Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.554
Filter
1.
Cell ; 181(3): 665-673.e10, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32289252

ABSTRACT

A growing number of bacteria are recognized to conduct electrons across their cell envelope, and yet molecular details of the mechanisms supporting this process remain unknown. Here, we report the atomic structure of an outer membrane spanning protein complex, MtrAB, that is representative of a protein family known to transport electrons between the interior and exterior environments of phylogenetically and metabolically diverse microorganisms. The structure is revealed as a naturally insulated biomolecular wire possessing a 10-heme cytochrome, MtrA, insulated from the membrane lipidic environment by embedding within a 26 strand ß-barrel formed by MtrB. MtrAB forms an intimate connection with an extracellular 10-heme cytochrome, MtrC, which presents its hemes across a large surface area for electrical contact with extracellular redox partners, including transition metals and electrodes.


Subject(s)
ATP-Binding Cassette Transporters/ultrastructure , Bacterial Outer Membrane Proteins/ultrastructure , Bacterial Proteins/ultrastructure , RNA-Binding Proteins/ultrastructure , Transcription Factors/ultrastructure , ATP-Binding Cassette Transporters/metabolism , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Cytochromes/metabolism , Electron Transport/physiology , Electrons , Heme/metabolism , Multiprotein Complexes/ultrastructure , Oxidation-Reduction , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism
2.
Nature ; 610(7933): 731-736, 2022 10.
Article in English | MEDLINE | ID: mdl-36261517

ABSTRACT

Anaerobic methane oxidation exerts a key control on greenhouse gas emissions1, yet factors that modulate the activity of microorganisms performing this function remain poorly understood. Here we discovered extraordinarily large, diverse DNA sequences that primarily encode hypothetical proteins through studying groundwater, sediments and wetland soil where methane production and oxidation occur. Four curated, complete genomes are linear, up to approximately 1 Mb in length and share genome organization, including replichore structure, long inverted terminal repeats and genome-wide unique perfect tandem direct repeats that are intergenic or generate amino acid repeats. We infer that these are highly divergent archaeal extrachromosomal elements with a distinct evolutionary origin. Gene sequence similarity, phylogeny and local divergence of sequence composition indicate that many of their genes were assimilated from methane-oxidizing Methanoperedens archaea. We refer to these elements as 'Borgs'. We identified at least 19 different Borg types coexisting with Methanoperedens spp. in four distinct ecosystems. Borgs provide methane-oxidizing Methanoperedens archaea access to genes encoding proteins involved in redox reactions and energy conservation (for example, clusters of multihaem cytochromes and methyl coenzyme M reductase). These data suggest that Borgs might have previously unrecognized roles in the metabolism of this group of archaea, which are known to modulate greenhouse gas emissions, but further studies are now needed to establish their functional relevance.


Subject(s)
Methanosarcinales , Amino Acids/genetics , Anaerobiosis , Cytochromes/genetics , Cytochromes/metabolism , Ecosystem , Geologic Sediments , Greenhouse Gases/metabolism , Methane/metabolism , Methanosarcinales/classification , Methanosarcinales/genetics , Methanosarcinales/metabolism , Oxidation-Reduction , Phylogeny , Soil
3.
Proc Natl Acad Sci U S A ; 120(16): e2300137120, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37036998

ABSTRACT

Heme-containing integral membrane proteins are at the heart of many bioenergetic complexes and electron transport chains. The importance of these electron relay hubs across biology has inspired the design of de novo proteins that recreate their core features within robust, versatile, and tractable protein folds. To this end, we report here the computational design and in-cell production of a minimal diheme membrane cytochrome which successfully integrates into the cellular membrane of live bacteria. This synthetic construct emulates a four-helix bundle found in modern respiratory complexes but has no sequence homology to any polypeptide sequence found in nature. The two b-type hemes, which appear to be recruited from the endogenous heme pool, have distinct split redox potentials with values close to those of natural membrane-spanning cytochromes. The purified protein can engage in rapid biomimetic electron transport with small molecules, with other redox proteins, and with biologically relevant diffusive electron carriers. We thus report an artificial membrane metalloprotein with the potential to serve as a functional electron transfer module in both synthetic protocells and living systems.


Subject(s)
Cytochromes , Metalloproteins , Cytochromes/metabolism , Oxidation-Reduction , Electron Transport , Metalloproteins/metabolism , Heme/metabolism
4.
PLoS Genet ; 19(3): e1010678, 2023 03.
Article in English | MEDLINE | ID: mdl-36972302

ABSTRACT

Cross-resistance to insecticides in multiple resistant malaria vectors is hampering resistance management. Understanding its underlying molecular basis is critical to implementation of suitable insecticide-based interventions. Here, we established that the tandemly duplicated cytochrome P450s, CYP6P9a/b are driving carbamate and pyrethroid cross-resistance in Southern African populations of the major malaria vector Anopheles funestus. Transcriptome sequencing revealed that cytochrome P450s are the most over-expressed genes in bendiocarb and permethrin-resistant An. funestus. The CYP6P9a and CYP6P9b genes are overexpressed in resistant An. funestus from Southern Africa (Malawi) versus susceptible An. funestus (Fold change (FC) is 53.4 and 17 respectively), while the CYP6P4a and CYP6P4b genes are overexpressed in resistant An. funestus in Ghana, West Africa, (FC is 41.1 and 17.2 respectively). Other up-regulated genes in resistant An. funestus include several additional cytochrome P450s (e.g. CYP9J5, CYP6P2, CYP6P5), glutathione-S transferases, ATP-binding cassette transporters, digestive enzymes, microRNA and transcription factors (FC<7). Targeted enrichment sequencing strongly linked a known major pyrethroid resistance locus (rp1) to carbamate resistance centering around CYP6P9a/b. In bendiocarb resistant An. funestus, this locus exhibits a reduced nucleotide diversity, significant p-values when comparing allele frequencies, and the most non-synonymous substitutions. Recombinant enzyme metabolism assays showed that both CYP6P9a/b metabolize carbamates. Transgenic expression of CYP6P9a/b in Drosophila melanogaster revealed that flies expressing both genes were significantly more resistant to carbamates than controls. Furthermore, a strong correlation was observed between carbamate resistance and CYP6P9a genotypes with homozygote resistant An. funestus (CYP6P9a and the 6.5kb enhancer structural variant) exhibiting a greater ability to withstand bendiocarb/propoxur exposure than homozygote CYP6P9a_susceptible (e.g Odds ratio = 20.8, P<0.0001 for bendiocarb) and heterozygotes (OR = 9.7, P<0.0001). Double homozygote resistant genotype (RR/RR) were even more able to survive than any other genotype combination showing an additive effect. This study highlights the risk that pyrethroid resistance escalation poses to the efficacy of other classes of insecticides. Available metabolic resistance DNA-based diagnostic assays should be used by control programs to monitor cross-resistance between insecticides before implementing new interventions.


Subject(s)
Anopheles , Insecticides , Malaria , Pyrethrins , Animals , Insecticides/pharmacology , Carbamates/metabolism , Pyrethrins/metabolism , Anopheles/genetics , Drosophila melanogaster , Insecticide Resistance/genetics , Mosquito Vectors/genetics , Cytochromes/metabolism , Ghana
5.
Proc Natl Acad Sci U S A ; 119(19): e2119964119, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35503913

ABSTRACT

Using a series of multiheme cytochromes, the metal-reducing bacterium Shewanella oneidensis MR-1 can perform extracellular electron transfer (EET) to respire redox-active surfaces, including minerals and electrodes outside the cell. While the role of multiheme cytochromes in transporting electrons across the cell wall is well established, these cytochromes were also recently found to facilitate long-distance (micrometer-scale) redox conduction along outer membranes and across multiple cells bridging electrodes. Recent studies proposed that long-distance conduction arises from the interplay of electron hopping and cytochrome diffusion, which allows collisions and electron exchange between cytochromes along membranes. However, the diffusive dynamics of the multiheme cytochromes have never been observed or quantified in vivo, making it difficult to assess their hypothesized contribution to the collision-exchange mechanism. Here, we use quantum dot labeling, total internal reflection fluorescence microscopy, and single-particle tracking to quantify the lateral diffusive dynamics of the outer membrane-associated decaheme cytochromes MtrC and OmcA, two key components of EET in S. oneidensis. We observe confined diffusion behavior for both quantum dot-labeled MtrC and OmcA along cell surfaces (diffusion coefficients DMtrC = 0.0192 ± 0.0018 µm2/s, DOmcA = 0.0125 ± 0.0024 µm2/s) and the membrane extensions thought to function as bacterial nanowires. We find that these dynamics can trace a path for electron transport via overlap of cytochrome trajectories, consistent with the long-distance conduction mechanism. The measured dynamics inform kinetic Monte Carlo simulations that combine direct electron hopping and redox molecule diffusion, revealing significant electron transport rates along cells and membrane nanowires.


Subject(s)
Shewanella , Single Molecule Imaging , Cell Membrane/metabolism , Cytochromes/metabolism , Electron Transport , Oxidation-Reduction , Shewanella/metabolism
6.
J Infect Dis ; 230(1): e149-e158, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052707

ABSTRACT

BACKGROUND: Cytochrome bd complexes are respiratory oxidases found exclusively in prokaryotes that are important during infection for numerous bacterial pathogens. METHODS: In silico docking was employed to screen approved drugs for their ability to bind to the quinol site of Escherichia coli cytochrome bd-I. Respiratory inhibition was assessed with oxygen electrodes using membranes isolated from E. coli and methicillin-resistant Staphylococcus aureus strains expressing single respiratory oxidases (ie, cytochromes bd, bo', or aa3). Growth/viability assays were used to measure bacteriostatic and bactericidal effects. RESULTS: The steroid drugs ethinylestradiol and quinestrol inhibited E. coli bd-I activity with median inhibitory concentration (IC50) values of 47 ± 28.9 µg/mL (158 ± 97.2 µM) and 0.2 ± 0.04 µg/mL (0.5 ± 0.1 µM), respectively. Quinestrol inhibited growth of an E. coli "bd-I only" strain with an IC50 of 0.06 ± 0.02 µg/mL (0.2 ± 0.07 µM). Growth of an S. aureus "bd only" strain was inhibited by quinestrol with an IC50 of 2.2 ± 0.43 µg/mL (6.0 ± 1.2 µM). Quinestrol exhibited potent bactericidal effects against S. aureus but not E. coli. CONCLUSIONS: Quinestrol inhibits cytochrome bd in E. coli and S. aureus membranes and inhibits the growth of both species, yet is only bactericidal toward S. aureus.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Methicillin-Resistant Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Escherichia coli/enzymology , Anti-Bacterial Agents/pharmacology , Molecular Docking Simulation , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/metabolism , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/metabolism , Microbial Sensitivity Tests , Steroids/pharmacology , Steroids/chemistry , Electron Transport Chain Complex Proteins/antagonists & inhibitors , Electron Transport Chain Complex Proteins/metabolism , Cytochrome b Group , Cytochromes/antagonists & inhibitors , Cytochromes/metabolism
7.
J Biol Chem ; 299(7): 104860, 2023 07.
Article in English | MEDLINE | ID: mdl-37236355

ABSTRACT

Among the various components of the protozoan Plasmodium mitochondrial respiratory chain, only Complex III is a validated cellular target for antimalarial drugs. The compound CK-2-68 was developed to specifically target the alternate NADH dehydrogenase of the malaria parasite respiratory chain, but the true target for its antimalarial activity has been controversial. Here, we report the cryo-EM structure of mammalian mitochondrial Complex III bound with CK-2-68 and examine the structure-function relationships of the inhibitor's selective action on Plasmodium. We show that CK-2-68 binds specifically to the quinol oxidation site of Complex III, arresting the motion of the iron-sulfur protein subunit, which suggests an inhibition mechanism similar to that of Pf-type Complex III inhibitors such as atovaquone, stigmatellin, and UHDBT. Our results shed light on the mechanisms of observed resistance conferred by mutations, elucidate the molecular basis of the wide therapeutic window of CK-2-68 for selective action of Plasmodium vs. host cytochrome bc1, and provide guidance for future development of antimalarials targeting Complex III.


Subject(s)
Antimalarials , Plasmodium , Animals , Antimalarials/chemistry , Electron Transport Complex III/metabolism , Plasmodium falciparum/metabolism , Plasmodium/metabolism , Cytochromes/metabolism , Mammals/metabolism
8.
Mol Microbiol ; 119(3): 350-363, 2023 03.
Article in English | MEDLINE | ID: mdl-36660820

ABSTRACT

Methanogenic archaea belonging to the Order Methanosarcinales conserve energy using an electron transport chain (ETC). In the genetically tractable strain Methanosarcina acetivorans, ferredoxin donates electrons to the ETC via the Rnf (Rhodobacter nitrogen fixation) complex. The Rnf complex in M. acetivorans, unlike its counterpart in Bacteria, contains a multiheme c-type cytochrome (MHC) subunit called MmcA. Early studies hypothesized MmcA is a critical component of Rnf, however recent work posits that the primary role of MmcA is facilitating extracellular electron transport. To explore the physiological role of MmcA, we characterized M. acetivorans mutants lacking either the entire Rnf complex (∆mmcA-rnf) or just the MmcA subunit (∆mmcA). Our data show that MmcA is essential for growth during acetoclastic methanogenesis but neither Rnf nor MmcA is required for methanogenic growth on methylated compounds. On methylated compounds, the absence of MmcA alone leads to a more severe growth defect compared to a Rnf deletion likely due to different strategies for ferredoxin oxidation that arise in each strain. Transcriptomic data suggest that the ∆mmcA mutant might oxidize ferredoxin by upregulating the cytosolic Wood-Ljundahl pathway for acetyl-CoA synthesis, whereas the ∆mmcA-rnf mutant may repurpose the F420 dehydrogenase complex (Fpo) to oxidize ferredoxin coupled to proton translocation. Beyond energy conservation, the deletion of rnf or mmcA leads to global transcriptional changes of genes involved in methanogenesis, carbon assimilation and regulation. Overall, our study provides systems-level insights into the non-overlapping roles of the Rnf bioenergetic complex and the associated MHC, MmcA.


Subject(s)
Carbon , Methanosarcina , Methanosarcina/genetics , Carbon/metabolism , Ferredoxins/metabolism , Oxidation-Reduction , Cytochromes/metabolism , Methane/metabolism
9.
PLoS Pathog ; 18(9): e1010840, 2022 09.
Article in English | MEDLINE | ID: mdl-36166467

ABSTRACT

Giardia duodenalis causes giardiasis, a major diarrheal disease in humans worldwide whose treatment relies mainly on metronidazole (MTZ) and albendazole (ABZ). The emergence of ABZ resistance in this parasite has prompted studies to elucidate the molecular mechanisms underlying this phenomenon. G. duodenalis trophozoites convert ABZ into its sulfoxide (ABZSO) and sulfone (ABZSOO) forms, despite lacking canonical enzymes involved in these processes, such as cytochrome P450s (CYP450s) and flavin-containing monooxygenases (FMOs). This study aims to identify the enzyme responsible for ABZ metabolism and its role in ABZ resistance in G. duodenalis. We first determined that the iron-containing cofactor heme induces higher mRNA expression levels of flavohemoglobin (gFlHb) in Giardia trophozoites. Molecular docking analyses predict favorable interactions of gFlHb with ABZ, ABZSO and ABZSOO. Spectral analyses of recombinant gFlHb in the presence of ABZ, ABZSO and ABZSOO showed high affinities for each of these compounds with Kd values of 22.7, 19.1 and 23.8 nM respectively. ABZ and ABZSO enhanced gFlHb NADH oxidase activity (turnover number 14.5 min-1), whereas LC-MS/MS analyses of the reaction products showed that gFlHb slowly oxygenates ABZ into ABZSO at a much lower rate (turnover number 0.01 min-1). Further spectroscopic analyses showed that ABZ is indirectly oxidized to ABZSO by superoxide generated from the NADH oxidase activity of gFlHb. In a similar manner, the superoxide-generating enzyme xanthine oxidase was able to produce ABZSO in the presence of xanthine and ABZ. Interestingly, we find that gFlHb mRNA expression is lower in albendazole-resistant clones compared to those that are sensitive to this drug. Furthermore, all albendazole-resistant clones transfected to overexpress gFlHb displayed higher susceptibility to the drug than the parent clones. Collectively these findings indicate a role for gFlHb in ABZ conversion to its sulfoxide and that gFlHb down-regulation acts as a passive pharmacokinetic mechanism of resistance in this parasite.


Subject(s)
Anthelmintics , Giardia lamblia , Albendazole/chemistry , Albendazole/pharmacokinetics , Animals , Anthelmintics/pharmacology , Biotransformation , Chromatography, Liquid , Cytochromes/metabolism , Flavins/metabolism , Giardia lamblia/genetics , Giardia lamblia/metabolism , Heme/metabolism , Humans , Iron , Metronidazole/pharmacology , Mixed Function Oxygenases/metabolism , Molecular Docking Simulation , RNA, Messenger/metabolism , Sulfones , Sulfoxides/metabolism , Superoxides , Tandem Mass Spectrometry , Trophozoites/metabolism , Xanthine Oxidase/metabolism , Xanthines
10.
Appl Environ Microbiol ; 90(4): e0209923, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38445905

ABSTRACT

Marine oxygen-deficient zones (ODZs) are portions of the ocean where intense nitrogen loss occurs primarily via denitrification and anammox. Despite many decades of study, the identity of the microbes that catalyze nitrogen loss in ODZs is still being elucidated. Intriguingly, high transcription of genes in the same family as the nitric oxide dismutase (nod) gene from Methylomirabilota has been reported in the anoxic core of ODZs. Here, we show that the most abundantly transcribed nod genes in the Eastern Tropical North Pacific ODZ belong to a new order (UBA11136) of Alphaproteobacteria, rather than Methylomirabilota as previously assumed. Gammaproteobacteria and Planctomycetia also transcribe nod, but at lower relative abundance than UBA11136 in the upper ODZ. The nod-transcribing Alphaproteobacteria likely use formaldehyde and formate as a source of electrons for aerobic respiration, with additional electrons possibly from sulfide oxidation. They also transcribe multiheme cytochrome (here named ptd) genes for a putative porin-cytochrome protein complex of unknown function, potentially involved in extracellular electron transfer. Molecular oxygen for aerobic respiration may originate from nitric oxide dismutation via cryptic oxygen cycling. Our results implicate Alphaproteobacteria order UBA11136 as a significant player in marine nitrogen loss and highlight their potential in one-carbon, nitrogen, and sulfur metabolism in ODZs.IMPORTANCEIn marine oxygen-deficient zones (ODZs), microbes transform bioavailable nitrogen to gaseous nitrogen, with nitric oxide as a key intermediate. The Eastern Tropical North Pacific contains the world's largest ODZ, but the identity of the microbes transforming nitric oxide remains unknown. Here, we show that highly transcribed nitric oxide dismutase (nod) genes belong to Alphaproteobacteria of the novel order UBA11136, which lacks cultivated isolates. These Alphaproteobacteria show evidence for aerobic respiration, using oxygen potentially sourced from nitric oxide dismutase, and possess a novel porin-cytochrome protein complex with unknown function. Gammaproteobacteria and Planctomycetia transcribe nod at lower levels. Our results pinpoint the microbes mediating a key step in marine nitrogen loss and reveal an unexpected predicted metabolism for marine Alphaproteobacteria.


Subject(s)
Alphaproteobacteria , Gammaproteobacteria , Alphaproteobacteria/genetics , Alphaproteobacteria/metabolism , Nitric Oxide/metabolism , Bacteria/genetics , Oxygen/metabolism , Gammaproteobacteria/genetics , Gammaproteobacteria/metabolism , Cytochromes/metabolism , Nitrogen/metabolism , Porins/metabolism , Oxidation-Reduction , Seawater/microbiology , Denitrification
11.
Photosynth Res ; 159(2-3): 261-272, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38032488

ABSTRACT

In photosynthetic bacteria, the absorbed light drives the canonical cyclic electron transfer between the reaction center and the cytochrome bc1 complexes via the pools of mobile electron carriers. If kinetic or structural barriers hinder the participation of the bc1 complex in the cyclic flow of electrons, then the pools of mobile redox agents must supply the electrons for the multiple turnovers of the reaction center. These conditions were achieved by continuous high light excitation of intact cells of bacterial strains Rba. sphaeroides and Rvx. gelatinosus with depleted donor side cytochromes c2 (cycA) and tetraheme cytochrome subunit (pufC), respectively. The gradual oxidation by ferricyanide further reduced the availability of electron donors to pufC. Electron transfer through the reaction center was tracked by absorption change and by induction and relaxation of the fluorescence of the bacteriochlorophyll dimer. The rate constants of the electron transfer (~ 3 × 103 s‒1) from the mobile donors of Rvx. gelatinosus bound either to the RC (pufC) or to the tetraheme subunit (wild type) were similar. The electrons transferred through the reaction center dimer were supplied entirely by the donor pool; their number amounted to about 5 in wild type Rvx. gelatinosus and decreased to 1 in pufC oxidized by ferricyanide. Fluorescence yield was measured as a function of the oxidized fraction of the dimer and its complex shape reveals the contribution of two competing processes: the migration of the excitation energy among the photosynthetic units and the availability of electron donors to the oxidized dimer. The experimental results were simulated and rationalized by a simple kinetic model of the two-electron cycling of the acceptor side combined with aperiodic one-electron redox function of the donor side.


Subject(s)
Photosynthetic Reaction Center Complex Proteins , Rhodobacter sphaeroides , Humans , Electrons , Photosynthetic Reaction Center Complex Proteins/metabolism , Cytochromes/metabolism , Oxidation-Reduction , Electron Transport , Cytochromes c/metabolism , Proteobacteria/metabolism , Ferricyanides , Tissue Donors , Kinetics , Rhodobacter sphaeroides/metabolism
12.
Biotechnol Bioeng ; 121(6): 2002-2012, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555482

ABSTRACT

The physiological role of Geobacter sulfurreducens extracellular cytochrome filaments is a matter of debate and the development of proposed electronic device applications of cytochrome filaments awaits methods for large-scale cytochrome nanowire production. Functional studies in G. sulfurreducens are stymied by the broad diversity of redox-active proteins on the outer cell surface and the redundancy and plasticity of extracellular electron transport routes. G. sulfurreducens is a poor chassis for producing cytochrome nanowires for electronics because of its slow, low-yield, anaerobic growth. Here we report that filaments of the G. sulfurreducens cytochrome OmcS can be heterologously expressed in Shewanella oneidensis. Multiple lines of evidence demonstrated that a strain of S. oneidensis, expressing the G. sulfurreducens OmcS gene on a plasmid, localized OmcS on the outer cell surface. Atomic force microscopy revealed filaments with the unique morphology of OmcS filaments emanating from cells. Electron transfer to OmcS appeared to require a functional outer-membrane porin-cytochrome conduit. The results suggest that S. oneidensis, which grows rapidly to high culture densities under aerobic conditions, may be suitable for the development of a chassis for producing cytochrome nanowires for electronics applications and may also be a good model microbe for elucidating cytochrome filament function in anaerobic extracellular electron transfer.


Subject(s)
Cytochromes , Geobacter , Shewanella , Shewanella/genetics , Shewanella/metabolism , Shewanella/enzymology , Geobacter/genetics , Geobacter/metabolism , Cytochromes/metabolism , Cytochromes/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Electron Transport , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
13.
Environ Sci Technol ; 58(6): 2891-2901, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38308618

ABSTRACT

Direct interspecies electron transfer (DIET) provides an innovative way to achieve efficient methanogenesis, and this study proposes a new approach to upregulate the DIET pathway by enhancing quorum sensing (QS). Based on long-term reactor performance, QS enhancement achieved more vigorous methanogenesis with 98.7% COD removal efficiency. In the control system, methanogenesis failure occurred at the accumulated acetate of 7420 mg of COD/L and lowered pH of 6.04, and a much lower COD removal of 41.9% was observed. The more significant DIET in QS-enhancing system was supported by higher expression of conductive pili and the c-Cyts cytochrome secretion-related genes, resulting in 12.7- and 10.3-fold improvements. Moreover, QS enhancement also improved the energy production capability, with the increase of F-type and V/A-type ATPase expression by 6.3- and 4.2-fold, and this effect probably provided more energy for nanowires and c-Cyts cytochrome secretion. From the perspective of community structure, QS enhancement increased the abundance of Methanosaeta and Geobacter from 54.3 and 17.6% in the control to 63.0 and 33.8%, respectively. Furthermore, the expression of genes involved in carbon dioxide reduction and alcohol dehydrogenation increased by 0.6- and 7.1-fold, respectively. Taken together, this study indicates the positive effects of QS chemicals to stimulate DIET and advances the understanding of the DIET methanogenesis involved in environments such as anaerobic digesters and sediments.


Subject(s)
Electrons , Quorum Sensing , Anaerobiosis , Electron Transport , Cytochromes/metabolism , Methane , Bioreactors
14.
Environ Sci Technol ; 58(10): 4670-4679, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38411077

ABSTRACT

Bacteria utilize electron conduction in their communities to drive their metabolism, which has led to the development of various environmental technologies, such as electrochemical microbial systems and anaerobic digestion. It is challenging to measure the conductivity among bacterial cells when they hardly form stable biofilms on electrodes. This makes it difficult to identify the biomolecules involved in electron conduction. In the present study, we aimed to identify c-type cytochromes involved in electron conduction in Shewanella oneidensis MR-1 and examine the molecular mechanisms. We established a colony-based bioelectronic system that quantifies bacterial electrical conductivity, without the need for biofilm formation on electrodes. This system enabled the quantification of the conductivity of gene deletion mutants that scarcely form biofilms on electrodes, demonstrating that c-type cytochromes, MtrC and OmcA, are involved in electron conduction. Furthermore, the use of colonies of gene deletion mutants demonstrated that flavins participate in electron conduction by binding to OmcA, providing insight into the electron conduction pathways at the molecular level. Furthermore, phenazine-based electron transfer in Pseudomonas aeruginosa PAO1 and flavin-based electron transfer in Bacillus subtilis 3610 were confirmed, indicating that this colony-based system can be used for various bacteria, including weak electricigens.


Subject(s)
Flavins , Shewanella , Electrochemistry , Flavins/metabolism , Electrons , Cytochromes/metabolism , Electron Transport , Shewanella/chemistry , Shewanella/genetics , Shewanella/metabolism
15.
Environ Res ; 245: 118038, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38147916

ABSTRACT

The basis for bioelectrochemical technology is the capability of electroactive bacteria (EAB) to perform bidirectional extracellular electron transfer (EET) with electrodes, i.e. outward- and inward-EET. Extracellular polymeric substances (EPS) surrounding EAB are the necessary media for EET, but the biochemical and molecular analysis of EPS of Geobacter biofilms on electrode surface is largely lacked. This study constructed Geobacter sulfurreducens-biofilms performing bidirectional EET to explore the bidirectional EET mechanisms through EPS characterization using electrochemical, spectroscopic fingerprinting and proteomic techniques. Results showed that the inward-EET required extracellular redox proteins with lower formal potentials relative to outward-EET. Comparing to the EPS extracted from anodic biofilm (A-EPS), the EPS extracted from cathodic biofilm (C-EPS) exhibited a lower redox activity, mainly due to a decrease of protein/polysaccharide ratio and α-helix content of proteins. Furthermore, less cytochromes and more tyrosine- and tryptophan-protein like substances were detected in C-EPS than in A-EPS, indicating a diminished role of cytochromes and a possible role of other redox proteins in inward-EET. Proteomic analysis identified a variety of redox proteins including cytochrome, iron-sulfur clusters-containing protein, flavoprotein and hydrogenase in EPS, which might serve as an extracellular redox network for bidirectional EET. Those redox proteins that were significantly stimulated in A-EPS and C-EPS might be essential for outward- and inward-EET and warranted further research. This work sheds light on the mechanism of bidirectional EET of G. sulfurreducens biofilms and has implications in improving the performance of bioelectrochemical technology.


Subject(s)
Extracellular Polymeric Substance Matrix , Geobacter , Extracellular Polymeric Substance Matrix/metabolism , Electrons , Proteomics , Biofilms , Oxidation-Reduction , Cytochromes/metabolism
16.
J Chem Phys ; 160(6)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38341797

ABSTRACT

Diffusion of electrons over distances on the order of 100 µm has been observed in crystals of a small tetraheme cytochrome (STC) from Shewanella oneidensis [J. Huang et al. J. Am. Chem. Soc. 142, 10459-10467 (2020)]. Electron transfer between hemes in adjacent subunits of the crystal is slower and more strongly dependent on temperature than had been expected based on semiclassical electron-transfer theory. We here explore explanations for these findings by molecular-dynamics simulations of crystalline and monomeric STC. New procedures are developed for including time-dependent quantum mechanical energy differences in the gap between the energies of the reactant and product states and for evaluating fluctuations of the electronic-interaction matrix element that couples the two hemes. Rate constants for electron transfer are calculated from the time- and temperature-dependent energy gaps, coupling factors, and Franck-Condon-weighted densities of states using an expression with no freely adjustable parameters. Back reactions are considered, as are the effects of various protonation states of the carboxyl groups on the heme side chains. Interactions with water are found to dominate the fluctuations of the energy gap between the reactant and product states. The calculated rate constant for electron transfer from heme IV to heme Ib in a neighboring subunit at 300 K agrees well with the measured value. However, the calculated activation energy of the reaction in the crystal is considerably smaller than observed. We suggest two possible explanations for this discrepancy. The calculated rate constant for transfer from heme I to II within the same subunit of the crystal is about one-third that for monomeric STC in solution.


Subject(s)
Cytochromes , Electrons , Electron Transport , Cytochromes/chemistry , Cytochromes/metabolism , Molecular Dynamics Simulation , Heme/chemistry , Oxidation-Reduction
17.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34556577

ABSTRACT

Proteins achieve efficient energy storage and conversion through electron transfer along a series of redox cofactors. Multiheme cytochromes are notable examples. These proteins transfer electrons over distance scales of several nanometers to >10 µm and in so doing they couple cellular metabolism with extracellular redox partners including electrodes. Here, we report pump-probe spectroscopy that provides a direct measure of the intrinsic rates of heme-heme electron transfer in this fascinating class of proteins. Our study took advantage of a spectrally unique His/Met-ligated heme introduced at a defined site within the decaheme extracellular MtrC protein of Shewanella oneidensis We observed rates of heme-to-heme electron transfer on the order of 109 s-1 (3.7 to 4.3 Å edge-to-edge distance), in good agreement with predictions based on density functional and molecular dynamics calculations. These rates are among the highest reported for ground-state electron transfer in biology. Yet, some fall 2 to 3 orders of magnitude below the Moser-Dutton ruler because electron transfer at these short distances is through space and therefore associated with a higher tunneling barrier than the through-protein tunneling scenario that is usual at longer distances. Moreover, we show that the His/Met-ligated heme creates an electron sink that stabilizes the charge separated state on the 100-µs time scale. This feature could be exploited in future designs of multiheme cytochromes as components of versatile photosynthetic biohybrid assemblies.


Subject(s)
Cytochrome c Group/metabolism , Cytochromes/metabolism , Electrons , Heme/metabolism , Histidine/metabolism , Methionine/metabolism , Shewanella/metabolism , Cytochrome c Group/chemistry , Cytochromes/chemistry , Electron Transport , Heme/chemistry , Histidine/chemistry , Methionine/chemistry , Molecular Dynamics Simulation , Nanowires , Oxidation-Reduction
18.
Differentiation ; 129: 17-36, 2023.
Article in English | MEDLINE | ID: mdl-35490077

ABSTRACT

A comprehensive immunohistochemical ontogeny of the developing human fetal testis has remained incomplete in the literature to date. We collected human fetal testes from 8 to 21 weeks of fetal age, as well as postnatal human testes at minipuberty, pre-pubertal, and pubertal stages. Immunohistochemistry was performed with a comprehensive panel of antigens targeting gonadocytes, Sertoli cells, fetal Leydig cells, peritubular myoid cells, and other hormonal and developmental targets. Testicular cords, precursor structures to seminiferous tubules, developed from 8 to 14 weeks of fetal age, separating the testis into the interstitial and intracordal compartments. Fetal gonadocytes were localized within the testicular cords and evaluated for Testis-Specific Protein Y, Octamer-binding transcription factor 4, Sal-like protein 4, and placental alkaline phosphatase expression. Fetal Sertoli cells were also localized in the testicular cords and evaluated for SRY-box Transcription Factor 9, inhibin, and anti-Mullerian hormone expression. Fetal Leydig cells were present in the interstitium and stained for cytochrome p450c17 and calretinin, while interstitial peritubular myoid cells were examined using smooth muscle α-actin staining. Androgen receptor expression was localized close to the testicular medulla at 8 weeks and then around the testicular cords in the interstitium as they matured in structure. Postnatal staining showed that Testis-Specific Protein Y remained positive of male gonadocytes throughout adulthood. Anti-Mullerian hormone, SRY-box Transcription Factor 9, and Steroidogenic factor 1 are expressed by the postnatal Sertoli cells at all ages examined. Leydig cell markers cytochrome p450c17 and calretinin are expressed during mini-puberty and puberty, but not expressed during the pre-pubertal period. Smooth muscle α-actin and androgen receptor were not expressed during mini-puberty or pre-puberty, but again expressed during the pubertal period. The ontogenic map of the human fetal and postnatal testicular structure and expression patterns described here will serve as a reference for future investigations into normal and abnormal testicular development.


Subject(s)
Receptors, Androgen , Testis , Infant, Newborn , Humans , Male , Female , Pregnancy , Adult , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Calbindin 2/metabolism , Anti-Mullerian Hormone/metabolism , Actins/genetics , Actins/metabolism , Placenta/metabolism , Sertoli Cells , Antigens, Differentiation/metabolism , Cell Differentiation/genetics , Transcription Factors/metabolism , Cytochromes/metabolism
19.
Int J Mol Sci ; 25(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38279276

ABSTRACT

The terminal oxidases of bacterial aerobic respiratory chains are redox-active electrogenic enzymes that catalyze the four-electron reduction of O2 to 2H2O taking out electrons from quinol or cytochrome c. Living bacteria often deal with carbon monoxide (CO) which can act as both a signaling molecule and a poison. Bacterial terminal oxidases contain hemes; therefore, they are potential targets for CO. However, our knowledge of this issue is limited and contradictory. Here, we investigated the effect of CO on the cell growth and aerobic respiration of three different Escherichia coli mutants, each expressing only one terminal quinol oxidase: cytochrome bd-I, cytochrome bd-II, or cytochrome bo3. We found that following the addition of CO to bd-I-only cells, a minimal effect on growth was observed, whereas the growth of both bd-II-only and bo3-only strains was severely impaired. Consistently, the degree of resistance of aerobic respiration of bd-I-only cells to CO is high, as opposed to high CO sensitivity displayed by bd-II-only and bo3-only cells consuming O2. Such a difference between the oxidases in sensitivity to CO was also observed with isolated membranes of the mutants. Accordingly, O2 consumption of wild-type cells showed relatively low CO sensitivity under conditions favoring the expression of a bd-type oxidase.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Carbon Monoxide/pharmacology , Carbon Monoxide/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Cytochrome b Group/genetics , Cytochrome b Group/metabolism , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Cytochromes/genetics , Cytochromes/metabolism , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Respiration
20.
J Bacteriol ; 205(6): e0046922, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37227287

ABSTRACT

The microbiota-the mixture of microorganisms in the intestinal tract of animals-plays an important role in host biology. Bacteriophages are a prominent, though often overlooked, component of the microbiota. The mechanisms that phage use to infect susceptible cells associated with animal hosts, and the broader role they could play in determining the substituents of the microbiota, are poorly understood. In this study, we isolated a zebrafish-associated bacteriophage, which we named Shewanella phage FishSpeaker. This phage infects Shewanella oneidensis strain MR-1, which cannot colonize zebrafish, but it is unable to infect Shewanella xiamenensis strain FH-1, a strain isolated from the zebrafish gut. Our data suggest that FishSpeaker uses the outer membrane decaheme cytochrome OmcA, which is an accessory component of the extracellular electron transfer (EET) pathway in S. oneidensis, as well as the flagellum to recognize and infect susceptible cells. In a zebrafish colony that lacks detectable FishSpeaker, we found that most Shewanella spp. are sensitive to infection and that some strains are resistant to infection. Our results suggest that phage could act as a selectivity filter for zebrafish-associated Shewanella and show that the EET machinery can be targeted by phage in the environment. IMPORTANCE Phage exert selective pressure on bacteria that influences and shapes the composition of microbial populations. However, there is a lack of native, experimentally tractable systems for studying how phage influence microbial population dynamics in complex communities. Here, we show that a zebrafish-associated phage requires both the outer membrane-associated extracellular electron transfer protein OmcA and the flagellum to infect Shewanella oneidensis strain MR-1. Our results suggest that the newly discovered phage-FishSpeaker-could exert selective pressure that restricts which Shewanella spp. colonize zebrafish. Moreover, the requirement of OmcA for infection by FishSpeaker suggests that the phage preferentially infects cells that are oxygen limited, a condition required for OmcA expression and an ecological feature of the zebrafish gut.


Subject(s)
Shewanella , Zebrafish , Animals , Bacterial Outer Membrane Proteins/metabolism , Cytochrome c Group/metabolism , Cytochromes/metabolism , Electron Transport , Shewanella/genetics , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL