide-resistant and susceptible H. vitripennis and identified candidate genes that may be involved in resistance mechanisms for this species. Future work should seek to build on the transcriptome profiling performed here to confirm the role of the identified genes, particularly the cytochrome P450, in resistance in H. vitripennis. We hope this work helps aid future population management strategies for this and other species with growing insecticide resistance.


Subject(s)
Hemiptera , Insecticides , Animals , Cytochromes/genetics , Cytochromes/metabolism , Hemiptera/genetics , Hemiptera/metabolism , Insecticide Resistance/genetics , Insecticides/pharmacology , Insecticides/metabolism , Neonicotinoids , Peptide Hydrolases/genetics , Transcriptome
13.
Mol Microbiol ; 116(4): 1124-1139, 2021 10.
Article in English | MEDLINE | ID: mdl-34423503

ABSTRACT

Geobacter sulfurreducens utilizes extracellular electron acceptors such as Mn(IV), Fe(III), syntrophic partners, and electrodes that vary from +0.4 to -0.3 V versus standard hydrogen electrode (SHE), representing a potential energy span that should require a highly branched electron transfer chain. Here we describe CbcBA, a bc-type cytochrome essential near the thermodynamic limit of respiration when acetate is the electron donor. Mutants-lacking cbcBA ceased Fe(III) reduction at -0.21 V versus SHE, could not transfer electrons to electrodes between -0.21 and -0.28 V, and could not reduce the final 10%-35% of Fe(III) minerals. As redox potential decreased during Fe(III) reduction, cbcBA was induced with the aid of the regulator BccR to become one of the most highly expressed genes in G. sulfurreducens. Growth yield (CFU/mM Fe(II)) was 112% of WT in ∆cbcBA, and deletion of cbcL (an unrelated bc-cytochrome essential near -0.15 V) in ΔcbcBA increased yield to 220%. Together with ImcH, which is required at high redox potentials, CbcBA represents a third cytoplasmic membrane oxidoreductase in G. sulfurreducens. This expanding list shows how metal-reducing bacteria may constantly sense redox potential to adjust growth efficiency in changing environments.


Subject(s)
Cytochromes/genetics , Cytochromes/metabolism , Electron Transport , Ferric Compounds/metabolism , Geobacter/genetics , Geobacter/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Membrane/metabolism , DNA, Bacterial , Energy Metabolism , Gene Deletion , Gene Expression Regulation, Bacterial , Geobacter/growth & development , Membrane Proteins/genetics , Multigene Family , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Respiration
14.
Antonie Van Leeuwenhoek ; 115(10): 1245-1252, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35951251

ABSTRACT

A facultative anaerobic bacterium, designated as A25T, was isolated from a mangrove sediment sample collected in Shenzhen, China. Cells of strain A25T were found to be Gram-staining negative, rod-shaped, flagella-harboring, and oxidase- and catalase-positive. The isolate was able to grow at 4-40 °C (optimum 28 °C) and pH 5.0-9.0 (optimum pH 6.0), and in 0-10% NaCl concentration (w/v) (optimum 1%). Strain A25T was capable of reducing Fe(III) citrate under anaerobic conditions. The major fatty acids of this strain was C16:1ω7c/C16:1ω6c (summed feature 3), C17:1ω8c and iso-C15:0. Results of phylogenetic analyses based on 16S rRNA gene sequences indicated that strain A25T is affiliated with the genus Shewanella, showing the highest similarity to Shewanella seohaensis S7-3T (98.4% similarity). The average nucleotide identity and digital DNA-DNA hybridization values between the genomes of strain A25T and its closely related strains were ≤ 79.0% and ≤ 22.8%, respectively. Based on its phenotypic, phylogenetic properties and physiological and biochemical characteristics, strain A25T (= JCM 34900T = GDMCC 1.2731T) was designated as the type strain of a novel species of the genus Shewanella, for which the name Shewanella shenzhenensis sp. nov. was proposed.


Subject(s)
Ferric Compounds , Shewanella , Bacterial Typing Techniques , Base Composition , Catalase , Citrates , Cytochromes/genetics , DNA, Bacterial/genetics , Fatty Acids/analysis , Nucleotides , Phospholipids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sodium Chloride
15.
Biochem J ; 478(14): 2871-2887, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34190983

ABSTRACT

The redox potential values of cytochromes can be modulated by the protonation/deprotonation of neighbor groups (redox-Bohr effect), a mechanism that permits the proteins to couple electron/proton transfer. In the respiratory chains, this effect is particularly relevant if observed in the physiological pH range, as it may contribute to the electrochemical gradient for ATP synthesis. A constitutively produced family of five triheme cytochromes (PpcA-E) from the bacterium Geobacter sulfurreducens plays a crucial role in extracellular electron transfer, a hallmark that permits this bacterium to be explored for several biotechnological applications. Two members of this family (PpcA and PpcD) couple electron/proton transfer in the physiological pH range, a feature not shared with PpcB and PpcE. That ability is crucial for G. sulfurreducens' growth in Fe(III)-reducing habitats since extra contributors to the electrochemical gradient are needed. It was postulated that the redox-Bohr effect is determined by the nature of residue 6, a leucine in PpcA/PpcD and a phenylalanine in PpcB/PpcE. To confirm this hypothesis, Phe6 was replaced by leucine in PpcB and PpcE. The functional properties of these mutants were investigated by NMR and UV-visible spectroscopy to assess their capability to couple electron/proton transfer in the physiological pH range. The results obtained showed that the mutants have an increased redox-Bohr effect and are now capable of coupling electron/proton transfer. This confirms the determinant role of the nature of residue 6 in the modulation of the redox-Bohr effect in this family of cytochromes, opening routes to engineer Geobacter cells with improved biomass production.


Subject(s)
Bacterial Proteins/metabolism , Cytochromes/metabolism , Geobacter/metabolism , Heme/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cytochromes/chemistry , Cytochromes/genetics , Electron Transport/genetics , Electrons , Geobacter/genetics , Heme/chemistry , Hydrogen-Ion Concentration , Models, Molecular , Molecular Structure , Mutation , Oxidation-Reduction , Protein Conformation , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protons , Spectrophotometry/methods , Thermodynamics
16.
Proc Natl Acad Sci U S A ; 116(9): 3425-3430, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30755526

ABSTRACT

The bacterium Shewanella oneidensis has evolved a sophisticated electron transfer (ET) machinery to export electrons from the cytosol to extracellular space during extracellular respiration. At the heart of this process are decaheme proteins of the Mtr pathway, MtrC and MtrF, located at the external face of the outer bacterial membrane. Crystal structures have revealed that these proteins bind 10 c-type hemes arranged in the peculiar shape of a staggered cross that trifurcates the electron flow, presumably to reduce extracellular substrates while directing electrons to neighboring multiheme cytochromes at either side along the membrane. Especially intriguing is the design of the heme junctions trifurcating the electron flow: they are made of coplanar and T-shaped heme pair motifs with relatively large and seemingly unfavorable tunneling distances. Here, we use electronic structure calculations and molecular simulations to show that the side chains of the heme rings, in particular the cysteine linkages inserting in the space between coplanar and T-shaped heme pairs, strongly enhance electronic coupling in these two motifs. This results in an [Formula: see text]-fold speedup of ET steps at heme junctions that would otherwise be rate limiting. The predicted maximum electron flux through the solvated proteins is remarkably similar for all possible flow directions, suggesting that MtrC and MtrF shuttle electrons with similar efficiency and reversibly in directions parallel and orthogonal to the outer membrane. No major differences in the ET properties of MtrC and MtrF are found, implying that the different expression levels of the two proteins during extracellular respiration are not related to redox function.


Subject(s)
Cytochrome c Group/genetics , Electron Transport/genetics , Models, Molecular , Shewanella/genetics , Amino Acid Sequence/genetics , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Cytochrome c Group/chemistry , Cytochromes/chemistry , Cytochromes/genetics , Electrons , Heme/chemistry , Heme/genetics , Oxidation-Reduction , Shewanella/chemistry , Shewanella/pathogenicity
17.
Mol Biol (Mosk) ; 56(4): 619-627, 2022.
Article in Russian | MEDLINE | ID: mdl-35964318

ABSTRACT

In cells of Escherichia coli, terminal oxidase bd-I encoded by the cydAB gene catalyzes the reduction of O2 to water using hydroquinone as an electron donor. In addition to the cydAB operon, two other genes, cydC and cydD, encoding the heterodimeric ATP-binding cassette-type transporter are essential for the assembly of cytochrome bd-I. It was shown that inactivation of cytochrome bd-I by the introduction of cydB or cydD deletions into the E. coli chromosome leads to supersensitivity of the bacteria to antibiotics of the quinolone and beta-lactam classes. The sensitivity of these mutants to antibiotics is partially suppressed by introduction of a constitutively expressed gene katG under the control of the Ptet promoter into their genome. The increased level of hydrogen sulfide resulting from the introduction of the mstA gene, encoding 3-mercaptopyruvate sulfurtransferase, under the control of the Ptet promoter, leads to the same effect. These data demonstrate the important role of cytochrome bd-I in the defense of bacteria from oxidative stress and bactericidal antibiotics.


Subject(s)
Escherichia coli Proteins , Quinolones , ATP-Binding Cassette Transporters/genetics , Anti-Bacterial Agents/pharmacology , Cytochrome b Group , Cytochromes/genetics , Cytochromes/metabolism , Electron Transport Chain Complex Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Oxidoreductases/genetics , beta-Lactams
18.
Biophys J ; 120(23): 5395-5407, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34688593

ABSTRACT

Geobacter sulfurreducens possesses over 100 cytochromes that assure an effective electron transfer to the cell exterior. The most abundant group of cytochromes in this microorganism is the PpcA family, composed of five periplasmic triheme cytochromes with high structural homology and identical heme coordination (His-His). GSU0105 is a periplasmic triheme cytochrome synthetized by G. sulfurreducens in Fe(III)-reducing conditions but is not present in cultures grown on fumarate. This cytochrome has a low sequence identity with the PpcA family cytochromes and a different heme coordination, based on the analysis of its amino acid sequence. In this work, amino acid sequence analysis, site-directed mutagenesis, and complementary biophysical techniques, including ultraviolet-visible, circular dichroism, electron paramagnetic resonance, and nuclear magnetic resonance spectroscopies, were used to characterize GSU0105. The cytochrome has a low percentage of secondary structural elements, with features of α-helices and ß-sheets. Nuclear magnetic resonance shows that the protein contains three low-spin hemes (Fe(II), S = 0) in the reduced state. Electron paramagnetic resonance shows that, in the oxidized state, one of the hemes becomes high-spin (Fe(III), S = 5/2), whereas the two others remain low-spin (Fe(III), S = 1/2). The data obtained also indicate that the heme groups have distinct axial coordination. The apparent midpoint reduction potential of GSU0105 (-154 mV) is pH independent in the physiological range. However, the pH modulates the reduction potential of the heme that undergoes the low- to high-spin interconversion. The reduction potential values of cytochrome GSU0105 are more distinct compared to those of the PpcA family members, providing the protein with a larger functional working redox potential range. Overall, the results obtained, together with an amino acid sequence analysis of different multiheme cytochrome families, indicate that GSU0105 is a member of a new group of triheme cytochromes.


Subject(s)
Bacterial Proteins , Cytochromes , Ferric Compounds , Geobacter/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cytochromes/chemistry , Cytochromes/genetics , Heme/metabolism , Magnetic Resonance Spectroscopy , Oxidation-Reduction
19.
Photosynth Res ; 148(3): 137-152, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34236566

ABSTRACT

The heliobacteria, a family of anoxygenic phototrophs, possess the simplest known photosynthetic apparatus. Although they are photoheterotrophs in the light, the heliobacteria can also grow chemotrophically via pyruvate metabolism in the dark. In the heliobacteria, the cytochrome bc complex is responsible for oxidizing menaquinol and reducing cytochrome c553 in the electron flow cycle used for phototrophy. However, there is no known electron acceptor for the mobile cytochrome c553 other than the photochemical reaction center. We have, therefore, hypothesized that the cytochrome bc complex is necessary for phototrophy, but unnecessary for chemotrophic growth in the dark. We used a two-step method for CRISPR-based genome editing in Heliobacterium modesticaldum to delete the genes encoding the four major subunits of the cytochrome bc complex. Genotypic analysis verified the deletion of the petCBDA gene cluster encoding the catalytic components of the complex. Spectroscopic studies revealed that re-reduction of cytochrome c553 after flash-induced photo-oxidation was over 100 times slower in the ∆petCBDA mutant compared to the wild-type. Steady-state levels of oxidized P800 (the primary donor of the photochemical reaction center) were much higher in the ∆petCBDA mutant at every light level, consistent with a limitation in electron flow to the reaction center. The ∆petCBDA mutant was unable to grow phototrophically on acetate plus CO2 but could grow chemotrophically on pyruvate as a carbon source similar to the wild-type strain in the dark. The mutants could be complemented by reintroduction of the petCBDA gene cluster on a plasmid expressed from the clostridial eno promoter.


Subject(s)
Cell Survival/physiology , Clostridiales/genetics , Clostridiales/metabolism , Cytochromes/genetics , Cytochromes/metabolism , Gene Deletion , Photosynthesis/physiology , Adaptation, Ocular/genetics , Adaptation, Ocular/physiology , Dark Adaptation/genetics , Dark Adaptation/physiology , Mutation , Photosynthesis/genetics
20.
Plant Cell Environ ; 44(10): 3246-3256, 2021 10.
Article in English | MEDLINE | ID: mdl-34181245

ABSTRACT

Inflorescence movements in response to natural gradients of sunlight are frequently observed in the plant kingdom and are suggested to contribute to reproductive success. Although the physiological and molecular bases of light-mediated tropisms in vegetative organs have been thoroughly investigated, the mechanisms that control inflorescence orientation in response to light gradients under natural conditions are not well understood. In this work, we have used a combination of laboratory and field experiments to investigate light-mediated re-orientation of Arabidopsis thaliana inflorescences. We show that inflorescence phototropism is promoted by photons in the UV and blue spectral range (≤500 nm) and depends on multiple photoreceptor families. Experiments under controlled conditions show that UVR8 is the main photoreceptor mediating the phototropic response to narrowband UV-B radiation, and phototropins and cryptochromes control the response to narrowband blue light. Interestingly, whereas phototropins mediate bending in response to low irradiances of blue, cryptochromes are the principal photoreceptors acting at high irradiances. Moreover, phototropins negatively regulate the action of cryptochromes at high irradiances of blue light. Experiments under natural field conditions demonstrate that cryptochromes are the principal photoreceptors acting in the promotion of the heliotropic response of inflorescences under full sunlight.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Chromosomal Proteins, Non-Histone/genetics , Cytochromes/genetics , Photoreceptors, Plant/genetics , Phototropism/genetics , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Cytochromes/metabolism , Photoreceptors, Plant/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL