Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 219
Filter
1.
Blood ; 142(18): 1529-1542, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37584437

ABSTRACT

The cross talk between extrinsic niche-derived and intrinsic hematopoietic stem cell (HSC) factors controlling HSC maintenance remains elusive. Here, we demonstrated that amphiregulin (AREG) from bone marrow (BM) leptin receptor (LepR+) niche cells is an important factor that mediates the cross talk between the BM niche and HSCs in stem cell maintenance. Mice deficient of the DNA repair gene Brca2, specifically in LepR+ cells (LepR-Cre;Brca2fl/fl), exhibited increased frequencies of total and myeloid-biased HSCs. Furthermore, HSCs from LepR-Cre;Brca2fl/fl mice showed compromised repopulation, increased expansion of donor-derived, myeloid-biased HSCs, and increased myeloid output. Brca2-deficient BM LepR+ cells exhibited persistent DNA damage-inducible overproduction of AREG. Ex vivo treatment of wild-type HSCs or systemic treatment of C57BL/6 mice with recombinant AREG impaired repopulation, leading to HSC exhaustion. Conversely, inhibition of AREG by an anti-AREG-neutralizing antibody or deletion of the Areg gene in LepR-Cre;Brca2fl/fl mice rescued HSC defects caused by AREG. Mechanistically, AREG activated the phosphoinositide 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, promoted HSC cycling, and compromised HSC quiescence. Finally, we demonstrated that BM LepR+ niche cells from other DNA repair-deficient and aged mice also showed persistent DNA damage-associated overexpression of AREG, which exerts similar negative effects on HSC maintenance. Therefore, we identified an important factor that regulates HSCs function under conditions of DNA repair deficiency and aging.


Subject(s)
DNA Repair-Deficiency Disorders , Receptors, Leptin , Mice , Animals , Amphiregulin/genetics , Amphiregulin/metabolism , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Mice, Inbred C57BL , Hematopoietic Stem Cells/metabolism , Aging/genetics , DNA Repair-Deficiency Disorders/metabolism , Stem Cell Niche/genetics , Mammals/metabolism
2.
Int J Cancer ; 154(12): 2106-2120, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38353495

ABSTRACT

Mutations in histone H3.3-encoding genes causing mutant histone tails are associated with specific cancers such as pediatric glioblastomas (H3.3-G34R/V) and giant cell tumor of the bone (H3.3-G34W). The mechanisms by which these mutations promote malignancy are not completely understood. Here we show that cells expressing H3.3-G34W exhibit DNA double-strand breaks (DSBs) repair defects and increased cellular sensitivity to ionizing radiation (IR). Mechanistically, H3.3-G34W can be deposited to damaged chromatin, but in contrast to wild-type H3.3, does not interact with non-homologous end-joining (NHEJ) key effectors KU70/80 and XRCC4 leading to NHEJ deficiency. Together with defective cell cycle checkpoints reported previously, this DNA repair deficiency in H3.3-G34W cells led to accumulation of micronuclei and cytosolic DNA following IR, which subsequently led to activation of the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway, thereby inducing release of immune-stimulatory cytokines. These findings suggest a potential for radiotherapy for tumors expressing H3.3-G34W, which can be further improved by combination with STING agonists to induce immune-mediated therapeutic efficacy.


Subject(s)
DNA Repair-Deficiency Disorders , Histones , Child , Humans , Histones/genetics , Nucleotidyltransferases/genetics , Immunity , DNA
3.
Curr Urol Rep ; 26(1): 12, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39382743

ABSTRACT

PURPOSE OF REVIEW: This review explores the current landscape of treatments which target the DNA damage response (DDR) in metastatic and muscle-invasive bladder cancer. It emphasizes recent clinical trials which integrate DDR inhibitors with standard chemotherapy and immunotherapy. RECENT FINDINGS: Noteworthy findings include the ATLANTIS trial, which demonstrated prolonged progression-free survival (PFS) in DDR biomarker-selected patients using PARP inhibitors as maintenance after standard chemotherapy. Trials such as BAYOU, which combined immunotherapy with PARP inhibition, similarly suggested a potential therapeutic benefit in DDR biomarker-selected patients with bladder cancer. Efforts to develop bladder-sparing treatment regimens based on DDR-associated mutational profiles, such as the RETAIN and HCRN 16-257 trials, have had mixed outcomes to date. There are now ongoing efforts to combine DDR inhibitors with the newest bladder cancer therapies, such as antibody-drug conjugates. This review highlights the most recent advances in targeting DNA repair deficiency in the evolving treatment landscape of bladder cancer.


Subject(s)
Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/therapy , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , DNA Repair-Deficiency Disorders/genetics , DNA Repair , Immunotherapy/methods
4.
J Med Genet ; 58(9): 648-652, 2021 09.
Article in English | MEDLINE | ID: mdl-32843487

ABSTRACT

Pathogenic variants in BRCA1 gene in heterozygous state are known to be associated with breast-ovarian cancer susceptibility; however, biallelic variants cause a phenotype recognised as Fanconi anaemia complementation group S. Due to its rarity, medical management and preventive screening measures are insufficiently understood. Here, we present nine individuals (one new and eight previously presented) with biallelic variants in BRCA1 gene, to delineate clinical features in comparison with other chromosome instability syndromes and understand the patients' health risk. Features seen in these 9 individuals (7 females/2 males) include prenatal and postnatal growth failure (9/9), microcephaly (9/9), hypo/hyperpigmented lesions (9/9), facial dysmorphism (9/9), mild developmental delay (8/9) and early-onset solid tumours (5/9). None presented bone marrow failure or immunodeficiency. Individuals with biallelic variants in BRCA1 also showed chromosomal instability by mitomycin and diepoxybutane test. The phenotype caused by biallelic BRCA1 variants is best framed between Fanconi anaemia and Nijmegen syndrome, yet distinct due to lack of bone marrow failure and immunodeficiency. We hypothesise that disease class should be reframed and medical management in people with biallelic variants in BRCA1 should emphasise on detection of solid tumour development and avoiding exposure to ionising radiation.


Subject(s)
BRCA1 Protein/genetics , DNA Repair-Deficiency Disorders/diagnosis , DNA Repair-Deficiency Disorders/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Mutation , Phenotype , Alleles , Biomarkers , Genetic Association Studies/methods , Humans , Male , Pedigree , Symptom Assessment
5.
Gut ; 70(10): 1894-1903, 2021 10.
Article in English | MEDLINE | ID: mdl-32933947

ABSTRACT

OBJECTIVE: To describe the clinical, pathological and genomic characteristics of pancreatic cancer with DNA mismatch repair deficiency (MMRD) and proficiency (MMRP). DESIGN: We identified patients with MMRD and MMRP pancreatic cancer in a clinical cohort (N=1213, 519 with genetic testing, 53 with immunohistochemistry (IHC)) and a genomic cohort (N=288 with whole-genome sequencing (WGS)). RESULTS: 12 out of 1213 (1.0%) in the clinical cohort were MMRD by IHC or WGS. Of the 14 patients with Lynch syndrome, 3 (21.4%) had an MMRP pancreatic cancer by IHC, and 4 (28.6%) were excluded because tissue was unavailable for testing. MMRD cancers had longer overall survival after surgery (weighted HR after coarsened exact matching 0.11, 95% CI 0.02 to 0.78, p=0.001). One patient with an unresectable MMRD cancer has an ongoing partial response 3 years after starting treatment with PD-L1/CTLA-4 inhibition. This tumour showed none of the classical histopathological features of MMRD. 9 out of 288 (3.1%) tumours with WGS were MMRD. Despite markedly higher tumour mutational burden and neoantigen loads, MMRD cancers were significantly less likely to have mutations in usual pancreatic cancer driver genes like KRAS and SMAD4, but more likely to have mutations in genes that drive cancers with microsatellite instability like ACV2RA and JAK1. MMRD tumours were significantly more likely to have a basal-like transcriptional programme and elevated transcriptional markers of immunogenicity. CONCLUSIONS: MMRD pancreatic cancers have distinct clinical, pathological and genomic profiles. Patients with MMRD pancreatic cancer should be considered for basket trials targeting enhanced immunogenicity or the unique genomic drivers in these malignancies.


Subject(s)
Adenocarcinoma/genetics , DNA Repair-Deficiency Disorders/genetics , Pancreatic Neoplasms/genetics , Adenocarcinoma/pathology , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Repair-Deficiency Disorders/pathology , Female , Genetic Testing , Genomics , Humans , Male , Microsatellite Instability , Mutation , Ontario , Pancreatic Neoplasms/pathology , Retrospective Studies , Whole Genome Sequencing
6.
Mutagenesis ; 36(5): 331-338, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34216473

ABSTRACT

Genotoxicity testing plays an important role in the safety assessment of pharmaceuticals, pesticides and chemical substances. Among the guidelines for various genotoxicity tests, the in vitro genotoxicity test battery comprises the bacterial Ames test and mammalian cell assays. Several chemicals exhibit conflicting results for the bacterial Ames test and mammalian cell genotoxicity studies, which may stem from the differences in DNA repair capacity or metabolism, between different cell types or species. For better understanding the mechanistic implications regarding conflict outcomes between different assay systems, it is necessary to develop in vitro genotoxicity testing approaches with higher specificity towards DNA-damaging reagents. We have recently established an improved thymidine kinase (TK) gene mutation assay (TK assay) i.e. deficient in DNA excision repair system using human lymphoblastoid TK6 cells lacking XRCC1 and XPA (XRCC1-/-/XPA-/-), the core factors of base excision repair (BER) and nucleotide excision repair (NER), respectively. This DNA repair-deficient TK6 cell line is expected to specifically evaluate the genotoxic potential of chemical substances based on the DNA damage. We focussed on four reagents, N-(1-naphthyl)ethylenediamine dihydrochloride (NEDA), p-phenylenediamine (PPD), auramine and malachite green (MG) as the Ames test-positive chemicals. In our assay, assessment using XRCC1-/-/XPA-/- cells revealed no statistically significant increase in the mutant frequencies after treatment with NEDA, PPD and MG, suggesting the chemicals to be non-genotoxic in humans. The observations were consistent with that of the follow-up in vivo studies. In contrast, the mutant frequency was markedly increased in XRCC1-/-/XPA-/- cells after treatment with auramine. The results suggest that auramine is the genotoxic reagent that preferentially induces DNA damages resolved by BER and/or NER in mammals. Taken together, BER/NER-deficient cell-based genotoxicity testing will contribute to elucidate the mechanism of genotoxicity and therefore play a pivotal role in the accurate safety assessment of chemical substances.


Subject(s)
DNA Damage/drug effects , DNA Repair , Mutagenicity Tests , Mutagens/toxicity , Mutation/drug effects , Thymidine Kinase/genetics , Carcinogens/chemistry , Carcinogens/toxicity , Cell Line , DNA Repair-Deficiency Disorders , Dose-Response Relationship, Drug , Humans , Mutagenicity Tests/methods , Mutagens/chemistry
7.
Mol Biol Rep ; 48(2): 1439-1452, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33590416

ABSTRACT

Profilin-1 (PFN1) regulates actin polymerization and cytoskeletal growth. Despite the essential roles of PFN1 in cell integration, its subcellular function in keratinocyte has not been elucidated yet. Here we characterize the specific regulation of PFN1 in DNA damage response and repair machinery. PFN1 depletion accelerated DNA damage-mediated apoptosis exhibiting PTEN loss of function instigated by increased phosphorylated inactivation followed by high levels of AKT activation. PFN1 changed its predominant cytoplasmic localization to the nucleus upon DNA damage and subsequently restored the cytoplasmic compartment during the recovery time. Even though γH2AX was recruited at the sites of DNA double strand breaks in response to DNA damage, PFN1-deficient cells failed to recruit DNA repair factors, whereas control cells exhibited significant increases of these genes. Additionally, PFN1 depletion resulted in disruption of PTEN-AKT cascade upon DNA damage and CHK1-mediated cell cycle arrest was not recovered even after the recovery time exhibiting γH2AX accumulation. This might suggest PFN1 roles in regulating DNA damage response and repair machinery to protect cells from DNA damage. Future studies addressing the crosstalk and regulation of PTEN-related DNA damage sensing and repair pathway choice by PFN1 may further aid to identify new mechanistic insights for various DNA repair disorders.


Subject(s)
DNA Repair-Deficiency Disorders/genetics , DNA Repair/genetics , Histones/genetics , Profilins/genetics , Actins/genetics , Apoptosis/genetics , Cell Cycle Checkpoints/genetics , Checkpoint Kinase 1/genetics , Cytoplasm/genetics , Cytoskeleton/genetics , DNA Damage/genetics , DNA Repair-Deficiency Disorders/pathology , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Phosphorylation/genetics
8.
Neurobiol Dis ; 144: 105021, 2020 10.
Article in English | MEDLINE | ID: mdl-32712267

ABSTRACT

Mosaicism, the presence of genomic differences between cells due to post-zygotic somatic mutations, is widespread in the human body, including within the brain. A role for this in neurodegenerative diseases has long been hypothesised, and technical developments are now allowing the question to be addressed in detail. The rapidly accumulating evidence is discussed in this review, with a focus on recent developments. Somatic mutations of numerous types may occur, including single nucleotide variants (SNVs), copy number variants (CNVs), and retrotransposon insertions. They could act as initiators or risk factors, especially if they arise in development, although they could also result from the disease process, potentially contributing to progression. In common sporadic neurodegenerative disorders, relevant mutations have been reported in synucleinopathies, comprising somatic gains of SNCA in Parkinson's disease and multiple system atrophy, and in Alzheimer's disease, where a novel recombination mechanism leading to somatic variants of APP, as well as an excess of somatic SNVs affecting tau phosphorylation, have been reported. In Mendelian repeat expansion disorders, mosaicism due to somatic instability, first detected 25 years ago, has come to the forefront. Brain somatic SNVs occur in DNA repair disorders, and there is evidence for a role of several ALS genes in DNA repair. While numerous challenges, and need for further validation, remain, this new, or perhaps rediscovered, area of research has the potential to transform our understanding of neurodegeneration.


Subject(s)
Mutation , Neurodegenerative Diseases/genetics , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Amyotrophic Lateral Sclerosis/genetics , DNA Copy Number Variations , DNA Repair-Deficiency Disorders/genetics , DNA Repeat Expansion , Humans , Huntington Disease/genetics , Mosaicism , Multiple System Atrophy/genetics , Mutagenesis, Insertional , Parkinson Disease/genetics , Phosphorylation/genetics , Polymorphism, Single Nucleotide , Retroelements , Synucleinopathies/genetics , alpha-Synuclein/genetics , tau Proteins
9.
Blood ; 142(18): 1502-1504, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37917083
10.
Acta Neuropathol ; 140(5): 765-776, 2020 11.
Article in English | MEDLINE | ID: mdl-32895736

ABSTRACT

Replication repair deficiency (RRD) leading to hypermutation is an important driving mechanism of high-grade glioma (HGG) occurring predominantly in the context of germline mutations in RRD-associated genes. Although HGG presents specific patterns of DNA methylation corresponding to oncogenic mutations, this has not been well studied in replication repair-deficient tumors. We analyzed 51 HGG arising in the background of gene mutations in RRD utilizing either 450 k or 850 k methylation arrays. These were compared with HGG not known to be from patients with RRD. RRD HGG harboring secondary mutations in glioma genes such as IDH1 and H3F3A displayed a methylation pattern corresponding to these methylation subgroups. Strikingly, RRD HGG lacking these known secondary mutations clustered together with an incompletely described group of HGG previously labeled "Wild type-C" or "Paediatric RTK 1". Independent analysis of two comparator HGG cohorts showed that other RRD/hypermutant tumors clustered within these subgroups, suggesting that undiagnosed RRD may be driving some HGG clustering in this location. RRD HGG displayed a unique CpG Island Demethylator Phenotype in contrast to the CpG Island Methylator Phenotype described in other cancers. Hypomethylation was enriched at gene promoters with prominent demethylation in genes and pathways critical to cellular survival including cell cycle, gene expression, cellular metabolism, and organization. These data suggest that methylation arrays may provide diagnostic information for the detection of RRD HGG. Furthermore, our findings highlight the unique natural selection pressures in these highly dysregulated, hypermutant cancers and provide the novel impact of hypermutation and RRD on the cancer epigenome.


Subject(s)
Brain Neoplasms/genetics , DNA Methylation/genetics , DNA Repair-Deficiency Disorders/genetics , DNA Repair/genetics , Glioma/genetics , Adolescent , Adult , Child , Child, Preschool , DNA Repair-Deficiency Disorders/complications , Female , Germ-Line Mutation , Humans , Male , Young Adult
11.
Acta Neuropathol ; 140(1): 25-47, 2020 07.
Article in English | MEDLINE | ID: mdl-32333098

ABSTRACT

Alzheimer's disease (AD) is an incurable neurodegenerative disease that is more prevalent in women. The increased risk of AD in women is not well understood. It is well established that there are sex differences in metabolism and that metabolic alterations are an early component of AD. We utilized a cross-species approach to evaluate conserved metabolic alterations in the serum and brain of human AD subjects, two AD mouse models, a human cell line, and two Caenorhabditis elegans AD strains. We found a mitochondrial complex I-specific impairment in cortical synaptic brain mitochondria in female, but not male, AD mice. In the hippocampus, Polß haploinsufficiency caused synaptic complex I impairment in male and female mice, demonstrating the critical role of DNA repair in mitochondrial function. In non-synaptic, glial-enriched, mitochondria from the cortex and hippocampus, complex II-dependent respiration increased in female, but not male, AD mice. These results suggested a glial upregulation of fatty acid metabolism to compensate for neuronal glucose hypometabolism in AD. Using an unbiased metabolomics approach, we consistently observed evidence of systemic and brain metabolic remodeling with a shift from glucose to lipid metabolism in humans with AD, and in AD mice. We determined that this metabolic shift is necessary for cellular and organismal survival in C. elegans, and human cell culture AD models. We observed sex-specific, systemic, and brain metabolic alterations in humans with AD, and that these metabolite changes significantly correlate with amyloid and tau pathology. Among the most significant metabolite changes was the accumulation of glucose-6-phosphate in AD, an inhibitor of hexokinase and rate-limiting metabolite for the pentose phosphate pathway (PPP). Overall, we identified novel mechanisms of glycolysis inhibition, PPP, and tricarboxylic acid cycle impairment, and a neuroprotective augmentation of lipid metabolism in AD. These findings support a sex-targeted metabolism-modifying strategy to prevent and treat AD.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , DNA Repair-Deficiency Disorders/metabolism , Mitochondria/metabolism , Sex Characteristics , Alzheimer Disease/pathology , Animals , Brain/pathology , Caenorhabditis elegans , DNA Repair-Deficiency Disorders/pathology , Energy Metabolism/physiology , Female , Glucose/metabolism , Humans , Lipid Metabolism/physiology , Male , Mice , Mitochondria/pathology
12.
Am J Med Genet A ; 182(6): 1378-1386, 2020 06.
Article in English | MEDLINE | ID: mdl-32212377

ABSTRACT

DNA double-strand breaks (DSBs) are highly toxic DNA lesions that can lead to chromosomal instability, loss of genes and cancer. The MRE11/RAD50/NBN (MRN) complex is keystone involved in signaling processes inducing the repair of DSB by, for example, in activating pathways leading to homologous recombination repair and nonhomologous end joining. Additionally, the MRN complex also plays an important role in the maintenance of telomeres and can act as a stabilizer at replication forks. Mutations in NBN and MRE11 are associated with Nijmegen breakage syndrome (NBS) and ataxia telangiectasia (AT)-like disorder, respectively. So far, only one single patient with biallelic loss of function variants in RAD50 has been reported presenting with features classified as NBS-like disorder. Here, we report a long-term follow-up of an unrelated patient with facial dysmorphisms, microcephaly, skeletal features, and short stature who is homozygous for a novel variant in RAD50. We could show that this variant, c.2524G > A in exon 15 of the RAD50 gene, induces aberrant splicing of RAD50 mRNA mainly leading to premature protein truncation and thereby, most likely, to loss of RAD50 function. Using patient-derived primary fibroblasts, we could show abnormal radioresistant DNA synthesis confirming pathogenicity of the identified variant. Immunoblotting experiments showed strongly reduced protein levels of RAD50 in the patient-derived fibroblasts and provided evidence for a markedly reduced radiation-induced AT-mutated signaling. Comparison with the previously reported case and with patients presenting with NBS confirms that RAD50 mutations lead to a similar, but distinctive phenotype.


Subject(s)
Acid Anhydride Hydrolases/genetics , Ataxia Telangiectasia/genetics , DNA Repair-Deficiency Disorders/genetics , DNA-Binding Proteins/genetics , Growth Disorders/genetics , Microcephaly/genetics , Nijmegen Breakage Syndrome/genetics , Alleles , Ataxia Telangiectasia/complications , Ataxia Telangiectasia/pathology , Cell Cycle Proteins/genetics , Child , Child, Preschool , DNA Breaks, Double-Stranded , DNA Repair-Deficiency Disorders/complications , DNA Repair-Deficiency Disorders/pathology , Female , Growth Disorders/complications , Growth Disorders/pathology , Humans , Infant , Infant, Newborn , MRE11 Homologue Protein/genetics , Microcephaly/complications , Microcephaly/pathology , Nijmegen Breakage Syndrome/complications , Nijmegen Breakage Syndrome/pathology , Nuclear Proteins/genetics , Pedigree
13.
Chromosoma ; 127(2): 229-234, 2018 06.
Article in English | MEDLINE | ID: mdl-29705818

ABSTRACT

An increasing number of observations suggest an evolutionary switch of centromere position on monocentric eukaryotic chromosomes which otherwise display a conserved sequence of genes and markers. Such observations are particularly frequent for primates and equidae (for review see Heredity 108:59-67, 2012) but occur also in marsupials (J Hered 96:217-224, 2005) and in plants (Chromosome Res 25:299-311, 2017 and references therein). The actual mechanism(s) behind remained unclear in many cases (Proc Natl Acad Sci USA 101:6542-6547, 2004; Trends Genet 30:66-74, 2014). The same is true for de novo centromere formation on chromosomes lacking an active centromere. This article focuses on recent reports on centromere repositioning and possible mechanisms behind and addresses open questions.


Subject(s)
Centromere Protein A/genetics , Centromere/metabolism , DNA Repair , Nucleosomes/metabolism , Spindle Apparatus/metabolism , Animals , Centromere/ultrastructure , Centromere Protein A/metabolism , Chromosome Segregation , DNA/genetics , DNA/metabolism , DNA Repair-Deficiency Disorders/genetics , DNA Repair-Deficiency Disorders/metabolism , DNA Repair-Deficiency Disorders/pathology , Eukaryotic Cells/metabolism , Eukaryotic Cells/ultrastructure , Gene Expression , Humans , Kinetochores/metabolism , Kinetochores/ultrastructure , Mitosis , Nucleosomes/ultrastructure , Plants/genetics , Plants/metabolism , Spindle Apparatus/ultrastructure
14.
J Allergy Clin Immunol ; 141(1): 322-328.e10, 2018 01.
Article in English | MEDLINE | ID: mdl-28392333

ABSTRACT

BACKGROUND: Rare DNA breakage repair disorders predispose to infection and lymphoreticular malignancies. Hematopoietic cell transplantation (HCT) is curative, but coadministered chemotherapy or radiotherapy is damaging because of systemic radiosensitivity. We collected HCT outcome data for Nijmegen breakage syndrome, DNA ligase IV deficiency, Cernunnos-XRCC4-like factor (Cernunnos-XLF) deficiency, and ataxia-telangiectasia (AT). METHODS: Data from 38 centers worldwide, including indication, donor, conditioning regimen, graft-versus-host disease, and outcome, were analyzed. Conditioning was classified as myeloablative conditioning (MAC) if it contained radiotherapy or alkylators and reduced-intensity conditioning (RIC) if no alkylators and/or 150 mg/m2 fludarabine or less and 40 mg/kg cyclophosphamide or less were used. RESULTS: Fifty-five new, 14 updated, and 18 previously published patients were analyzed. Median age at HCT was 48 months (range, 1.5-552 months). Twenty-nine patients underwent transplantation for infection, 21 had malignancy, 13 had bone marrow failure, 13 received pre-emptive transplantation, 5 had multiple indications, and 6 had no information. Twenty-two received MAC, 59 received RIC, and 4 were infused; information was unavailable for 2 patients. Seventy-three of 77 patients with DNA ligase IV deficiency, Cernunnos-XLF deficiency, or Nijmegen breakage syndrome received conditioning. Survival was 53 (69%) of 77 and was worse for those receiving MAC than for those receiving RIC (P = .006). Most deaths occurred early after transplantation, suggesting poor tolerance of conditioning. Survival in patients with AT was 25%. Forty-one (49%) of 83 patients experienced acute GvHD, which was less frequent in those receiving RIC compared with those receiving MAC (26/56 [46%] vs 12/21 [57%], P = .45). Median follow-up was 35 months (range, 2-168 months). No secondary malignancies were reported during 15 years of follow-up. Growth and developmental delay remained after HCT; immune-mediated complications resolved. CONCLUSION: RIC HCT resolves DNA repair disorder-associated immunodeficiency. Long-term follow-up is required for secondary malignancy surveillance. Routine HCT for AT is not recommended.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair-Deficiency Disorders/genetics , DNA Repair-Deficiency Disorders/therapy , DNA Repair , Hematopoietic Stem Cell Transplantation , Adolescent , Alleles , Child , Child, Preschool , DNA Repair-Deficiency Disorders/diagnosis , DNA Repair-Deficiency Disorders/mortality , Female , Follow-Up Studies , Graft vs Host Disease/diagnosis , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Humans , Infant , Kaplan-Meier Estimate , Male , Mutation , Prognosis , Treatment Outcome , Virus Diseases , Young Adult
15.
J Pathol ; 242(2): 165-177, 2017 06.
Article in English | MEDLINE | ID: mdl-28299801

ABSTRACT

Homologous recombination (HR) DNA repair-deficient (HRD) breast cancers have been shown to be sensitive to DNA repair targeted therapies. Burgeoning evidence suggests that sporadic breast cancers, lacking germline BRCA1/BRCA2 mutations, may also be HRD. We developed a functional ex vivo RAD51-based test to identify HRD primary breast cancers. An integrated approach examining methylation, gene expression, and whole-exome sequencing was employed to ascertain the aetiology of HRD. Functional HRD breast cancers displayed genomic features of lack of competent HR, including large-scale state transitions and specific mutational signatures. Somatic and/or germline genetic alterations resulting in bi-allelic loss-of-function of HR genes underpinned functional HRD in 89% of cases, and were observed in only one of the 15 HR-proficient samples tested. These findings indicate the importance of a comprehensive genetic assessment of bi-allelic alterations in the HR pathway to deliver a precision medicine-based approach to select patients for therapies targeting tumour-specific DNA repair defects. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , DNA Repair-Deficiency Disorders/genetics , Rad51 Recombinase/genetics , Recombinational DNA Repair , Adult , Aged , Aged, 80 and over , Breast Neoplasms/diagnosis , Breast Neoplasms, Male/diagnosis , Breast Neoplasms, Male/genetics , DNA Repair-Deficiency Disorders/diagnosis , Female , Germ-Line Mutation , Homologous Recombination , Humans , Loss of Heterozygosity , Male , Middle Aged , Mutation , Young Adult
16.
Br J Haematol ; 177(4): 526-542, 2017 05.
Article in English | MEDLINE | ID: mdl-28211564

ABSTRACT

The inherited bone marrow failure syndromes (IBMFS) typically present with significant cytopenias in at least one haematopoietic cell lineage that may progress to pancytopenia, and are associated with increased risk of cancer. Although the clinical features of the IBMFS are often diagnostic, variable disease penetrance and expressivity may result in diagnostic dilemmas. The discovery of the genetic aetiology of the IBMFS has been greatly facilitated by next-generation sequencing methods. This has advanced understanding of the underlying biology of the IBMFS and been essential in improving clinical management and genetic counselling for affected patients. Herein we review the clinical features, underlying biology, and new genomic discoveries in the IBMFS, including Fanconi anaemia, dyskeratosis congenita, Diamond Blackfan anaemia, Shwachman Diamond syndrome and some disorders of the myeloid and megakaryocytic lineages.


Subject(s)
Anemia, Aplastic/genetics , Bone Marrow Diseases/genetics , Genomics/methods , Hemoglobinuria, Paroxysmal/genetics , Anemia, Aplastic/diagnosis , Anemia, Diamond-Blackfan/diagnosis , Anemia, Diamond-Blackfan/genetics , Blood Platelet Disorders/diagnosis , Blood Platelet Disorders/genetics , Bone Marrow Diseases/diagnosis , Bone Marrow Failure Disorders , DNA Repair-Deficiency Disorders/genetics , Dyskeratosis Congenita/diagnosis , Dyskeratosis Congenita/genetics , Exocrine Pancreatic Insufficiency/diagnosis , Exocrine Pancreatic Insufficiency/genetics , Fanconi Anemia/diagnosis , Fanconi Anemia/genetics , Genetic Counseling , Hemoglobinuria, Paroxysmal/diagnosis , Humans , Lipomatosis/diagnosis , Lipomatosis/genetics , Neutropenia/congenital , Neutropenia/diagnosis , Neutropenia/genetics , Ribosomes/genetics , Shwachman-Diamond Syndrome , Telomere/genetics
17.
Gastroenterology ; 151(5): 870-878.e3, 2016 11.
Article in English | MEDLINE | ID: mdl-27443823

ABSTRACT

BACKGROUND & AIMS: Colonoscopy provides incomplete protection from colorectal cancer (CRC), but determinants of post-colonoscopy CRC are not well understood. We compared clinical features and molecular characteristics of CRCs diagnosed at different time intervals after a previous colonoscopy. METHODS: We performed a population-based, cross-sectional study of incident CRC cases in Denmark (2007-2011), categorized as post-colonoscopy or detected during diagnostic colonoscopy (in patients with no prior colonoscopy). We compared prevalence of proximal location and DNA mismatch repair deficiency (dMMR) in CRC tumors, relative to time since previous colonoscopy, using logistic regression and cubic splines to assess temporal variation. RESULTS: Of 10,365 incident CRCs, 725 occurred after colonoscopy examinations (7.0%). These were more often located in the proximal colon (odds ratio [OR], 2.34; 95% confidence interval [CI], 1.90-2.89) and were more likely to have dMMR (OR, 1.26; 95% CI, 1.00-1.59), but were less likely to be metastatic at presentation (OR, 0.65; 95% CI, 0.48-0.89) compared with CRCs diagnosed in patients with no prior colonoscopy. The highest proportions of proximal and/or dMMR tumors were observed in CRCs diagnosed 3-6 years after colonoscopy, but these features were still more frequent among cancers diagnosed up to 10 years after colonoscopy. The relative excess of dMMR tumors was most pronounced in distal cancers. In an analysis of 85 cases detected after colonoscopy, we found BRAF mutations in 23% of tumors and that 7% of cases had features of Lynch syndrome. Colonoscopy exams were incomplete in a higher proportion of cases diagnosed within <1 year (in 38%) than in those diagnosed within 1-10 years after colonoscopy (16%). CONCLUSIONS: In a study of incident CRC cases in Denmark, we observed that tumors found in patients who have undergone colonoscopy are more often proximal and have dMMR compared to CRCs detected in patients without previous colonoscopies. The excess of right-sided tumors and the modest independent effects of dMMR reinforce the importance of proper colonoscopic examination of the proximal large bowel.


Subject(s)
Adenocarcinoma/diagnosis , Adenocarcinoma/genetics , Adenoma/diagnosis , Adenoma/genetics , Colonoscopy , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Adenocarcinoma/epidemiology , Adenocarcinoma/pathology , Adenoma/epidemiology , Adenoma/pathology , Adult , Aged , Aged, 80 and over , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/pathology , Cross-Sectional Studies , DNA Mismatch Repair , DNA Repair-Deficiency Disorders/diagnosis , DNA Repair-Deficiency Disorders/epidemiology , Denmark/epidemiology , Female , Humans , Incidence , Logistic Models , Male , Middle Aged , Registries , Time Factors
18.
Clin Exp Dermatol ; 42(5): 523-526, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28543586

ABSTRACT

Phototherapy is a useful noninvasive therapy, but it can induce cutaneous malignant tumours, including squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). We report on a 79-year-old man who had long-standing mycosis fungoides for 40 years, which had been treated with psoralen ultraviolet A therapy for 37 years at a dose of approximately 5000 J/cm2 . Approximately 6 years before presentation, numerous types of cutaneous malignancies, including actinic keratosis, BCC and SCC, had begun to develop all over the patient's body. We hypothesized that he was experiencing a pathogenesis similar to patients with xeroderma pigmentosum (XP), and we therefore assessed his DNA repair capacity. Based on these investigations, the patient was eventually diagnosed as non-XP, even though we detected that his DNA repair capacity was slightly lower than that of normal controls, which may have led to the skin cancers. We speculate that multiple skin malignancies can be induced by long-term phototherapy in patients with slightly impaired DNA repair capacity.


Subject(s)
DNA Repair-Deficiency Disorders/diagnosis , Mycosis Fungoides/radiotherapy , Neoplasms, Radiation-Induced , Skin Neoplasms/pathology , Ultraviolet Therapy/adverse effects , Aged , Carcinoma, Basal Cell/etiology , Carcinoma, Basal Cell/pathology , Carcinoma, Squamous Cell/etiology , DNA Repair-Deficiency Disorders/complications , Humans , Male , Melanoma/etiology , Melanoma/pathology , Skin Neoplasms/etiology , Skin Neoplasms/radiotherapy
19.
J Biol Chem ; 290(8): 5174-5189, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25561740

ABSTRACT

Mutations in the human ChlR1 (DDX11) gene are associated with a unique genetic disorder known as Warsaw breakage syndrome characterized by cellular defects in genome maintenance. The DNA triplex helix structures that form by Hoogsteen or reverse Hoogsteen hydrogen bonding are examples of alternate DNA structures that can be a source of genomic instability. In this study, we have examined the ability of human ChlR1 helicase to destabilize DNA triplexes. Biochemical studies demonstrated that ChlR1 efficiently melted both intermolecular and intramolecular DNA triplex substrates in an ATP-dependent manner. Compared with other substrates such as replication fork and G-quadruplex DNA, triplex DNA was a preferred substrate for ChlR1. Also, compared with FANCJ, a helicase of the same family, the triplex resolving activity of ChlR1 is unique. On the other hand, the mutant protein from a Warsaw breakage syndrome patient failed to unwind these triplexes. A previously characterized triplex DNA-specific antibody (Jel 466) bound triplex DNA structures and inhibited ChlR1 unwinding activity. Moreover, cellular assays demonstrated that there were increased triplex DNA content and double-stranded breaks in ChlR1-depleted cells, but not in FANCJ(-/-) cells, when cells were treated with a triplex stabilizing compound benzoquinoquinoxaline, suggesting that ChlR1 melting of triple-helix structures is distinctive and physiologically important to defend genome integrity. On the basis of our results, we conclude that the abundance of ChlR1 known to exist in vivo is likely to be a strong deterrent to the stability of triplexes that can potentially form in the human genome.


Subject(s)
DEAD-box RNA Helicases/metabolism , DNA Helicases/metabolism , DNA Repair-Deficiency Disorders/enzymology , DNA/metabolism , Genome, Human , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , DEAD-box RNA Helicases/genetics , DNA/genetics , DNA Helicases/genetics , DNA Repair-Deficiency Disorders/genetics , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia Complementation Group Proteins/metabolism , HEK293 Cells , Humans
20.
Immunology ; 147(1): 11-20, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26455503

ABSTRACT

In recent years, several novel congenital human disorders have been described with defects in lymphoid B-cell and T-cell functions that arise due to mutations in known and/or novel components of DNA repair and damage response pathways. Examples include impaired DNA double-strand break repair, as well as compromised DNA damage-induced signal transduction, including phosphorylation and ubiquitination. These disorders reinforce the importance of genome stability pathways in the development of lymphoid cells in humans. Furthermore, these conditions inform our knowledge of the biology of the mechanisms of genome stability and in some cases may provide potential routes to help exploit these pathways therapeutically. Here we review the mechanisms that repair programmed DNA lesions that occur during B-cell and T-cell development, as well as human diseases that arise through defects in these pathways.


Subject(s)
B-Lymphocytes/pathology , DNA Damage/genetics , DNA Repair-Deficiency Disorders/genetics , DNA Repair/genetics , T-Lymphocytes/pathology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/pathology , DNA Repair-Deficiency Disorders/immunology , DNA Repair-Deficiency Disorders/pathology , Genetic Predisposition to Disease , Humans , Mutation , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Phenotype , Recombination, Genetic , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL